Integration of Hyperspectral Imaging with Machine Learning for Quality Assessment of Nuts: A Systematic Review
Abstract
1. Introduction
2. Methods
Strategy
3. Nut Quality Parameters
4. Overview of Hyperspectral Imaging
4.1. Spectral Profile Analysis
4.2. Artificial Intelligence in Nut Quality Assessment
4.2.1. Machine Learning
Partial Least Squares Regression
Artificial Neural Networks
Support Vector Machine
4.2.2. Deep Learning Models
Convolutional Neural Network
Recurrent Neural Network
Transformer Neural Network
4.3. Application of Hyperspectral Imaging in Nut Quality Assessment
4.3.1. Hyperspectral Imaging for Nut Adulteration Assessment

| Product | Sample No. | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Almond flour | 124 | Adulteration | 900–1700 950–1650 1350–2500 | PLSR | R2 ≥ 0.90 Acc = 100% | [67] |
| Almond | 448 | Adulteration | 900–1700 | PLS-DA | Acc = 85% | [68] |
| Almond powder and apricot powder | NA | Adulteration | 900–2494 | DD-SIMCA PLSR | Acc = 100%, R2 = 0.99 | [61] |
| Whole wheat flour | Adulteration | 950–1700 | R2 = 0.987 | [42] | ||
| Peanut + wheat flour | 11 | Adulteration | 1000–2500 | Pixel-wise | R2 = 0.946 | [69] |
| Peanut | Adulteration | 935.61–1720.23 | PLSR | R2 = 0.993 RMSE = 0.991 | [70] | |
| Pine nuts | 63 | Identification of chemical distribution and composition | 940–1625 | SIMCA | Acc = 84–100% | [72] |
| Peanut, hazelnut, almond, and walnut | 800 | Cross-contamination | 419–1007 and 842–2532 | PLS-DA | Acc = 98.3%, 99.8% 100% | [71] |
4.3.2. Hyperspectral Imaging for Assessment of Nut Chemical Composition
| Product | Sample No. | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Canarium | 2300 | Quality estimation | 388.9−1005.33 | CNN | Acc = 93.48% R2 = 0.67 | [75] |
| Almond | 354 and 235 | Moisture content and rancidity estimation | 900−1700 | PLSR and MLR | Full spectral: R2 = 0.957, 0.97, 0.955 CARS selected spectral: R2 = 0.941, 0.903, 0.886 | [76] |
| Walnut | 200 | Evaluation of fat, MUFA, PUFA | 900−1700 | MPLSR | SEP = 2.12% for PUFA SEP = 13.08% for MUFA | [78] |
| Walnut | 30 | Assessment of walnut kernel protein content | 863−1704 and 382−1027 | RF | R2 = 0.8537, RMSE = 11.1382 g/kg | [77] |
| Pistachio kernel | Moisture content and textural properties prediction | 400−1000 | PLSR and ANN | Best model: ANN: R2 = 0.957 | [79] | |
| Canarium and macadamia | 390 | Prediction of PV and FFA | 400−1000 | SVC, PLSR | Acc = 87%, R2 = 0.60–0.76 | [80] |
| Canarium | 107 | Prediction of PV, nitrogen, and mineral nutrients | 400−1000 | PLSR | [7] | |
| Hazelnut | 216 | Prediction of oxidation | 1000−1600 | ASCA PLSR | R2 = 0.78 | [81] |
| Walnut | 150 | Prediction of fat content, acid value, and storage time | 400−1000 and 900−1700 | RF PSO–SVR | R2 = 0.8706 and 0.9694 Acc = 100% | [82] |
4.3.3. Hyperspectral Imaging for Defect Evaluation in Nuts

| Product | Sample No. | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Walnuts | 120 | Moldy walnuts assessment | 370−1042 | SVM | 93% | [84] |
| Almond kernels | 1245 | Assessment of defect and freshness | 400−1000 | VGGNet, MobileNet, CNN | Acc = 99.05% Acc = 97.68% Acc = 99.05% | [83] |
| Almond kernels | 454 | Assessment of internal damage | 700−1400 | SVM | Acc = 94.2% | [85] |
| Almond nuts | 454 | Assessment of internal damage | 700−1400 | SVM | Acc = 91.2% | [62] |
| Pistachio nuts | 99 | Detection of contaminated edible pistachios | 1000−2500 | PLS-DA, PCA–DA, PCA–kNN, CART | Best: PCA–kNN Acc = 0.92–0.99% | [86] |
| Pistachio kernels | 681 | Classifying heathy and infected pistachio kernels | 900−1700 | LDA and QDA | Best model: QDA Acc = 91.7% | [87] |
4.3.4. Hyperspectral Imaging for Aflatoxin in Nuts
| Product | Sample No. | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Peanut | 600 | Fungal identification | 723–1024 | SVM | Acc for 3-class: A variety: 88.9%, B variety: 92.4%, Acc for 2-class: 99% Mixture: Acc = 74.8% | [97] |
| Peanut | NA | Identification of fungi-contaminated peanuts | 967–2499 | SVM | Pixel-wise Acc = 96.32%, 94.2%, and 97.51% for A, B, and C | [88] |
| Peanut | 70 | Detection of moldy peanut | 970–2570 | Pixel-wise classifier | Acc = 98.73% | [89] |
| Peanut | 250 | Identification of degree of aflatoxin contamination | 400–720 | RBF-SVM | Acc = 95.5% R2 = 0.9785 MSE = 0.0223 | [95] |
| Almond kernel | 500 | Prediction of aflatoxin B1 | 900–1700 | PLSR and MLR | R2 = 0.958 and 0.948 RMSE = 0.089 µg/g and 0.090 µg/g | [98] |
| Almond kernel | 400 | Assessment of contaminated kernel | 900–1700 | SVM, LDA, QDA, and LR | Acc = 58.3% Acc = 81.7% Acc = 45% Acc = 95% | [99] |
| Almond kernel | 5400 | Aflatoxin B1 contamination | 900–1700 | 3D Inception-ResNet | Acc = 90.81%, F1 = 0.899 | [102] |
| Pistachio | 300 | Identification of the degree of contamination | 400–1000 | k-Means and ResNet | Acc = 84.38% and 96.67% | [101] |
4.3.5. Hyperspectral Imaging for Moisture Content Assessment in Nuts
| Product | Sample No | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Peanut kernels | 150 | Moisture content prediction | 400–1000 1000–2500 | PLSR RC-PLSR | R2 = 0.910 and 0.90 RMSE = 0.061% and 0.06% | [105] |
| Roasted pistachio kernels | 62 g/100 g | Moisture content prediction | 400–1000 | PLSR and ANN | R2 = 0.907, RMSEP = 0.179 | [79] |
| Macadamia nuts | 485 in-shell and 529 kernels | Assessment of moisture concentration | 400–1000 | PLSR ANN GPR | R2 = 0.96, RMSE = 1.20%, RPD = 5.15 R2 = 0.99, RMSE = 0.308% RPD = 11.05 R2 = 0.99 | [106] |
| Chinese walnuts | 188 | Moisture content assessment | 400–1000 | CARS-PLSR | R2 = 0.6921, RMSEP = 0.6084, RPD = 1.33 and RER = 8.62 | [107] |
4.3.6. Hyperspectral Imaging for Other Quality Traits in Nuts
| Product | Sample No. | Appl. | Spectral Range (nm) | Model | Perf. | Reference |
|---|---|---|---|---|---|---|
| Black walnut | 6257 | Discrimination of walnut shell and pulp | 425–775 | SVM | Acc = 90.3% | [108] |
| Black walnut | 5496 | Differentiating walnut shell and meat | 425–775 | PCA–GMM-BC | Acc = 95.65% | [109] |
| Chinese walnut | 400 | Walnut variety identification | 400–1000 | PLS-DA, KNN, SVM | Full spectra: CCR = 92%, Selected spectra: CCR = 91% | [110] |
| Chestnut | 170 | Grading walnuts | 935–1720 | CNN | Full spectra: Acc = 99.72% Key spectra: Acc = 97.33% | [111] |
| Chinese hickory nut | 213 | Differentiate the shell from kernel | 400–1000 | 2D-CNN–LSTM, SVM, and PCA–kNN | Acc = 99% Acc = 93%, and Acc = 94.1% | [113] |
| Chinese chestnut | 417 | Identification of geographical origin | 400–1000 | PLS-DA 1D-CNN | Acc = 90% | [112] |
| Hazelnut kernel | 2400 | Quality grading | 850–1870 | PLS-DA | Acc = > 90% | [114] |
| Pecan | 576 for shelled and 576 for in-shell | Pecan variety identification | 400–1000 and 900–1700 | RF, DT, PLSDA, GB, SVM, and LDA | Acc > 90% | [115] |
| Pecan | 2484 | Sorting of pecan shelled products | 400–1000 And 900–1700 | DT, GB, RF, SVM, CNN–LSTM, and CNN–CNN–LSTM | Acc > 90% | [59] |
5. Challenges and Future Outlook
5.1. Integrating Hyperspectral Imaging with Robotics
5.2. Need for Real-Time and In-Line Monitoring
5.3. Digital Twin Needs in Nut Processing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANN | Artificial neural network |
| ASCA | ANOVA-simultaneous component analysis |
| CART | Classification and regression tree |
| CNN | Convolutional neural network |
| CNN–LSTM | Convolutional neural network–long short-term memory |
| Conv | Convolutional |
| 3D inception-ResNet | 3D-inception residual network |
| DD-SIMCA | Data-driven soft independent modeling class analogy for analysis |
| DT | Decision tree |
| GB | Gradient boosting |
| GMM | Gaussian mixture model |
| GPR | Gaussian process regression |
| LDA | Linear discriminant analysis |
| MLR | Multiple linear regression |
| MPLSR | Modified partial least squares regression |
| PCA–DA | Principal component analysis with discriminant analysis |
| PCA–GMM-BC | Principal component analysis–Gaussian mixture model-based Bayesian classifier |
| PCA–kNN | Principal component analysis with k-nearest neighbor |
| PLS-DA | Partial least squares discriminant analysis |
| Pool | Max-pooling |
| PSO–SVR | Particle swarm optimization with support vector regression |
| R2 | Coefficient of determination |
| ResNet | Residual network |
| RF | Random forest |
| RMSE | Root means square error |
| RPD | ratio of prediction to deviation |
| SVC | Support vector classification |
| VGGNet | Very deep convolutional networks |
References
- Chun, J.; Lee, J.; Eitenmiller, R.R. Vitamin E and oxidative stability during storage of raw and dry roasted peanuts packaged under air and vacuum. J. Food Sci. 2005, 70, C292–C297. [Google Scholar] [CrossRef]
- Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- Buthelezi, N.M.D.; Tesfay, S.Z.; Ncama, K.; Magwaza, L.S. Destructive and non-destructive techniques used for quality evaluation of nuts: A review. Sci. Hortic. 2019, 247, 138–146. [Google Scholar] [CrossRef]
- Alina, M.; Mureșan, C.; Pop, A.; Georgiana Smaranda, M.; Mureșan, A.; Puscas, A.; Postolache, A.; Stoica, F.; Crivei, I.; Veleşcu, I.; et al. An Overview of the Characteristics, Advantages, and Uses of Nuts. In Nut Consumption and Its Usefulness in the Modern World; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef]
- Chen, S.; Dai, D.; Zheng, J.; Kang, H.; Wang, D.; Zheng, X.; Gu, X.; Mo, J.; Luo, Z. Intelligent grading method for walnut kernels based on deep learning and physiological indicators. Front. Nutr. 2022, 9, 1075781. [Google Scholar] [CrossRef]
- Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Alvarado, M.C.; Sanchez, P.D.C.; Polongasa, S.G.N. Emerging rapid and non-destructive techniques for quality and safety evaluation of cacao: Recent advances, challenges, and future trends. Food Prod. Process. Nutr. 2023, 5, 40. [Google Scholar] [CrossRef]
- Canneddu, G.; Júnior, L.C.C.; de Almeida Teixeira, G.H. Quality evaluation of shelled and unshelled macadamia nuts by means of near-infrared spectroscopy (NIR). J. Food Sci. 2016, 81, C1613–C1621. [Google Scholar] [CrossRef]
- Omid, M. Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Syst. Appl. 2011, 38, 4339–4347. [Google Scholar] [CrossRef]
- Puneet, M.; Diezma Iglesias, B.; Barreiro Elorza, P. NIR hyperspectral imaging for detection of nut contamination. New Food 2015, 18, 30–33. [Google Scholar]
- Marín-Méndez, J.-J.; Luri Esplandiú, P.; Alonso-Santamaría, M.; Remirez-Moreno, B.; Urtasun Del Castillo, L.; Echavarri Dublán, J.; Almiron-Roig, E.; Sáiz-Abajo, M.-J. Hyperspectral imaging as a non-destructive technique for estimating the nutritional value of food. Curr. Res. Food Sci. 2024, 9, 100799. [Google Scholar] [CrossRef]
- Farrar, M.B.; Martinez, M.; Jones, K.; Omidvar, N.; Wallace, H.M.; Chen, T.; Hosseini Bai, S. The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts. Horticulturae 2024, 10, 1129. [Google Scholar] [CrossRef]
- Moscetti, R.; Monarca, D.; Cecchini, M.; Haff, R.P.; Contini, M.; Massantini, R. Detection of Mold-Damaged Chestnuts by Near-Infrared Spectroscopy. Postharvest Biol. Technol. 2014, 93, 83–90. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Fan, S.; Huang, W.; Zhao, C.; Liu, C.; Huang, D. Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Comput. Electron. Agric. 2015, 114, 14–24. [Google Scholar] [CrossRef]
- Zou, S.; Tseng, Y.-C.; Zare, A.; Rowland, D.; Tillman, B.; Yoon, S.-C. Peanut maturity classification using hyperspectral imagery. Biosyst. Eng. 2019, 188, 165–177. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. bmj 2021, 372, 71. [Google Scholar] [CrossRef]
- Ampofo, J.; Grilo, F.S.; Langstaff, S.; Wang, S.C. Oxidative Stability of Walnut Kernel and Oil: Chemical Compositions and Sensory Aroma Compounds. Foods 2022, 11, 3151. [Google Scholar] [CrossRef]
- Tournas, V.H.; Niazi, N.S.; Kohn, J.S. Fungal Presence in Selected Tree Nuts and Dried Fruits. Microbiol. Insights 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Grilo, F.S.; Wang, S.C. Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods 2021, 10, 329. [Google Scholar] [CrossRef]
- Aondoakaa, I.P.; Martini, S.; Akoh, C.C. Physical and chemical properties of low saturated zero trans-fat soft margarine formulated with blends of enzymatically modified soybean oil and mango kernel fat. Food Chem. 2025, 492, 145255. [Google Scholar] [CrossRef] [PubMed]
- Aruwajoye, N.N.; Buthelezi, N.M.D.; Mditshwa, A.; Tesfay, S.Z.; Magwaza, L.S. Assessing the Impact of Roasting Temperatures on Biochemical and Sensory Quality of Macadamia Nuts (Macadamia integrifolia). Foods 2023, 12, 2116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, X.; Huang, Y.; Hu, H.; Li, C.; Chen, Y.; Yu, Q.; Wang, Y. Recent advances in the occurrence, mechanisms, influence factors and control strategies of process contaminants in nuts: A comprehensive review. Food Control 2024, 159, 110265. [Google Scholar] [CrossRef]
- Alsuhaiban, A. Effects of Storage Periods and Temperature on Mold Prevalence and Aflatoxin Contamination in Nuts. Pak. J. Nutr. 2018, 17, 219–227. [Google Scholar] [CrossRef]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management. Front. Microbiol. 2016, 7, 2170. [Google Scholar] [CrossRef]
- Yildiz, G.; Wehling, R.L.; Cuppett, S.L. Comparison of four analytical methods for the determination of peroxide value in oxidized soybean oils. J. Am. Oil Chem. Soc. 2003, 80, 103–107. [Google Scholar] [CrossRef]
- Ityotagher, A.P.; Terhile, C. Production and quality evaluation of margarine from blends of melon and palm kernel oils. World 2020, 4, 72–79. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, J.; Su, X.; Li, Q.; Su, C.; Li, Y.; Ma, G.; Zhang, S.; Yu, X. Extraction, chemical components, bioactive functions and adulteration identification of walnut oils: A review. Grain Oil Sci. Technol. 2024, 7, 30–41. [Google Scholar] [CrossRef]
- Ghiasi, P.; Sohrabi, O.; Rahmati, E.; Najafi, G.; Mohamed, M.; Ghasemnezhad, A. Modeling for extraction of oil from walnut and sesame using batch flow cold press oil extraction system. Food Sci. Nutr. 2022, 10, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Ataş, M.; doğan, Y. Classification of Closed and Open Shell Pistachio Nuts by Machine Vision. In Proceedings of the International Conference on Advanced Technology Sciences, Antalya, Turkey, 4–7 August 2015. [Google Scholar]
- Fan, X.; Zhou, J. Nondestructive Detection and Quality Grading System of Walnut Using X-Ray Imaging and Lightweight WKNet. Foods 2025, 14, 2346. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Kucha, C. Advances in Precision Systems Based on Machine Vision for Meat Quality Detection. Food Eng. Rev. 2025, 1–26. [Google Scholar] [CrossRef]
- Peng, Y.; Dhakal, S. Optical Methods and Techniques for Meat Quality Inspection. Trans. ASABE 2015, 58, 1371–1386. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.S.; Willmott, J.R. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. Sensors 2019, 19, 3071. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Islam, M.R.; Uddin, M.P.; Ulhaq, A. A Deep Learning-Based Hyperspectral Object Classification Approach via Imbalanced Training Samples Handling. Remote Sens. 2023, 15, 3532. [Google Scholar] [CrossRef]
- Paul, S.; Kumar, D.N. Partial informational correlation-based band selection for hyperspectral image classification. J. Appl. Remote Sens. 2019, 13, 046505. [Google Scholar] [CrossRef]
- Yan, C. A review on spectral data preprocessing techniques for machine learning and quantitative analysis. iScience 2025, 28, 112759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yan, Z.; Zhang, L. A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Sci. Rep. 2024, 14, 5905. [Google Scholar] [CrossRef] [PubMed]
- Saeys, W.; Nguyen Do Trong, N.; Van Beers, R.; Nicolaï, B.M. Multivariate calibration of spectroscopic sensors for postharvest quality evaluation: A review. Postharvest Biol. Technol. 2019, 158, 110981. [Google Scholar] [CrossRef]
- Silalahi, D.D.; Midi, H.; Arasan, J.; Mustafa, M.S.; Caliman, J.-P. Kernel partial diagnostic robust potential to handle high-dimensional and irregular data space on near infrared spectral data. Heliyon 2020, 6, e03176. [Google Scholar] [CrossRef]
- Mohammadi Moghaddam, T.; Razavi, S.M.; Taghizadeh, M.; Sazgarnia, A. Sensory and instrumental texture assessment of roasted pistachio nut/kernel by partial least square (PLS) regression analysis: Effect of roasting conditions. J. Food Sci. Technol. 2016, 53, 370–380. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.-F.; Sun, C. Evaluation of Near-Infrared Hyperspectral Imaging for Detection of Peanut and Walnut Powders in Whole Wheat Flour. Appl. Sci. 2018, 8, 1076. [Google Scholar] [CrossRef]
- Khosa, I.; Pasero, E. Artificial neural network classifier for quality inspection of nuts. In Proceedings of the 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), Islamabad, Pakistan, 22–24 April 2014; pp. 103–108. [Google Scholar]
- Ros, P.M.; Pasero, E. Defects detection in pistachio nuts using artificial neural networks. In Proceedings of the Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets, WIRN 2012, Salerno, Italy, 17–19 May 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 147–156. [Google Scholar]
- Ganganagowdar, N.V.; Siddaramappa, H.K. Recognition and classification of White Wholes (WW) grade cashew kernel using artificial neural networks. Acta Sci. Agron. 2016, 38, 145–155. [Google Scholar] [CrossRef]
- Baldomero-Naranjo, M.; Martínez-Merino, L.I.; Rodríguez-Chía, A.M. A robust SVM-based approach with feature selection and outliers detection for classification problems. Expert Syst. Appl. 2021, 178, 115017. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Gweon, G.; Yoo, Y.J. Supervised diagnostic classification of cognitive attributes using data augmentation. PLoS ONE 2024, 19, e0296464. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Oyedotun, O.K.; Khashman, A. Heart Diseases Diagnosis Using Neural Networks Arbitration. Int. J. Intell. Syst. Appl. 2015, 7, 72–79. [Google Scholar] [CrossRef]
- Khosa, I.; Pasero, E. A Machine Vision System for Quality Inspection of Pine Nuts. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 253–267. [Google Scholar] [CrossRef]
- Onaran, I.; Pearson, T.; Yardimci, Y.; Cetin, A.E. Detection of underdeveloped hazelnuts from fully developed nuts by impact acoustics. Trans. ASABE 2006, 49, 1971–1976. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Pal, S.; Lee, S.-S. From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Model. Softw. 2021, 144, 105159. [Google Scholar] [CrossRef]
- Khan, W.; Daud, A.; Khan, K.; Muhammad, S.; Haq, R. Exploring the frontiers of deep learning and natural language processing: A comprehensive overview of key challenges and emerging trends. Nat. Lang. Process. J. 2023, 4, 100026. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Alhajeri, M.S.; Ren, Y.M.; Ou, F.; Abdullah, F.; Christofides, P.D. Model predictive control of nonlinear processes using transfer learning-based recurrent neural networks. Chem. Eng. Res. Des. 2024, 205, 1–12. [Google Scholar] [CrossRef]
- Tsantekidis, A.; Passalis, N.; Tefas, A. Chapter 5—Recurrent neural networks. In Deep Learning for Robot Perception and Cognition; Iosifidis, A., Tefas, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 101–115. [Google Scholar]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Waqas, M.; Humphries, U.W. A critical review of RNN and LSTM variants in hydrological time series predictions. MethodsX 2024, 13, 102946. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Kucha, C.; Dahiya, P.; Niu, A. Intelligent sorting of pecan shelled products using hyperspectral fingerprints and deep learning. J. Food Eng. 2025, 395, 112533. [Google Scholar] [CrossRef]
- Chitty-Venkata, K.T.; Mittal, S.; Emani, M.; Vishwanath, V.; Somani, A.K. A survey of techniques for optimizing transformer inference. J. Syst. Archit. 2023, 144, 102990. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Lohumi, S.; Kim, G.; Joshi, R.; Lee, H.; Kim, M.S.; Cho, B.-K. Hyperspectral Shortwave Infrared Image Analysis for Detection of Adulterants in Almond Powder with One-Class Classification Method. Sensors 2020, 20, 5855. [Google Scholar] [CrossRef]
- Nakariyakul, S.; Casasent, D.P. Classification of internally damaged almond nuts using hyperspectral imagery. J. Food Eng. 2011, 103, 62–67. [Google Scholar] [CrossRef]
- Dodevska, M.; Markovic, J.K.; Sofrenic, I.; Tesevic, V.; Jankovic, M.; Djordjevic, B.; Ivanovic, N.D. Similarities and differences in the nutritional composition of nuts and seeds in Serbia. Front. Nutr. 2022, 9, 1003125. [Google Scholar] [CrossRef]
- Lees, M.; Morin, J.-F. Foodintegrity Handbook: A Guide to Food Authenticity Issues and Analytical Solutions; Eurofins Analytics France: Nantes Cedex, France, 2018. [Google Scholar]
- Meerza, S.I.A.; Giannakas, K.; Yiannaka, A. Markets and welfare effects of food fraud. Aust. J. Agric. Resour. Econ. 2019, 63, 759–789. [Google Scholar] [CrossRef]
- Meerza, S.I.A.; Gustafson, C.R. Consumers’ Response to Food Fraud. J. Agric. Resour. Econ. 2020, 45, 219–231. [Google Scholar]
- Netto, J.M.; Honorato, F.A.; Celso, P.G.; Pimentel, M.F. Authenticity of almond flour using handheld near infrared instruments and one class classifiers. J. Food Compos. Anal. 2023, 115, 104981. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Perez, M.; Lohumi, S.; Lee, H.; Kim, G.; Wakholi, C.; Joshi, R.; Cho, B.-K. Online Application of a Hyperspectral Imaging System for the Sorting of Adulterated Almonds. Appl. Sci. 2020, 10, 6569. [Google Scholar] [CrossRef]
- Mishra, P.; Herrero-Langreo, A.; Barreiro, P.; Roger, J.M.; Diezma, B.; Gorretta, N.; Lleó, L. Detection and Quantification of Peanut Traces in Wheat Flour by near Infrared Hyperspectral Imaging Spectroscopy Using Principal-Component Analysis. J. Near Infrared Spectrosc. 2015, 23, 15–22. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.-F.; Lu, C. Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour. Biosyst. Eng. 2019, 184, 55–68. [Google Scholar] [CrossRef]
- Vega-Castellote, M.; Sánchez, M.-T.; Kim, M.S.; Hwang, C.; Pérez-Marín, D. Investigating the detection of peanuts in chopped nut products using hyperspectral imaging systems. J. Food Eng. 2025, 388, 112378. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Lohumi, S.; Joshi, R.; Kim, M.S.; Baek, I.; Cho, B.-K. Non-Targeted Detection of Adulterants in Almond Powder Using Spectroscopic Techniques Combined with Chemometrics. Foods 2020, 9, 876. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Callejón, R.M.; Amigo, J.M. Feasibility of a rapid and non-destructive methodology for the study and discrimination of pine nuts using near-infrared hyperspectral analysis and chemometrics. Food Control 2021, 130, 108365. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hortic. 2018, 242, 116–126. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Z.; Khoshelham, K.; Bai, S.H. Quality estimation of nuts using deep learning classification of hyperspectral imagery. Comput. Electron. Agric. 2021, 180, 105868. [Google Scholar] [CrossRef]
- Panda, B.K.; Mishra, G.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.-H.; Lee, I. Rancidity and moisture estimation in shelled almond kernels using NIR hyperspectral imaging and chemometric analysis. J. Food Eng. 2022, 318, 110889. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Z.; Ma, W.; Zhang, M.; Yang, L. Hyperspectral detection of walnut protein contents based on improved whale optimized algorithm. Int. J. Agric. Biol. Eng. 2022, 15, 235–241. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Hernández-Hierro, J.M.; Garcia, R.; Barroso, J.M.; Heredia, F.J.; Rato, A.E. Assessment of Total Fat and Fatty Acids in Walnuts Using Near-Infrared Hyperspectral Imaging. Front. Plant Sci. 2021, 12, 729880. [Google Scholar] [CrossRef]
- Mohammadi-Moghaddam, T.; Razavi, S.M.A.; Taghizadeh, M.; Pradhan, B.; Sazgarnia, A.; Shaker-Ardekani, A. Hyperspectral imaging as an effective tool for prediction the moisture content and textural characteristics of roasted pistachio kernels. J. Food Meas. Charact. 2018, 12, 1493–1502. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Wallace, H.M.; Gama, T.; Hosseini Bai, S. An automated non-destructive prediction of peroxide value and free fatty acid level in mixed nut samples. LWT 2021, 143, 110893. [Google Scholar] [CrossRef]
- Ezenarro, J.; Saouabi, I.; García-Pizarro, Á.; Schorn-García, D.; Mestres, M.; Amigo, J.M.; Busto, O.; Boqué, R. NIR-HSI for the non-destructive monitoring of in-bag hazelnut oxidation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 333, 125906. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qiu, J.; Liu, X.; Chen, M.; Cao, W.; Chang, S.; Zhao, X. Combining VNIR and NIR hyperspectral imaging techniques with a data fusion strategy for the determination of fat content, acid value, and storage time of walnuts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 343, 126355. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Wang, M.-Y.; Kuo, Y.-M.; Chan, Y.-C.; Chen, Y.-C. Almond defect and freshness inspection system using hyperspectral imaging and deep learning techniques. Postharvest Biol. Technol. 2024, 211, 112837. [Google Scholar] [CrossRef]
- Xu, J.; Xu, D.; Bai, X.; Yang, R.; Cao, J. Non-Destructive Detection of Moldy Walnuts Based on Hyperspectral Imaging Technology. Molecules 2022, 27, 6776. [Google Scholar] [CrossRef]
- Nakariyakul, S. Internal damage inspection of almond nuts using optimal near-infrared waveband selection technique. J. Food Eng. 2014, 126, 173–177. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Gasbarrone, R.; Serranti, S. Contaminant detection in pistachio nuts by different classification methods applied to short-wave infrared hyperspectral images. Food Control 2021, 130, 108202. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Ahmadi, H.; Rajabipour, A.; Rafiee, S.; Javan-Nikkhah, M.; Jayas, D.; Siliveru, K. Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique. Qual. Assur. Saf. Crops Foods 2016, 8, 129–135. [Google Scholar] [CrossRef]
- Qiao, X.; Jiang, J.; Qi, X.; Guo, H.; Yuan, D. Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts. Food Chem. 2017, 220, 393–399. [Google Scholar] [CrossRef]
- Jiang, J.; Qiao, X.; He, R. Use of Near-Infrared hyperspectral images to identify moldy peanuts. J. Food Eng. 2016, 169, 284–290. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Wu, Y.-C.; Kuo, Y.-M.; Zhang, R.-H.; Cheng, T.-Y.; Chen, Y.-C.; Chu, P.-Y.; Kang, L.-W.; Lin, C. Automated peanut defect detection using hyperspectral imaging and deep learning: A real-time approach for smart agriculture. Smart Agric. Technol. 2025, 11, 100943. [Google Scholar] [CrossRef]
- Mahmoud, Y.A.G.; Elkaliny, N.E.; Darwish, O.A.; Ashraf, Y.; Ebrahim, R.A.; Das, S.P.; Yahya, G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res. 2025, 41, 277–300. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010, 118, 818–824. [Google Scholar] [CrossRef]
- Zhongzhi, H.; Limiao, D. Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data. Comput. Electron. Agric. 2018, 153, 248–255. [Google Scholar] [CrossRef]
- Teena, M.; Manickavasagan, A.; Mothershaw, A.; El Hadi, S.; Jayas, D.S. Potential of Machine Vision Techniques for Detecting Fecal and Microbial Contamination of Food Products: A Review. Food Bioprocess Technol. 2013, 6, 1621–1634. [Google Scholar] [CrossRef]
- Zhongzhi, H.; Limiao, D. Aflatoxin contaminated degree detection by hyperspectral data using band index. Food Chem. Toxicol. 2020, 137, 111159. [Google Scholar] [CrossRef]
- Qi, X.; Jiang, J.; Cui, X.; Yuan, D. Identification of fungi-contaminated peanuts using hyperspectral imaging technology and joint sparse representation model. J. Food Sci. Technol. 2019, 56, 3195–3204. [Google Scholar] [CrossRef]
- Yang, G.; Tian, X.; Fan, Y.; Xiang, D.; An, T.; Huang, W.; Long, Y. Identification of Peanut Kernels Infected with Multiple Aspergillus flavus Fungi Using Line-Scan Raman Hyperspectral Imaging. Food Anal. Methods 2024, 17, 155–165. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.-H.; Lee, I. Application of SWIR hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of Aflatoxin B1 in single kernel almonds. LWT 2022, 155, 112954. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.-H.; Lee, I. Detection of aflatoxin contamination in single kernel almonds using multispectral imaging system. J. Food Compos. Anal. 2024, 125, 105701. [Google Scholar] [CrossRef]
- Kabir, M.A.; Lee, I.; Singh, C.B.; Mishra, G.; Panda, B.K.; Lee, S.-H. Correlation awareness evolutionary sparse hybrid spectral band selection algorithm to detect aflatoxin B1 contaminated almonds using hyperspectral images. Food Chem. 2025, 476, 143381. [Google Scholar] [CrossRef]
- Williams, L.; Shukla, P.; Sheikh-Akbari, A.; Mahroughi, S.; Mporas, I. Measuring the Level of Aflatoxin Infection in Pistachio Nuts by Applying Machine Learning Techniques to Hyperspectral Images. Sensors 2025, 25, 1548. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Lee, I.; Lee, S.-H. Deep Learning-Based Detection of Aflatoxin B1 Contamination in Almonds Using Hyperspectral Imaging: A Focus on Optimized 3D Inception–ResNet Model. Toxins 2025, 17, 156. [Google Scholar] [CrossRef] [PubMed]
- Kandala, C.V.K.; Butts, C.L.; Lamb, M.C. Moisture content determination for in-shell peanuts with a low-cost impedance analyzer and capacitor sensor. Trans. ASABE 2008, 51, 1377–1381. [Google Scholar] [CrossRef]
- Vera Zambrano, M.; Dutta, B.; Mercer, D.G.; MacLean, H.L.; Touchie, M.F. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Jin, H.; Li, L.; Cheng, J. Rapid and Non-destructive Determination of Moisture Content of Peanut Kernels Using Hyperspectral Imaging Technique. Food Anal. Methods 2015, 8, 2524–2532. [Google Scholar] [CrossRef]
- Farrar, M.B.; Omidvar, R.; Nichols, J.; Pelliccia, D.; Al-Khafaji, S.L.; Tahmasbian, I.; Hapuarachchi, N.; Bai, S.H. Hyperspectral imaging predicts macadamia nut-in-shell and kernel moisture using machine vision and learning tools. Comput. Electron. Agric. 2024, 224, 109209. [Google Scholar] [CrossRef]
- Jiang, H.; Xie, C.; Li, J.; Liu, W.; Li, T.; Zhou, H. Non-destructive assessment of moisture content of single Chinese walnut using hyperspectral imaging integrated with chemometric tools. J. Food Meas. Charact. 2025, 19, 7796–7808. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, B.; Rao, X.; Berney, G.; Tao, Y. Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using Gaussian kernel function approach. J. Food Eng. 2007, 81, 108–117. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, B.; Jing, H.; Chen, X.; Rao, X.; Tao, Y. Gaussian Mixture Model-Based Walnut Shell and Meat Classification in Hyperspectral Fluorescence Imagery. Trans. ASABE 2007, 50, 153–160. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, L.; Li, X.; Shi, M. Variety Identification of Chinese Walnuts Using Hyperspectral Imaging Combined with Chemometrics. Appl. Sci. 2021, 11, 9124. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, H.; Tang, S.; Li, P.; Lin, C.; Zhang, L.; Zhong, N. Feasibility Study of Combining Hyperspectral Imaging with Deep Learning for Chestnut-Quality Detection. Foods 2023, 12, 2089. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Jiang, X.; Shi, M. Identification of Geographical Origin of Chinese Chestnuts Using Hyperspectral Imaging with 1D-CNN Algorithm. Agriculture 2021, 11, 1274. [Google Scholar] [CrossRef]
- Feng, Z.; Li, W.; Cui, D. Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level. Int. J. Agric. Biol. Eng. 2022, 15, 204–210. [Google Scholar] [CrossRef]
- Moscetti, R.; Saeys, W.; Keresztes, J.C.; Goodarzi, M.; Cecchini, M.; Danilo, M.; Massantini, R. Hazelnut Quality Sorting Using High Dynamic Range Short-Wave Infrared Hyperspectral Imaging. Food Bioprocess Technol. 2015, 8, 1593–1604. [Google Scholar] [CrossRef]
- Olaniyi, E.; Kucha, C.; Dahiya, P.; Niu, A. Precision variety identification of shelled and in-shell pecans using hyperspectral imaging with machine learning. Infrared Phys. Technol. 2024, 142, 105570. [Google Scholar] [CrossRef]
- Stefansson, P.; Fortuna, J.; Rahmati, H.; Burud, I.; Konevskikh, T.; Martens, H. Chapter 2.12—Hyperspectral time series analysis: Hyperspectral image data streams interpreted by modeling known and unknown variations. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 305–331. [Google Scholar]
- Workman, J.J. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy. Appl. Spectrosc. 2018, 72, 340–365. [Google Scholar] [CrossRef]
- Huan, K.; Chen, X.; Song, X.; Dong, W. Variable selection in near-infrared spectra: Application to quantitative non-destructive determination of protein content in wheat. Infrared Phys. Technol. 2021, 119, 103937. [Google Scholar] [CrossRef]
- Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating Calibration and Spectral Variable Selection Methods for Predicting Three Soil Nutrients Using Vis-NIR Spectroscopy. Remote Sens. 2021, 13, 4000. [Google Scholar] [CrossRef]
- Zahavi, A.; Palshin, A.; Liyanage, D.; Tamre, M. Influence of Illumination Sources on Hyperspectral Imaging. In Proceedings of the 20th International Conference on Research and Education in Mechatronics (REM), Wels, Austria, 23–24 May 2019; pp. 1–5. [Google Scholar]
- Ks, P.; Basha, S.; Chattopadhyay, A.; Mahato, K.K. Recent advancements of light-emitting diodes in dairy industries. Trends Food Sci. Technol. 2025, 160, 105018. [Google Scholar] [CrossRef]
- Pettit, R.; Freese, J.M. Wavelength dependent scattering caused by dust accumulation on solar mirrors. Sol. Energy Mater. 1980, 3, 1–20. [Google Scholar] [CrossRef]
- Hassoun, A.; Dankar, I.; Bhat, Z.; Bouzembrak, Y. Unveiling the relationship between food unit operations and food industry 4.0: A short review. Heliyon 2024, 10, e39388. [Google Scholar] [CrossRef]
- Ghosh, S.; Hughes, M.; Hodgkinson, I.; Hughes, P. Digital transformation of industrial businesses: A dynamic capability approach. Technovation 2022, 113, 102414. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Kucha, C.; Olaniyi, E.O. Applications of hyperspectral imaging in meat tenderness detection: Current research and potential for digital twin technology. Food Biosci. 2024, 58, 103754. [Google Scholar] [CrossRef]
- Defraeye, T.; Tagliavini, G.; Wu, W.; Prawiranto, K.; Schudel, S.; Assefa Kerisima, M.; Verboven, P.; Bühlmann, A. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resour. Conserv. Recycl. 2019, 149, 778–794. [Google Scholar] [CrossRef]
- Pattanaik, S.; Jenamani, M. Numerical Analysis of Cooling Characteristics of Indian mangoes using Digital Twin. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3095–3101. [Google Scholar]




| Quality Parameter | Definition/Description | Impact on Nut Quality | Traditional Measurement Methods | HSI Spectral/Imaging Feature | Measurement Potential Using HSI |
|---|---|---|---|---|---|
| Peroxide Value (PV) | Indicator of primary lipid oxidation products, mainly hydroperoxides formed during the initial stages of fat rancidity | Early marker of oxidative deterioration; high PV correlates with rancid, off flavors, reduced shelf life, and poor consumer acceptance | Iodometric titration, spectrophotometric assays | Absorption changes associated with unsaturated fatty acids (1700–1800 nm region) and oxidative degradation patterns | Enables non-destructive prediction of PV; allows spatial visualization of oxidative changes within kernels, facilitating early detection of rancidity |
| Thiobarbituric Acid Reactive Substances (TBARS) | Measurement of secondary lipid oxidation products, mainly malondialdehyde (MDA), which react with thiobarbituric acid to form a colored complex | Indicates progression of lipid oxidation beyond the initial stage; correlates with rancid odor, off flavor, and overall quality loss during storage | Spectrophotometric TBARS (absorbance at 532 nm) | Spectral shifts linked to aldehydes, ketones, and conjugated oxidation products; visible and NIR ranges capture browning/discoloration associated with oxidation | Non-destructive prediction of TBARS values; supports shelf life estimation and monitoring of oxidative stability in nuts |
| Free Fatty Acids (FFAs) | Breakdown products of triglycerides indicating hydrolytic rancidity | Correlates with off flavors and oxidation susceptibility | Titration, chromatography | Indirect spectral changes in lipid bands or associated chemical markers | Estimates hydrolytic rancidity; complements traditional chemical measurements |
| Moisture Content | Water content in kernel or in-shell nuts | Promotes microbial spoilage, enzymatic activity, lipid oxidation; affects texture and browning | Oven-drying, Karl Fischer titration, NIR spectroscopy | Water absorption bands (970 nm, 1450 nm, 1940 nm) | Maps moisture distribution; identifies overhydrated regions; supports drying and storage control |
| Oil Content | Total lipid content, often high in unsaturated fatty acids | Enhances flavor but increases susceptibility to oxidative rancidity | Soxhlet extraction, NMR, chemical titration | Lipid-specific absorption bands (1200–1700 nm in SWIR) | Estimates total fat content; monitors uniformity in kernels; supports grading |
| Protein Content | Total nitrogen compounds in kernels, essential for nutrition | Influences nutritional value, processing characteristics, and consumer preference | Kjeldahl, Dumas combustion, NIR spectroscopy | Protein absorption bands (2050 nm and 2180 nm) | Enables rapid protein mapping and discrimination of varieties based on protein levels |
| Color | Visual appearance of the kernel or in-shell nuts, influenced by maturity, drying, and oxidation | Affects consumer acceptance, roasting outcome, and perceived freshness | Colorimeter, spectrophotometer, visual grading | Reflectance in visible range (400–700 nm); spectral patterns for browning/discoloration | Quantifies color changes; identifies defects and maturity level; non-destructive grading |
| Texture/Firmness | Mechanical resistance of the kernel structure | Determines consumer acceptability, freshness, and roasting outcome | Compression tests, texture analyzers | Indirect correlation via moisture and lipid distribution patterns | Provides spatial prediction of kernel firmness and internal structural integrity |
| Kernel Shrinkage/Size | Reduction in kernel size due to dehydration, processing, or storage | Reduces market value and affects cracking efficiency | Calipers, image analysis, weight loss | Spatial imaging features (shape, area, volume) combined with spectral data | Detects size reduction, deformation, or shrinkage; supports automated sorting |
| Mold/Microbial Spoilage | Growth of fungi or bacteria in nuts due to excess moisture or improper storage | Causes off odor, toxicity, and health hazards | Microbiological plating, ELISA, PCR | Spectral differences due to fungal pigments or moisture accumulation | Identifies surface mold or contamination indirectly; highlights hotspots for targeted inspection |
| Carbohydrates/Sugars | Simple and complex carbohydrates present in kernels | Affects sweetness, browning during roasting, and energy content | HPLC, enzymatic assays | Absorption bands at 2100–2300 nm linked to C-H and O-H groups | Non-destructive prediction of sugar content and detection of caramelization/browning |
| Aflatoxin Contamination | Toxin produced by Aspergillus fungi | Severe food safety concern, toxic and carcinogenic | HPLC, ELISA, LC–MS | Specific spectral fingerprints from fungal growth and fluorescence imaging | Detects contaminated kernels rapidly, enabling sorting and food safety assurance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaniyi, E.O.; Kucha, C.; Kong, F. Integration of Hyperspectral Imaging with Machine Learning for Quality Assessment of Nuts: A Systematic Review. Analytica 2025, 6, 51. https://doi.org/10.3390/analytica6040051
Olaniyi EO, Kucha C, Kong F. Integration of Hyperspectral Imaging with Machine Learning for Quality Assessment of Nuts: A Systematic Review. Analytica. 2025; 6(4):51. https://doi.org/10.3390/analytica6040051
Chicago/Turabian StyleOlaniyi, Ebenezer O., Christopher Kucha, and Fanbin Kong. 2025. "Integration of Hyperspectral Imaging with Machine Learning for Quality Assessment of Nuts: A Systematic Review" Analytica 6, no. 4: 51. https://doi.org/10.3390/analytica6040051
APA StyleOlaniyi, E. O., Kucha, C., & Kong, F. (2025). Integration of Hyperspectral Imaging with Machine Learning for Quality Assessment of Nuts: A Systematic Review. Analytica, 6(4), 51. https://doi.org/10.3390/analytica6040051

