Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes
Abstract
:1. Introduction
2. Type 2 Diabetes: A Sex-Gender Disease
3. Sex-Gender Differences in Diabetic Complications
4. Microvascular Complications
5. Drug Response
6. Conclusions
Funding
Conflicts of Interest
References
- Council of Europe Sex and Gender. Available online: https://www.coe.int/en/web/gender-matters/sex-and-gender (accessed on 23 April 2022).
- Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-gender variable: Methodological recommendations for increasing scientific value of clinical studies. Cells 2019, 8, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campesi, I.; Montella, A.; Seghieri, G.; Franconi, F. The person’s care requires a sex and gender approach. J. Clin. Med. 2021, 10, 4770. [Google Scholar] [CrossRef] [PubMed]
- Seghieri, G.; Policardo, L.; Anichini, R.; Franconi, F.; Campesi, I.; Cherchi, S.; Tonolo, G. The Effect of Sex and Gender on Diabetic Complications. Curr. Diabetes Rev. 2017, 13, 148–160. [Google Scholar] [CrossRef]
- Campesi, I.; Capobianco, G.; Dessole, S.; Occhioni, S.; Montella, A.; Franconi, F. Estrogenic compounds have divergent effects on human endothelial progenitor cell migration according to sex of the donor. J. Vasc. Res. 2015, 52, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Campesi, I.; Marino, M.; Montella, A.; Pais, S.; Franconi, F. Sex differences in estrogen receptor α and β levels and activation status in LPS-stimulated human macrophages. J. Cell Physiol. 2017, 232, 340–345. [Google Scholar] [CrossRef]
- Ruggieri, A.; Gambardella, L.; Maselli, A.; Vona, R.; Anticoli, S.; Panusa, A.; Malorni, W.; Matarrese, P. Statin-induced impairment of monocyte migration is gender-related. J. Cell Physiol. 2014, 229, 1990–1998. [Google Scholar] [CrossRef]
- Straface, E.; Vona, R.; Gambardella, L.; Ascione, B.; Marino, M.; Bulzomi, P.; Canu, S.; Coinu, R.; Rosano, G.; Malorni, W.; et al. Cell sex determines anoikis resistance in vascular smooth muscle cells. FEBS Lett. 2009, 583, 3448–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloret, A.; Badia, M.C.; Mora, N.J.; Ortega, A.; Pallardo, F.V.; Alonso, M.D.; Atamna, H.; Vina, J. Gender and age-dependent differences in the mitochondrial apoptogenic pathway in Alzheimer’s disease. Free Radic. Biol. Med. 2008, 44, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Hickey, R.W.; Bayir, H.; Watkins, S.C.; Tyurin, V.A.; Guo, F.; Kochanek, P.M.; Jenkins, L.W.; Ren, J.; Gibson, G.; et al. Starving neurons show sex difference in autophagy. J. Biol. Chem. 2009, 284, 2383–2396. [Google Scholar] [CrossRef] [Green Version]
- Campesi, I.; Sanna, M.; Zinellu, A.; Carru, C.; Rubattu, L.; Bulzomi, P.; Seghieri, G.; Tonolo, G.; Palermo, M.; Rosano, G.; et al. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function. Biol. Sex Differ. 2012, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Franconi, F.; Seghieri, G.; Canu, S.; Straface, E.; Campesi, I.; Malorni, W. Are the available experimental models of type 2 diabetes appropriate for a gender perspective? Pharmacol. Res. 2008, 57, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Ruoppolo, M.; Costanzo, M.; Albano, L.; Crisci, D.; Sotgiu, G.; Saderi, L.; Montella, A.; Franconi, F.; Campesi, I. Sex Affects Human Premature Neonates’ Blood Metabolome According to Gestational Age, Parenteral Nutrition, and Caffeine Treatment. Metabolites 2021, 11, 158. [Google Scholar] [CrossRef]
- Addis, R.; Campesi, I.; Fois, M.; Capobianco, G.; Dessole, S.; Fenu, G.; Montella, A.; Cattaneo, M.G.; Vicentini, L.M.; Franconi, F. Human umbilical endothelial cells (HUVECs) have a sex: Characterisation of the phenotype of male and female cells. Biol. Sex Differ. 2014, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigore, D.; Ojeda, N.B.; Alexander, B.T. Sex differences in the fetal programming of hypertension. Gend. Med. 2008, 5, S121–S132. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. Intrauterine programming of adult disease. Mol. Med. Today 1995, 1, 418–423. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Osmond, C.; Winter, P.D.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef]
- Campesi, I.; Seghieri, G.; Franconi, F. Type 2 diabetic women are not small type 2 diabetic men: Sex-and-gender differences in antidiabetic drugs. Curr. Opin. Pharmacol. 2021, 60, 40–45. [Google Scholar] [CrossRef]
- Campesi, I.; Racagni, G.; Franconi, F. Just a reflection: Does drug repurposing perpetuate sex-gender bias in the safety profile? Pharmaceuticals 2021, 14, 730. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Dworatzek, E.; Seeland, U.; Kararigas, G.; Arnal, J.F.; Brunelleschi, S.; Carpenter, T.C.; Erdmann, J.; Franconi, F.; Giannetta, E.; et al. Sex in basic research: Concepts in the cardiovascular field. Cardiovasc. Res. 2017, 113, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F.; Berthold, H.K.; Campesi, I.; Carrero, J.J.; Dakal, S.; Franconi, F.; Gouni-Berthold, I.; Heiman, M.L.; Kautzky-Willer, A.; Klein, S.L.; et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 2021, 73, 730–762. [Google Scholar] [CrossRef]
- Campesi, I.; Romani, A.; Franconi, F. The sex-gender effects in the road to tailored botanicals. Nutrients 2019, 11, 1637. [Google Scholar] [CrossRef] [Green Version]
- Campesi, I.; Marino, M.; Cipolletti, M.; Romani, A.; Franconi, F. Put “gender glasses” on the effects of phenolic compounds on cardiovascular function and diseases. Eur. J. Nutr. 2018, 57, 2677–2691. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Campesi, I. Sex and gender influences on pharmacological response: An overview. Expert Rev. Clin. Pharmacol. 2014, 7, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.; Kautzky-Willer, A.; Knappe-Wegner, D.; Kintscher, U.; et al. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart. J. 2016, 37, 24–34. [Google Scholar] [PubMed] [Green Version]
- Anderson, G.D. Sex and racial differences in pharmacological response: Where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J. Womens Health 2005, 14, 19–29. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Stock, S.A.; Stollenwerk, B.; Redaelli, M.; Civello, D.; Lauterbach, K.W. Sex differences in treatment patterns of six chronic diseases: An analysis from the German statutory health insurance. J. Womens Health 2008, 17, 343–354. [Google Scholar] [CrossRef]
- Joung, K.I.; Jung, G.W.; Park, H.H.; Lee, H.; Park, S.H.; Shin, J.Y. Gender differences in adverse event reports associated with antidiabetic drugs. Sci. Rep. 2020, 10, 17545. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I.; Occhioni, S.; Tonolo, G. Sex-gender differences in diabetes vascular complications and treatment. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 179–196. [Google Scholar] [CrossRef]
- Campesi, I.; Franconi, F.; Seghieri, G.; Meloni, M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol. Res. 2017, 119, 195–207. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Walden, C.E.; Knopp, R.H.; Wahl, P.W.; Beach, K.W.; Strandness, E. Sex differences in the effect of diabetes mellitus on lipoprotein triglyceride and cholesterol concentrations. N. Engl. J. Med. 1984, 311, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Anderwald, C.; Gastaldelli, A.; Tura, A.; Krebs, M.; Promintzer-Schifferl, M.; Kautzky-Willer, A.; Stadler, M.; DeFronzo, R.A.; Pacini, G.; Bischof, M.G. Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J. Clin. Endocrinol. Metab. 2011, 96, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannel, W.B.; Hjortland, M.C.; McNamara, P.; Gordon, T. Menopause and risk of cardiovascular disease: The Framingham study. Ann. Intern. Med. 1976, 85, 447–452. [Google Scholar] [CrossRef]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Rossouw, J.E.; Prentice, R.L.; Manson, J.E.; Wu, L.; Barad, D.; Barnabei, V.M.; Ko, M.; Lacroix, A.Z.; Margolis, K.L.; Stefanick, M.L. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 2007, 297, 1465–1477. [Google Scholar] [CrossRef]
- Manson, J.E.; Allison, M.A.; Rossouw, J.E.; Carr, J.J.; Langer, R.D.; Hsia, J.; Kuller, L.H.; Cochrane, B.B.; Hunt, J.R.; Ludlam, S.E.; et al. Estrogen therapy and coronary-artery calcification. N. Engl. J. Med. 2007, 356, 2591–2602. [Google Scholar] [CrossRef]
- González-Granillo, M.; Savva, C.; Li, X.; Ghosh Laskar, M.; Angelin, B.; Gustafsson, J.Å.; Korach-André, M. Selective estrogen receptor (ER)β activation provokes a redistribution of fat mass and modifies hepatic triglyceride composition in obese male mice. Mol. Cell. Endocrinol. 2020, 502, 110672. [Google Scholar] [CrossRef]
- Barros, R.P.A.; Gustafsson, J.Å. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Policardo, L.; Seghieri, G.; Francesconi, P.; Anichini, R.; Franconi, F.; Del Prato, S. Gender difference in diabetes related excess risk of cardiovascular events: When does the “risk window” open? J. Diabetes Complicat. 2017, 31, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Donahue, R.P.; Rejman, K.; Rafalson, L.B.; Dmochowski, J.; Stranges, S.; Trevisan, M. Sex differences in endothelial function markers before conversion to pre-diabetes: Does the clock start ticking earlier among women? The Western New York Study. Diabetes Care 2007, 30, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Vanhoutte, P.M. Endothelial dysfunction: The first step toward coronary arteriosclerosis. Circ. J. 2009, 73, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Quan, H.; Zhang, H.; Lin, L.; Lin, L.; Ou, Q.; Chen, K. Type 2 diabetes is more predictable in women than men by multiple anthropometric and biochemical measures. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Peters, S.A.E.; Huxley, R.R.; Sattar, N.; Woodward, M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: Potential explanations and clinical implications. Curr. Cardiovasc. Risk Rep. 2015, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, S.A.E.; Huxley, R.R.; Woodward, M. Diabetes as a risk factor for stroke in women compared with men: A systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 2014, 383, 1973–1980. [Google Scholar] [CrossRef]
- Giustino, G.; Redfors, B.; Mehran, R.; Kirtane, A.J.; Baber, U.; Généreux, P.; Witzenbichler, B.; Neumann, F.J.; Weisz, G.; Maehara, A.; et al. Sex differences in the effect of diabetes mellitus on platelet reactivity and coronary thrombosis: From the Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents (ADAPT-DES) study. Int. J. Cardiol. 2017, 246, 20–25. [Google Scholar] [CrossRef]
- Huebschmann, A.G.; Huxley, R.R.; Kohrt, W.M.; Zeitler, P.; Regensteiner, J.G.; Reusch, J.E.B. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019, 62, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Zentella, M.L.; Hernández-Muñoz, R. Possible gender influence in the mechanisms underlying the oxidative stress, inflammatory response, and the metabolic alterations in patients with obesity and/or type 2 diabetes. Antioxidants 2021, 10, 1729. [Google Scholar] [CrossRef]
- Aljada, A.; Mohanty, P.; Ghanim, H.; Abdo, T.; Tripathy, D.; Chaudhuri, A.; Dandona, P. Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: Evidence for a proinflammatory effect. Am. J. Clin. Nutr. 2004, 79, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.L.; Maddux, B.A.; Goldfine, I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox. Signal. 2005, 7, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [Green Version]
- Zore, T.; Palafox, M.; Reue, K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol. Metab. 2018, 15, 35–44. [Google Scholar] [CrossRef]
- Weger, B.D.; Gobet, C.; Yeung, J.; Martin, E.; Jimenez, S.; Betrisey, B.; Foata, F.; Berger, B.; Balvay, A.; Foussier, A.; et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019, 29, 362–382.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearden, L.; Bouret, S.G.; Ozanne, S.E. Sex and gender differences in developmental programming of metabolism. Mol. Metab. 2018, 15, 8–19. [Google Scholar] [CrossRef]
- Chase-Vilchez, A.Z.; Chan, I.H.Y.; Peters, S.A.E.; Woodward, M. Diabetes as a risk factor for incident peripheral arterial disease in women compared to men: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2020, 19, 151. [Google Scholar] [CrossRef]
- Maric-Bilkan, C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin. Sci. 2017, 131, 833–846. [Google Scholar] [CrossRef]
- Peters, S.A.E.; Huxley, R.R.; Woodward, M. Diabetes as risk factor for incident coronary heart disease in women compared with men: A systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 2014, 57, 1542–1551. [Google Scholar] [CrossRef]
- Seghieri, G.; Policardo, L.; Gualdani, E.; Anichini, R.; Francesconi, P. Gender difference in the risk for cardiovascular events or mortality of patients with diabetic foot syndrome. Acta Diabetol. 2019, 56, 561–567. [Google Scholar] [CrossRef]
- Seghieri, G.; De Bellis, A.; Seghieri, M.; Gualdani, E.; Policardo, L.; Franconi, F.; Francesconi, P. Gender difference in the risk of adverse outcomes after diabetic foot disease: A mini-review. Curr. Diabetes Rev. 2021, 17, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.B.; Bayliss, E.A.; Daugherty, S.L.; Steiner, J.F. Gender differences in cardiovascular risk factors in incident diabetes. Womens Health Issues 2014, 24, e61–e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannamethee, S.G.; Papacosta, O.; Lawlor, D.A.; Whincup, P.H.; Lowe, G.D.; Ebrahim, S.; Sattar, N. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia 2012, 55, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millett, E.R.C.; Peters, S.A.E.; Woodward, M. Sex differences in risk factors for myocardial infarction: Cohort study of UK Biobank participants. BMJ 2018, 363, k4247. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.A.E.; Woodward, M. Sex, gender, and precision medicine. JAMA Intern. Med. 2020, 180, 1128–1129. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.M.; Holmes, M.V.; Brent Richards, J.; Palmer, T.; Forgetta, V.; Lindgren, C.M.; Asselbergs, F.W.; Nelson, C.P.; Samani, N.J.; McCarthy, M.I.; et al. Sex differences in the risk of coronary heart disease associated with type 2 diabetes: A mendelian randomization analysis. Diabetes Care 2021, 44, 556–562. [Google Scholar] [CrossRef]
- de Jong, M.; Woodward, M.; Peters, S.A.E. Diabetes, glycated hemoglobin, and the risk of myocardial infarction in women and men: A prospective cohort study of the uk biobank. Diabetes Care 2020, 43, 2050–2059. [Google Scholar] [CrossRef]
- Rossi, M.C.; Cristofaro, M.R.; Gentile, S.; Lucisano, G.; Manicardi, V.; Mulas, M.F.; Napoli, A.; Nicolucci, A.; Pellegrini, F.; Suraci, C.; et al. Sex disparities in the quality of diabetes care: Biological and cultural factors may play a different role for different outcomes: A cross-sectional observational study from the amd annals initiative. Diabetes Care 2013, 36, 3162–3168. [Google Scholar] [CrossRef] [Green Version]
- Harjutsalo, V.; Maric, C.; Forsblom, C.; Thorn, L.; Wadén, J.; Groop, P.H. Sex-related differences in the long-term risk of microvascular complications by age at onset of type 1 diabetes. Diabetologia 2011, 54, 1992–1999. [Google Scholar] [CrossRef] [Green Version]
- Looker, H.C.; Nyangoma, S.O.; Cromie, D.; Olson, J.A.; Leese, G.P.; Black, M.; Doig, J.; Lee, N.; Lindsay, R.S.; McKnight, J.A.; et al. Diabetic retinopathy at diagnosis of type 2 diabetes in Scotland. Diabetologia 2012, 55, 2335–2342. [Google Scholar] [CrossRef] [Green Version]
- Kostev, K.; Rathmann, W. Diabetic retinopathy at diagnosis of type 2 diabetes in the UK: A database analysis. Diabetologia 2013, 56, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Sibley, S.D.; Thomas, W.; De Boer, I.; Brunzell, J.D.; Steffes, M.W. Gender and elevated albumin excretion in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort: Role of central obesity. Am. J. Kidney Dis. 2006, 47, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, P.; Rossing, K.; Tarnow, L.; Rossing, P.; Mallet, C.; Poirier, O.; Cambien, F.; Parving, H.H. Progression of diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int. 1999, 71, S101–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherney, D.Z.I.; Sochett, E.B.; Miller, J.A. Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. Kidney Int. 2005, 68, 1722–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penno, G.; Solini, A.; Bonora, E.; Fondelli, C.; Orsi, E.; Zerbini, G.; Trevisan, R.; Vedovato, M.; Gruden, G.; Cavalot, F.; et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J. Hypertens. 2011, 29, 1802–1809. [Google Scholar] [CrossRef]
- Dyck, P.J.; Kratz, K.M.; Karnes, J.L.; Litchy, W.J.; Klein, R.; Pach, J.M.; Wilson, D.M.; O’Brien, P.C.; Melton, L.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology 1993, 43, 817–824. [Google Scholar] [CrossRef]
- Albers, J.W.; Brown, M.B.; Sima, A.A.F.; Greene, D.A. Nerve conduction measures in mild diabetic neuropathy in the Early Diabetes Intervention Trial: The effects of age, sex, type of diabetes, disease duration, and anthropometric factors. Tolrestat Study Group for the Early Diabetes Intervention Trial. Neurology 1996, 46, 85–91. [Google Scholar] [CrossRef]
- Booya, F.; Bandarian, F.; Larijani, B.; Pajouhi, M.; Nooraei, M.; Lotfi, J. Potential risk factors for diabetic neuropathy: A case control study. BMC Neurol. 2005, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.J.; Bird, S.J.; Watling, S.; Kaleta, H.; Hayes, L.; Eckert, S.; Foyt, H.L. Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care 2004, 27, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Dyck, P.J.; Litchy, W.J.; Hokanson, J.L.; Low, J.L.; O’Brien, P.C. Variables influencing neuropathic endpoints: The Rochester Diabetic Neuropathy Study of Healthy Subjects. Neurology 1995, 45, 1115–1121. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Lu, J.; Lopes, N.; Jones, T.L.Z. Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort. J. Peripher. Nerv. Syst. 2009, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stillhart, C.; Vučićević, K.; Augustijns, P.; Basit, A.W.; Batchelor, H.; Flanagan, T.R.; Gesquiere, I.; Greupink, R.; Keszthelyi, D.; Koskinen, M.; et al. Impact of gastrointestinal physiology on drug absorption in special populations—An UNGAP review. Eur. J. Pharm. Sci. 2020, 147, 105280. [Google Scholar] [CrossRef] [PubMed]
- Raparelli, V.; Elharram, M.; Moura, C.S.; Abrahamowicz, M.; Bernatsky, S.; Behlouli, H.; Pilote, L. Sex differences in cardiovascular effectiveness of newer glucose-lowering drugs added to metformin in type 2 diabetes mellitus. J. Am. Heart Assoc. 2020, 9, e012940. [Google Scholar] [CrossRef]
- Dostalek, M.; Akhlaghi, F.; Puzanovova, M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin. Pharmacokinet. 2012, 51, 481–499. [Google Scholar] [CrossRef]
- Ozturk, N.; Uslu, S.; Ozdemir, S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J. Diabetes 2021, 12, 1–18. [Google Scholar] [CrossRef]
- Vasheghani, M.; Sarvghadi, F.; Beyranvand, M.R.; Emami, H. The relationship between QT interval indices with cardiac autonomic neuropathy in diabetic patients: A case control study. Diabetol. Metab. Syndr. 2020, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Ferro, E.G.; Elshazly, M.B.; Bhatt, D.L. New antidiabetes medications and their cardiovascular and renal benefits. Cardiol. Clin. 2021, 39, 335–351. [Google Scholar] [CrossRef]
- Trout, K.K.; Rickels, M.R.; Schutta, M.H.; Petrova, M.; Freeman, E.W.; Tkacs, N.C.; Teff, K.L. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: A pilot study. Diabetes Technol. Ther. 2007, 9, 176–182. [Google Scholar] [CrossRef]
- McGill, J.B.; Vlajnic, A.; Knutsen, P.G.; Recklein, C.; Rimler, M.; Fisher, S.J. Effect of gender on treatment outcomes in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2013, 102, 167–174. [Google Scholar] [CrossRef]
- Jovanovic, L. Sex differences in insulin dose and postprandial glucose as BMI increases in patients with type 2 diabetes. Diabetes Care 2009, 32, e148. [Google Scholar] [CrossRef] [Green Version]
- Schutt, M.; Zimmermann, A.; Hood, R.; Hummel, M.; Seufert, J.; Siegel, E.; Tytko, A.; Holl, R.W. Gender-specific Effects of Treatment with Lifestyle, Metformin or Sulfonylurea on Glycemic Control and Body Weight: A German Multicenter Analysis on 9 108 Patients. Exp. Clin. Endocrinol. Diabetes 2015, 123, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, F.; Tang, J.L.; Zheng, T.S.; Lu, J.X.; Lu, H.J.; Jia, W.P. The gender difference of plasma lactate levels and the influence of metformin in type 2 diabetes patients. Chin. J. Endocrinol. Metab. 2010, 26, 372–376. [Google Scholar]
- Mamza, J.; Mehta, R.; Donnelly, R.; Idris, I. Important differences in the durability of glycaemic response among second-line treatment options when added to metformin in type 2 diabetes: A retrospective cohort study. Ann. Med. 2016, 48, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Zhao, Z.; Slater, M.; Bradford, D.; Schuster, J.; Laurent, A. Replicate study design in bioequivalency assessment, pros and cons: Bioavailabilities of the antidiabetic drugs pioglitazone and glimepiride present in a fixed-dose combination formulation. J. Clin. Pharmacol. 2007, 47, 806–816. [Google Scholar] [CrossRef]
- Wong, M.G.; Perkovic, V.; Chalmers, J.; Woodward, M.; Li, Q.; Cooper, M.E.; Hamet, P.; Harrap, S.; Heller, S.; Macmahon, S.; et al. Long-term Benefits of Intensive Glucose Control for Preventing End-Stage Kidney Disease: ADVANCE-ON. Diabetes Care 2016, 39, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.E.; Haffner, S.M.; Viberti, G.; Herman, W.H.; Lachin, J.M.; Kravitz, B.G.; Yu, D.; Paul, G.; Holman, R.R.; Zinman, B. Rosiglitazone decreases C-reactive protein to a greater extent relative to glyburide and metformin over 4 years despite greater weight gain: Observations from a Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2010, 33, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Aubert, R.E.; Herrera, V.; Chen, W.; Haffner, S.M.; Pendergrass, M. Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes. Metab. 2010, 12, 716–721. [Google Scholar] [CrossRef]
- Anichini, R.; Cosimi, S.; Di Carlo, A.; Orsini, P.; De Bellis, A.; Seghieri, G.; Franconi, F.; Baccetti, F. Gender difference in response predictors after 1-year exenatide therapy twice daily in type 2 diabetic patients: A real world experience. Diabetes Metab. Syndr. Obes. 2013, 6, 123–129. [Google Scholar]
- West, D.S.; Elaine Prewitt, T.; Bursac, Z.; Felix, H.C. Weight loss of black, white, and Hispanic men and women in the Diabetes Prevention Program. Obesity 2008, 16, 1413–1420. [Google Scholar] [CrossRef]
- Chiasson, J.L.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet 2002, 359, 2072–2077. [Google Scholar] [CrossRef]
- Han, E.; Kim, A.; Lee, S.J.; Kim, J.Y.; Kim, J.H.; Lee, W.J.; Lee, B.W. Characteristics of dapagliflozin responders: A longitudinal, prospective, nationwide dapagliflozin surveillance study in Korea. Diabetes Ther. 2018, 9, 1689–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, C.V.; Schneeweiss, S.; Kim, D.; Fralick, M.; Tong, A.; Patorno, E. Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: A population-based cohort study. Ann. Intern. Med. 2019, 171, 248–256. [Google Scholar] [CrossRef] [PubMed]
- FDA SGLT2 Inhibitors: Drug Safety Communication—Labels to Include Warnings about Too Much Acid in the Blood and Serious Urinary Tract Infections. Available online: https://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm475553.htm (accessed on 6 June 2022).
- Blau, J.E.; Tella, S.H.; Taylor, S.I.; Rother, K.I. Ketoacidosis associated with SGLT2 inhibitor treatment: Analysis of FAERS data. Diabetes. Metab. Res. Rev. 2017, 33, e2924. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Euglycemic ketoacidosis as a complication of SGLT2 inhibitor therapy. Clin. J. Am. Soc. Nephrol. 2021, 16, 1284–1291. [Google Scholar] [CrossRef]
- Bersoff-Matcha, S.J.; Chamberlain, C.; Cao, C.; Kortepeter, C.; Chong, W.H. Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: A review of spontaneous postmarketing cases. Ann. Intern. Med. 2019, 170, 764–769. [Google Scholar] [CrossRef] [PubMed]
Drug | Differences | References |
---|---|---|
Insulin | fertile women require higher dose higher risk of hypoglycaemia in women | [24,89,90] [91] |
Biguanides | higher reduction in HbA1c in men higher lactic acidosis in women higher treatment failure in women | [92] [93] [94] |
Sulfonyureas | higher exposure in women higher weight loss in women lower end-stage kidney disease in men | [95] [92] [96] |
Thiazolidinediones | higher exposure to pioglitazone in women higher risk of bone fractures in women | [95] [97,98] |
GLP-1R agonists | higher prescription in young women better glycaemic control in men higher weight loss in women higher gastrointestinal adverse effects in women | [84] [84,99] [99] [99] |
Alpha glucosidase inhibitors | more effective in older and non-obese women higher gastrointestinal adverse effects in men | [100] [101] |
SGLT2 inhibitors | better response in men higher urinary infections in women higher ketoacidosis in women higher Fournier gangrene in men | [102] [103,104] [105,106] [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seghieri, G.; Franconi, F.; Campesi, I. Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes. Diabetology 2022, 3, 460-469. https://doi.org/10.3390/diabetology3030034
Seghieri G, Franconi F, Campesi I. Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes. Diabetology. 2022; 3(3):460-469. https://doi.org/10.3390/diabetology3030034
Chicago/Turabian StyleSeghieri, Giuseppe, Flavia Franconi, and Ilaria Campesi. 2022. "Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes" Diabetology 3, no. 3: 460-469. https://doi.org/10.3390/diabetology3030034
APA StyleSeghieri, G., Franconi, F., & Campesi, I. (2022). Why We Need Sex-Gender Medicine: The Striking Example of Type 2 Diabetes. Diabetology, 3(3), 460-469. https://doi.org/10.3390/diabetology3030034