Review of Vibrational Spectroscopy Studies of Coatings Based on Hexavalent or Trivalent Chromium Baths
Abstract
1. Introduction
2. Vibrational Spectroscopy to Elucidate the Structures of the Coatings
2.1. Studies of Hexavalent Chromium Conversion Coatings
2.2. Studies of Trivalent Chromium Conversion Coatings
| Wavenumber cm−1 | Vibration Assignment | Reference |
|---|---|---|
| 526–540 | [13,29,30,32,34,35,39] | |
| 550–580 | [33] | |
| 550–552 | * | [42,43] |
| 625 | [42] | |
| 995, 1050, 1155 | [32,34] | |
| 538–540, 543 | [33,34] | |
| 255 | ** | [42] |
| 446 | ** | [42] |
| 800 | bound to Au | [42] |
| 848 | mixed oxide Cr(III)/Cr(VI) *** | [42,44] |
| 946 | dichromate | [42] |
2.3. Studies of Coatings Formed from Electrodeposited Hexavalent Chromium Baths
2.4. Studies of Coatings Formed from Electrodeposited Trivalent Chromium Baths
3. Vibrational Studies on Aqueous Solutions
3.1. Studies of Hexavalent Chromium Baths
| Wavenumber cm−1 | Bath or Solution | Assignee | Reference |
|---|---|---|---|
| 373 | Alodine | Unassigned | [26] |
| 944sh, 906 | Alodine | [13,26] | |
| 1050 | Alodine | [13,26] | |
| 1648 | Alodine | bending | [13,26] |
| 2134 | Alodine | [13,26] | |
| 3600–3000 | Alodine | [13] | |
| 347–349 | Electrodeposition | [53,54] | |
| 364, 368–398 | Electrodeposition | [52,53,54] | |
| 844–847 | Electrodeposition | [52,53,54,57] | |
| 884–891 | Electrodeposition | [53,54] | |
| 217, 220 | [52,53] | ||
| 320 | [52] | ||
| 340 | [52] | ||
| 364, 365 | [52,53] | ||
| 553 | [52] | ||
| 558 | [53] | ||
| 772, 783 | [53,57] | ||
| 833sh | [57] | ||
| 898 | [53] | ||
| 903, 904 | [52,53] | ||
| 942, 946, 943 | [52,53,57] |
3.2. Studies of Trivalent Chromium Baths
4. Reference Spectra of the Pure Chromium Compounds
5. Future Needs: Perspective on Methodology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FTIR | Fourier transform infrared spectroscopy |
| ATR | Attenuated total reflectance |
| DRIFTS | Diffuse reflectance infrared spectroscopy |
| RAIRS | Reflection absorption infrared spectroscopy |
| IRSE | Infrared spectroscopic ellipsometry |
| GAIRS | Grazing angle infrared spectroscopy |
| SIRMS | Synchrotron infrared microspectroscopy |
| EXAFS | Extended X-ray absorption fine structure |
| XANES | X-ray absorption near edge structure |
| XPS | X-ray photoelectron spectroscopy |
| NIST | National Institute of Standards and Technology |
| CE | Current efficiency |
Appendix A
| 2.1 Studies of Hexavalent Chromium Conversion Coatings | |
|---|---|
| References | Remarks |
| [72] *** [73] * | When pitting corrosion occurs, the migration process of Cr(VI) ions to repair the coating in damage zones was described on the basis of Raman or FTIR spectra. Vibrational spectroscopy reveals zones with high Cr(VI) contents and the distributions on the surfaces of the different phases on surface were accurately identified. Corrosion was studied in chloride solution and Cr(VI) conversion coating delay corrosion on aluminum in this media [71]. |
| 2.2 Studies of trivalent chromium conversion coatings | |
| [74] * | The toxicity of Cr(VI) species has restricted their use in surface finishing, and they have been replaced by the trivalent chromium conversion coatings. The presence of Cr(VI) in these coatings is promoted by the presence of hydrogen peroxide, which is formed by the reduction of dissolved oxygen gas in the bath (Appendix B). The formation of Cr(VI) in these coatings is controversial with respect to environmental directives. Consequently, it has been proposed that baths containing Cu(II) or Fe(II) species suppress the formation of Cr(VI). This strategy was evaluated via vibrational spectroscopy. |
| 2.3 Studies of coatings formed from electrodeposited hexavalent chromium baths | |
| [2] * | To probe the remarkable capabilities of spectroscopic techniques, studies of cathodes for the production of sodium chlorate have been described. |
| 2.4 Studies of coatings formed from electrodeposited trivalent chromium baths | |
| [65] ** | The Cr(III) bands were not addressed. Due to the limited number of baths investigated, the correlation between the species in the bath and their impact on the properties of the coatings remains unexplained. Although Liu et al. [65] did not address the Cr(III) bands, the spectra at each electrical potential provide more information than the voltammogram, with no peak clearly defined; for example, shift of carbonyl bands suggests the initiation Cr(III) electrodeposition. |
| 3.1 Studies of hexavalent chromium baths | |
| [54] ** [57] ** | The solution species produced by the corrosion of a pure Cr electrode or Ni–Cr alloys were clearly identified. The combination of cyclic voltammetry and in situ Raman spectroscopy enables an understanding of corrosion mechanisms. The predominant species at pH values less than 6 are and ions, whereas the predominant species at pH values greater than 6 are ions. |
| 3.2 Studies of trivalent chromium baths | |
| [54] ** | The wavenumbers of the FTIR bands of the main oligomers (monomers, dimers, and trimers) are clearly identified. However, no spectra are reported. |
Appendix B
References
- Dubpernell, G. History of chromium plating. Plat. Surf. Finish. 1984, 71, 84–91. [Google Scholar]
- Mandich, N.V.; Snyder, D.L. Electrodeposition of chromium. In Modern Electroplating; Schlesinger, M., Paunovic, M., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010; pp. 205–211+214+233. [Google Scholar] [CrossRef]
- Prakash, B.S.; Balaraju, J.N. Chromate (Cr6+)-free surface treatments for active corrosion protection of aluminum alloys: A review. J. Coat. Technol. Res. 2024, 21, 105–135. [Google Scholar] [CrossRef]
- Protsenko, V.S. Kinetics and Mechanism of Electrochemical Reactions Occurring during the Chromium Electrodeposition from Electrolytes Based on Cr(III) Compounds: A Literature Review. Reactions 2023, 4, 398–419. [Google Scholar] [CrossRef]
- Tian, X.; Chen, S.; Zhu, F.; Cai, Z.; Wang, L. Towards cleaner production of trivalent chromium electrodeposition: Mechanism, process and challenges. J. Clean. Prod. 2024, 476, 143768. [Google Scholar] [CrossRef]
- Protsenko, V. A review on electrodeposition and tribological performance of chromium-based coatings from eco-friendly trivalent chromium baths. Discov. Electrochem. 2025, 2, 22. [Google Scholar] [CrossRef]
- Hesamedini, S.; Bund, A. Trivalent chromium conversion coatings. J. Coat. Technol. Res. 2019, 16, 623–641. [Google Scholar] [CrossRef]
- Becker, M. Chromate-free chemical conversion coatings for aluminum alloys. Corros. Rev. 2019, 37, 321–342. [Google Scholar] [CrossRef]
- Ahern, A.M.; Schwartz, P.R.; Shaffer, L.A. Characterization of Conversion-Coated Aluminum Using Fourier Transform Infrared and Raman Spectroscopies. Appl. Spectrosc. 1992, 46, 1412–1419. [Google Scholar] [CrossRef]
- Matienzo, L.J.; Holum, K.J. Surface studies of corrosion-preventing coatings for aluminum alloys. Appl. Surf. Sci. 1981, 9, 47–73. [Google Scholar] [CrossRef]
- Lytle, F.; Greegor, R.; Bibbins, G.; Blohowiak, K.; Smith, R.; Tuss, G. An investigation of the structure and chemistry of a chromium-conversion surface layer on aluminum. Corros. Sci. 1995, 37, 349–369. [Google Scholar] [CrossRef]
- Lenglet, M.; Petit, F.; Malvault, J.Y. Reflectance spectroscopy (0.03 to 6 eV) of Cr3+ and Cr(VI) products of chromate conversion coatings. Phys. Status Solidi 1994, 143, 361–365. [Google Scholar] [CrossRef]
- Xia, L.; McCreery, R.L. Chemistry of a Chromate Conversion Coating on Aluminum Alloy AA2024-T3 Probed by Vibrational Spectroscopy. J. Electrochem. Soc. 1998, 145, 3083–3089. [Google Scholar] [CrossRef]
- Xia, L.; McCreery, R.L. Structure and Function of Ferricyanide in the Formation of Chromate Conversion Coatings on Aluminum Aircraft Alloy. J. Electrochem. Soc. 1999, 146, 3696–3701. [Google Scholar] [CrossRef]
- Juffs, L.; Hughes, A.; Furman, S.; Paterson, P. The use of macroscopic modelling of intermetallic phases in aluminium alloys in the study of ferricyanide accelerated chromate conversion coatings. Corros. Sci. 2002, 44, 1755–1781. [Google Scholar] [CrossRef]
- Campestrini, P.; Böhm, S.; Schram, T.; Terryn, H.; de Wit, J. Study of the formation of chromate conversion coatings on Alclad 2024 aluminum alloy using spectroscopic ellipsometry. Thin Solid Film. 2002, 410, 76–85. [Google Scholar] [CrossRef]
- Petit, F.; Debontride, H.; Lenglet, M.; Juhel, G.; Verchere, D. Contribution of Spectrometric Methods to the Study of the Constituents of Chromating Layers. Appl. Spectrosc. 1995, 49, 207–210. [Google Scholar] [CrossRef]
- Schram, T.; De Laet, J.; Terryn, H. Nondestructive optical characterization of chemical conversion coatings on aluminum. J. Electrochem. Soc. 1998, 145, 2733–2739. [Google Scholar] [CrossRef]
- Schram, T.; Terryn, H. The use of infrared spectroscopic ellipsometry for the thickness determination and molecular characterization of thin films on aluminum. J. Electrochem. Soc. 2001, 148, F12. [Google Scholar] [CrossRef]
- Chidambaram, D.; Halada, G.P.; Clayton, C.R. Synchrotron Radiation Based Grazing Angle Infrared Spectroscopy of Chromate Conversion Coatings Formed on Aluminum Alloys. J. Electrochem. Soc. 2004, 151, B160. [Google Scholar] [CrossRef]
- Holze, R. Surface and Interface Analysis; An Electrochemists Toolbox; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783540008590. [Google Scholar]
- Vasquez, M.J.; Halada, G.P.; Clayton, C.R.; Longtin, J.P. On the nature of the chromate conversion coating formed on intermetallic constituents of AA2024-T3. Surf. Interface Anal. 2002, 33, 607–616. [Google Scholar] [CrossRef]
- Vasquez, M.; Halada, G.; Clayton, C. The application of synchrotron-based spectroscopic techniques to the study of chromate conversion coatings. Electrochim. Acta 2002, 47, 3105–3115. [Google Scholar] [CrossRef]
- Chidambaram, D.; Vasquez, M.J.; Halada, G.P.; Clayton, C.R. Studies on the repassivation behavior of aluminum and aluminum alloy exposed to chromate solutions. Surf. Interface Anal. 2003, 35, 226–230. [Google Scholar] [CrossRef]
- McGovern, W.R.; Schmutz, P.; Buchheit, R.G.; McCreery, R.L. Formation of Chromate Conversion Coatings on Al-Cu-Mg Intermetallic Compounds and Alloys. J. Electrochem. Soc. 2000, 147, 4494–4501. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, L.; Sehgal, A.; Lu, D.; McCreery, R.; Frankel, G. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surf. Coat. Technol. 2001, 140, 51–57. [Google Scholar] [CrossRef]
- Hurley, B.L.; McCreery, R.L. Raman Spectroscopy of Monolayers Formed from Chromate Corrosion Inhibitor on Copper Surfaces. J. Electrochem. Soc. 2003, 150, B367–B373. [Google Scholar] [CrossRef]
- Zhang, X.; Bos, C.v.D.; Sloof, W.; Terryn, H.; Hovestad, A.; de Wit, J. Investigation of Cr(III) based conversion coatings on electrogalvanised steel. Surf. Eng. 2004, 20, 244–250. [Google Scholar] [CrossRef]
- Li, L.; Swain, G.P.; Howell, A.; Woodbury, D.; Swain, G.M. The formation, structure, electrochemical properties and stability of Trivalent Chrome Process (TCP) coatings on AA2024. J. Electrochem. Soc. 2011, 158, C274–C283. [Google Scholar] [CrossRef]
- Li, L.; Kim, D.Y.; Swain, G.M. Transient formation of chromate in Trivalent Chromium Process (TCP) coatings on AA2024 as probed by Raman spectroscopy. J. Electrochem. Soc. 2012, 159, C326–C333. [Google Scholar] [CrossRef]
- Li, L.; Swain, G.M. Formation and structure of trivalent chromium process coatings on aluminum alloys 6061 and 7075. Corrosion 2013, 69, 1205–1216. [Google Scholar] [CrossRef]
- Qi, J.-T.; Hashimoto, T.; Walton, J.; Zhou, X.; Skeldon, P.; Thompson, G. Trivalent chromium conversion coating formation on aluminium. Surf. Coat. Technol. 2015, 280, 317–329. [Google Scholar] [CrossRef]
- Qi, J.; Walton, J.; Thompson, G.E.; Albu, S.P.; Carr, J. Spectroscopic studies of chromium VI formed in the trivalent chromium conversion coatings on aluminum. J. Electrochem. Soc. 2016, 163, C357–C363. [Google Scholar] [CrossRef]
- Munson, C.A.; Swain, G.M. Structure and chemical composition of different variants of a commercial trivalent chromium process (TCP) coating on aluminum alloy 7075-T6. Surf. Coat. Technol. 2017, 315, 150–162. [Google Scholar] [CrossRef]
- Qi, J.; Gao, L.; Liu, Y.; Liu, B.; Hashimoto, T.; Wang, Z.; Thompson, G.E. Chromate Formed in a trivalent chromium conversion coating on aluminum. J. Electrochem. Soc. 2017, 164, C442–C449. [Google Scholar] [CrossRef]
- Qi, J.; Miao, Y.; Wang, Z.; Li, Y.; Zhang, X.; Skeldon, P.; Thompson, G.E. Influence of copper on trivalent chromium conversion coating formation on aluminum. J. Electrochem. Soc. 2017, 164, C611–C617. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, B.; Wang, Z.; Li, Y.; Skeldon, P.; Thompson, G. Effect of an Fe(II)-modified trivalent chromium conversion process on Cr(VI) formation during coating of AA 2024 alloy. Electrochem. Commun. 2018, 92, 1–4. [Google Scholar] [CrossRef]
- Qi, J.; Światowska, J.; Skeldon, P.; Marcus, P. Chromium valence change in trivalent chromium conversion coatings on aluminium deposited under applied potentials. Corros. Sci. 2020, 167, 108482. [Google Scholar] [CrossRef]
- Qi, J.; Ye, Z.; Gong, N.; Qu, X.; Mercier, D.; Światowska, J.; Skeldon, P.; Marcus, P. Formation of a trivalent chromium conversion coating on AZ91D magnesium alloy. Corros. Sci. 2021, 186, 109459. [Google Scholar] [CrossRef]
- Sun, W.; Bian, G.; Jia, L.; Pai, J.; Ye, Z.; Wang, N.; Qi, J.; Li, T. Study of trivalent chromium conversion coating formation at solution—Metal interface. Metals 2023, 13, 93. [Google Scholar] [CrossRef]
- Hedenstedt, K.; Gomes, A.S.O.; Busch, M.; Ahlberg, E. Study of Hypochlorite Reduction Related to the Sodium Chlorate Process. Electrocatalysis 2016, 7, 326–335. [Google Scholar] [CrossRef]
- Hatch, J.J.; Gewirth, A.A. Potential dependent chromate adsorption on gold. J. Electrochem. Soc. 2009, 156, D497–D502. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Busch, M.; Wildlock, M.; Simic, N.; Ahlberg, E. Understanding Selectivity in the Chlorate Process: A Step towards Efficient Hydrogen Production. ChemistrySelect 2018, 3, 6683–6690. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Simic, N.; Wildlock, M.; Martinelli, A.; Ahlberg, E. Electrochemical Investigation of the Hydrogen Evolution Reaction on Electrodeposited Films of Cr(OH)3 and Cr2O3 in Mild Alkaline Solutions. Electrocatalysis 2018, 9, 333–342. [Google Scholar] [CrossRef]
- Mardanifar, A.; Mohseni, A.; Mahdavi, S. Wear and corrosion of Co-Cr coatings electrodeposited from a trivalent chromium solution: Effect of heat treatment temperature. Surf. Coat. Technol. 2021, 422, 127535. [Google Scholar] [CrossRef]
- Kus, E.; Haciismailoglu, M.; Alper, M. Binary potential loop electrodeposition and corrosion resistance of Cr coatings. J. Appl. Electrochem. 2024, 54, 2871–2886. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, Z.; Ling, Y.; Wang, J.; Wang, R.; Li, Y.; Zhang, Z. Characteristic and behavior of an electrodeposited chromium (III) oxide/silicon carbide composite coating under hydrogen plasma environment. Fusion Eng. Des. 2019, 143, 137–146. [Google Scholar] [CrossRef]
- Kajita, M.; Saito, K.; Abe, N.; Shoji, A.; Matsubara, K.; Yui, T.; Yagi, M. Visible-light-driven water oxidation at a polychromium-oxo-electrodeposited TiO2 electrode as a new type of earth-abundant photoanode. Chem. Commun. 2014, 50, 1241–1243. [Google Scholar] [CrossRef]
- Huang, C.A.; Liu, Y.W.; Yu, C.; Yang, C.-C. Role of carbon in the chromium deposit electroplated from a trivalent chromium-based bath. Surf. Coat. Technol. 2011, 205, 3461–3466. [Google Scholar] [CrossRef]
- Prabhakar, J.M.; Varanasi, R.S.; da Silva, C.C.; Saood, S.; de Vooys, A.; Erbe, A.; Rohwerder, M. Chromium coatings from trivalent chromium plating baths: Characterization and cathodic delamination behaviour. Corros. Sci. 2021, 187, 109525. [Google Scholar] [CrossRef]
- Survilienė, S.; Jasulaitienė, V.; Nivinskienė, O.; Češūnienė, A. Effect of hydrazine and hydroxylaminophosphate on chrome plating from trivalent electrolytes. Appl. Surf. Sci. 2007, 253, 6738–6743. [Google Scholar] [CrossRef]
- Zheng, J.-X.; OuYang, S.-Q.; Feng, L.; Sun, J.-J.; Xuan, Z.-W.; Fang, J.-H. In-situ Raman spectroscopic studies on electrochemical oxidation behavior of chromium in alkaline solution. J. Electroanal. Chem. 2022, 921, 116682. [Google Scholar] [CrossRef]
- Ramsey, J.D.; Xia, L.; Kendig, M.W.; McCreery, R.L. Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corros. Sci. 2001, 43, 1557–1572. [Google Scholar] [CrossRef]
- Ottonello, G.; Zuccolini, M.V. Ab-initio structure, energy and stable Cr isotopes equilibrium fractionation of some geochemically relevant H-O-Cr-Cl complexes. Geochim. Cosmochim. Acta 2005, 69, 851–874. [Google Scholar] [CrossRef]
- Michel, G.; Machiroux, R. Raman spectroscopic investigations of the CrO/Cr2O equilibrium in aqueous solution. J. Raman Spectrosc. 1983, 14, 22–27. [Google Scholar] [CrossRef]
- Michel, G.; Cahay, R. Raman spectroscopic investigations on the chromium(VI) equilibria part 2—Species present, influence of ionic strength and CrO42−-Cr2O72− equilibrium constant. J. Raman Spectrosc. 1986, 17, 79–82. [Google Scholar] [CrossRef]
- Honesty, N.R.; Gewirth, A.A. Investigating the effect of aging on transpassive behavior of Ni-based alloys in sulfuric acid with shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). Corros. Sci. 2013, 67, 67–74. [Google Scholar] [CrossRef]
- Dvoynenko, O.; Lo, S.-L.; Chen, Y.-J.; Chen, G.W.; Tsai, H.-M.; Wang, Y.-L.; Wang, J.-K. Speciation Analysis of Cr(VI) and Cr(III) in Water with Surface-Enhanced Raman Spectroscopy. ACS Omega 2021, 6, 2052–2059. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Physical Chemistry, 8th ed.; Oxford University Press: Oxford, UK, 2006; p. 467. ISBN 0-7167-8759-8. [Google Scholar]
- Radnai, T.; Dorgai, C. An X-ray diffraction study of the structure of di- and trichromate ions in solutions used for electrochemical chromium deposition. Electrochim. Acta 1992, 37, 1239–1245. [Google Scholar] [CrossRef]
- Szabó, M.; Kalmár, J.; Ditrói, T.; Bellér, G.; Lente, G.; Simic, N.; Fábián, I. Equilibria and kinetics of chromium(VI) speciation in aqueous solution—A comprehensive study from pH2 to 11. Inorganica Chim. Acta 2018, 472, 295–301. [Google Scholar] [CrossRef]
- Zhang, Z.; Clark, S.B.; Rao, L.; Puzon, G.J.; Xun, L. Further structural analysis of Cr(III) oligomers in weakly acidic solutions. Polyhedron 2016, 105, 77–83. [Google Scholar] [CrossRef]
- Survilienė, S.; Nivinskienė, O.; Češunienė, A.; Selskis, A. Effect of Cr(III) solution chemistry on electrodeposition of chromium. J. Appl. Electrochem. 2006, 36, 649–654. [Google Scholar] [CrossRef]
- Surviliene, S.; Češūnienė, A.; Selskis, A.; Butkienė, R. Effect of Cr(III)+Ni(II) solution chemistry on electrodeposition of CrNi alloys from aqueous oxalate and glycine baths. Trans. IMF 2013, 91, 24–31. [Google Scholar] [CrossRef]
- Liu, C.; Jin, L.; Yang, J.-Q.; Yang, F.-Z.; Tian, Z.-Q. Electro-reduction of Cr(III) ions under the effects of complexing agents and Fe(II) ions. J. Electroanal. Chem. 2021, 882, 114987. [Google Scholar] [CrossRef]
- García-Antón, J.; Fernández-Domene, R.; Sánchez-Tovar, R.; Escrivà-Cerdán, C.; Leiva-García, R.; García, V.; Urtiaga, A. Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths. Chem. Eng. Sci. 2014, 111, 402–409. [Google Scholar] [CrossRef]
- Bates, J.B.; Toth, L.M.; Quist, A.S.; Boyd, G.E. Vibrational spectra of crystalline, molten and aqueous potassium dichromate. Spectrochim. Acta Part A 1973, 29, 1585–1600. [Google Scholar] [CrossRef]
- Vats, V.; Melton, G.; Islam, M.; Krishnan, V.V. FTIR spectroscopy as a convenient tool for detection and identification of airborne Cr(VI) compounds arising from arc welding fumes. J. Hazard. Mater. 2023, 448, 130862. [Google Scholar] [CrossRef] [PubMed]
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 20899. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=B6000466&Mask=80#IR-Spec (accessed on 27 October 2025).
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 20899. Available online: https://webbook.nist.gov/cgi/inchi?ID=B6000549&Mask=80#IR-Spec (accessed on 27 October 2025).
- Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Version of Jmol is 16.3.3. Available online: http://www.jmol.org/ (accessed on 29 May 2013).
- Zhao, J.; Frankel, G.; McCreery, R.L. Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy. J. Electrochem. Soc. 1998, 145, 2258–2264. [Google Scholar] [CrossRef]
- Peltier, F.; Thierry, D. Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings 2022, 12, 518. [Google Scholar] [CrossRef]
- Gharbi, O.; Thomas, S.; Smith, C.; Birbilis, N. Chromate replacement: What does the future hold? NPJ Mater. Degrad. 2018, 2, 12. [Google Scholar] [CrossRef]
- Perez, N. Electrochemical Corrosion. In Electrochemistry and Corrosion Science, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 14–15. [Google Scholar] [CrossRef]
- Bluett, E.; Edy, J.; Dodd, M.; de Vooys, A.C.A.; Wint, N.; Jewell, E.; McMurray, H.N. The influence of chromium oxide coating weight on filiform corrosion of trivalent chromium coatings for packaging Steel. Electrochim. Acta 2025, 523, 145943. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, Y.; Wang, S.; Liu, B.; Liang, P.; Du, H.; Li, L.; Zhang, Y. Co-extraction of vanadium and chromium from vanadium-chromium–bearing reducing slag via oxygen microbubbles intensified copper oxide catalytic oxidation method in alkaline solutions. J. Environ. Chem. Eng. 2023, 11, 111125. [Google Scholar] [CrossRef]


| Wavenumber cm−1 | Technique | Vibration Assignment | Reference |
|---|---|---|---|
| 398, 416, 417 | IR | rock | [12] |
| 492, 510sh, 526, 528, 555 | IR | [13,15,16] | |
| 592–593 | IR | [13,14,15] | |
| 606 | IR | [20] | |
| 805, 817, 933, 934 | IR | asymmetric stretching | [12] |
| 852, 862, 955, 957 | IR | symmetric stretching | [12] |
| 816–817, 840, 903, 919–933, 960sh | IR | [15] | |
| 1400, 1384 | IR | [13] | |
| 1621, 1623 | IR | bending | [11,13,15] |
| 2083, 2088, 2090, 2098, 2154sh, 2145 | IR | [11,13,14,15] | |
| 3386, 3000, 3338 | IR | stretching | [11,13,15] |
| 535, 665 | Raman | oxyhydroxide | [27] |
| 750–950 | Raman | stretching | [27] |
| 858–860 | Raman | ) mixed oxide | [25,26] |
| 987 | Raman | sulfate ions | [27] |
| 1709 | Raman | bending | [13] |
| 2095, 2145 | Raman | [25] | |
| 3600–3000 | Raman | stretching | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avalos, J.C.; Aldeco-Pérez, E.; Torres-González, J.; Garcia-Garcia, R.; Orozco, G. Review of Vibrational Spectroscopy Studies of Coatings Based on Hexavalent or Trivalent Chromium Baths. Analytica 2025, 6, 47. https://doi.org/10.3390/analytica6040047
Avalos JC, Aldeco-Pérez E, Torres-González J, Garcia-Garcia R, Orozco G. Review of Vibrational Spectroscopy Studies of Coatings Based on Hexavalent or Trivalent Chromium Baths. Analytica. 2025; 6(4):47. https://doi.org/10.3390/analytica6040047
Chicago/Turabian StyleAvalos, Julio C., Eugenia Aldeco-Pérez, Julieta Torres-González, Raul Garcia-Garcia, and German Orozco. 2025. "Review of Vibrational Spectroscopy Studies of Coatings Based on Hexavalent or Trivalent Chromium Baths" Analytica 6, no. 4: 47. https://doi.org/10.3390/analytica6040047
APA StyleAvalos, J. C., Aldeco-Pérez, E., Torres-González, J., Garcia-Garcia, R., & Orozco, G. (2025). Review of Vibrational Spectroscopy Studies of Coatings Based on Hexavalent or Trivalent Chromium Baths. Analytica, 6(4), 47. https://doi.org/10.3390/analytica6040047

