Effects of Different Processing Methods on the Antinutritional Factors Present in Mungbean (Vigna radiata L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing Methods to Reduce Antinutrients
2.2.1. Soaking
2.2.2. Open Cooking
2.2.3. Autoclaving
2.2.4. Germination
2.2.5. Roasting
2.2.6. Dehulling
2.3. Analytical Methods
2.3.1. Proximate Analysis of Mungbean
Moisture Content
Protein Content
Fat Content
Ash Content
Crude Fiber Content
Carbohydrate Content
2.3.2. Physical Analysis of Mungbean
Thousand-Kernel Weight
Bulk Density
Length-to-Breadth Ratio
2.4. Determination of Oxalate
2.5. Determination of Phytate
2.6. Determination of Tannin
2.7. Determination of Total Phenolic Content
2.8. Determination of Saponin
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Mungbean
3.2. Proximate Composition of Mungbean
3.3. Antinutrients Present in Raw Mungbean
3.4. Effects of Different Processing Methods on the Tannin Content of Mungbean
3.4.1. Effects of Roasting
3.4.2. Effects of Germination
3.4.3. Effects of Soaking
3.4.4. Effects of Dehulling
3.4.5. Effects of Cooking
Processing Methods | Tannin (mg/100 g) |
---|---|
Raw sample | 476.81 a ± 13.4 |
Roasting | 376.79 b ± 12.9 |
Germination | 299.34 c ± 12.6 |
Soaking | 297.21 c ± 11.5 |
Dehulling | 174.21 e ± 11.3 |
Cooking | |
Raw open cooking | 269.55 c ± 10.7 |
Raw autoclaving | 252.1 cd ± 12.2 |
Soaked open cooking | 195.49 de ± 12.7 |
Autoclaving of soaked seeds | 184.57 e ± 11.9 |
3.5. Effects of Different Processing Methods on the Oxalate Content of Mungbean
3.5.1. Effects of Roasting
3.5.2. Effects of Soaking
3.5.3. Effects of Dehulling
3.5.4. Effects of Germination
3.5.5. Effects of Cooking
Processing Methods | Oxalate (mg/100 g) |
---|---|
Raw sample | 227.46 a ± 11.8 |
Roasting | 194.69 b ± 18.2 |
Soaking | 172.44 c ± 9.6 |
Dehulling | 146.74 d ± 10.9 |
Germination | 95.98 e ± 16.5 |
Cooking | |
Raw open cooking | 91.68 e ± 8.7 |
Raw autoclaving | 80.65 f ± 7.9 |
Soaked open cooking | 69.39 g ± 7.4 |
Autoclaving of soaked seeds | 66.34 g ± 8.6 |
3.6. Effects of Different Processing Methods on the Phytate Content of Mungbean
3.6.1. Effects of Roasting
3.6.2. Effects of Soaking
3.6.3. Effects of Dehulling
3.6.4. Effects of Germination
3.6.5. Effects of Cooking
Processing Methods | Phytate (mg/100 g) |
---|---|
Raw sample | 626.53 a ± 18.5 |
Roasting | 487.46 b ± 15.7 |
Soaking | 452.53 c ± 12.7 |
Dehulling | 441 cd ± 12.3 |
Germination | 382.71 h ± 10.4 |
Cooking | |
Raw autoclaving | 429.92 de ± 10.9 |
Raw open cooking | 418.50 ef ± 15.4 |
Autoclaving of soaked seeds | 406.64 fg ± 12.8 |
Soaked open cooking | 394.53 gh ± 13.6 |
3.7. Effects of Different Processing Methods on Total Phenolic Content of Mungbean
3.7.1. Effects of Roasting
3.7.2. Effects of Germination
3.7.3. Effects of Soaking
3.7.4. Effects of Dehulling
3.7.5. Effects of Cooking
Processing Methods | Total Phenolic Content (mg/100 g) |
---|---|
Raw sample | 771.39 a ± 15.3 |
Roasting | 598.79 b ± 11.8 |
Germination | 573.49 c ± 19.6 |
Soaking | 494.57 d ± 10.6 |
Dehulling | 358.78 h ± 14.7 |
Cooking | |
Raw open cooking | 454.76 e ± 14.8 |
Soaked open cooking | 410.6 f ± 17.5 |
Raw autoclaving | 406.65 f ± 9.4 |
Autoclaving of soaked seeds | 380.91 g ± 15.8 |
3.8. Effects of Different Processing Methods on the Saponin Content of Mungbean
3.8.1. Effects of Soaking
3.8.2. Effects of Germination
3.8.3. Effects of Dehulling
3.8.4. Effects of Roasting
3.8.5. Effects of Cooking
Processing Methods | Saponin (mg/100 g) |
---|---|
Raw sample | 2617.59 a ± 54.6 |
Soaking | 2425.87 b ± 51.9 |
Germination | 2276.54 de ± 46.9 |
Dehulling | 2244.96 e ± 40.8 |
Roasting | 2163.51 f ± 59.4 |
Cooking | |
Raw open cooking | 2438.61 b ± 48.4 |
Raw autoclaving | 2394.78 bc ± 42.7 |
Soaked open cooking | 2344.90 cd ± 45.1 |
Autoclaving of soaked seeds | 2050.29 g ± 39.2 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, Y.; Ahmad, A. Impact of Processing on Nutritional and Antinutritional Factors of Legumes: A Review. Ann. Food Sci. Technol. 2018, 19, 199–215. [Google Scholar]
- Afam, O.; Agugo, U.; Anyaegbu, E. Effect of germination on the nutritional and anti-nutritional contents of mung bean (Vignradiata). J. Agric. Sci. Technol. 2016, 4, 801–805. [Google Scholar]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Chandra, N. Studies on seed production of mungbean (Vigna radiata) sown at different dates. J. Environ. Biol. 2013, 34, 1007. [Google Scholar]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Deraz, S.F.; Khalil, A.A. Strategies to improve protein quality and reduce antinutritional factors in mung bean. Food 2008, 2, 25–38. [Google Scholar]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Auer, J.; Alminger, M.; Marinea, M.; Johansson, M.; Zamaratskaia, G.; Högberg, A. Assessing the digestibility and estimated bioavailability/bioaccessibility of plant-based proteins and minerals from soy, pea, and faba bean ingredients. LWT 2024, 197, 115893. [Google Scholar] [CrossRef]
- Ifeanacho, M.; Ezecheta, C. Effect of Domestic Food Processing Methods on Anti Nutrients, Some Mineral Content and Functional Properties of Mungbean (Vigna radiata) Flours. J. Dieticians Assoc. Niger. 2020, 11, 45–52. [Google Scholar]
- Kavitha, S.G.; D'souza, R.M.; Yogitha, R. Nutrient content and in vivo reduction of anti-nutrients of Mung Bean (Vigna radiate L.) under various processing methods. J. Chem. Biol. Phys. Sci. 2015, 5, 1627. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 1990. [Google Scholar]
- Imran; Khan, A.A.; Inam, I.; Ahmad, F. Yield and yield attributes of Mungbean (Vigna radiata L.) cultivars as affected by phosphorous levels under different tillage systems. Cogent Food Agric. 2016, 2, 1151982. [Google Scholar] [CrossRef]
- Clementson, C.L.; Ileleji, K.E.; Rosentrater, K.A. Evaluation of measurement procedures used to determine the bulk density of distillers dried grains with solubles (DDGS). Trans. ASABE 2010, 53, 485–490. [Google Scholar] [CrossRef]
- Unal, H.; Isik, E.; Izli, N.; Tekin, Y. Geometric and mechanical properties of mung bean (Vigna radiata L.) grain: Effect of moisture. Int. J. Food Prop. 2008, 11, 585–599. [Google Scholar] [CrossRef]
- Patel, S.; Dutta, S. Effect of soaking and germination on anti-nutritional factors of garden cress, wheat and finger millet. Int. J. Pure Appl. Biosci. 2018, 6, 1076–1081. [Google Scholar] [CrossRef]
- Emmanuel, E.; Deborah, S. Phytochemical and anti-nutritional studies on some commonly consumed fruits in Lokoja, Kogi state of Nigeria. Gen. Med. Open 2018, 2, 2–5. [Google Scholar] [CrossRef]
- Singleton, V. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brunner, J. Direct spectrophotometric determination of saponin. Anal. Chem. 1984, 34, 1314–1326. [Google Scholar]
- Dahiya, P.K.; Linnemann, A.R.; Van Boekel, M.A.J.S.; Khetarpaul, N.; Grewal, R.B.; Nout, M.J.R. Mung bean: Technological and nutritional potential. Crit. Rev. Food Sci. Nutr. 2015, 55, 670–688. [Google Scholar] [CrossRef]
- Ashwin, K.; Rao, P.; Edukondalu, L. Physical properties of maize grains. Int. J. Agric. Sci. 2017, 9, 4338–4341. [Google Scholar]
- Mubarak, A. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Skylas, D.J.; Molloy, M.P.; Willows, R.D.; Salman, H.; Blanchard, C.L.; Quail, K.J. Effect of processing on Mungbean (Vigna radiata) flour nutritional properties and protein composition. J. Agric. Sci. 2018, 10, 16–28. [Google Scholar] [CrossRef]
- Nwokolo, E.; Smartt, J. Food and Feed from Legumes and Oilseeds; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Oburuoga, A.; Anyika, J. Nutrient and antinutrient composition of mungbean (Vigna radiata), acha (Digitaria exilis) and crayfish (Astacus fluviatilis) flours. Pak. J. Nutr. 2012, 11, 743–746. [Google Scholar] [CrossRef]
- Onwurafor, E.; Onweluzo, J.; Ezeoke, A. Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Niger. Food J. 2014, 32, 89–96. [Google Scholar] [CrossRef]
- Bindu, B.M.; Meeshi, A.M.A.; Vijaykumar, A.G.; Kasturiba, B. Nutrition composition and antinutritional factors of green gram varieties. Environ. Ecol. 2017, 35, 1699–1703. [Google Scholar]
- Kataria, A.; Chauhan, B.; Punia, D. Antinutrients and protein digestibility (in vitro) of mungbean as affected by domestic processing and cooking. Food Chem. 1989, 32, 9–17. [Google Scholar] [CrossRef]
- Sivakumaran, K.; Herath, T.; Wansapala, M. Comparison of contents of phytates and saponins and the effect of processing in some selected edible beans in Sri Lanka. Int. J. Food Sci. Nutr. 2017, 2, 95–100. [Google Scholar]
- Nikolopoulou, D.; Grigorakis, K. Nutritional and antinutritional composition of legumes and factors affecting it. In Food Science and Technology: New Research; Greco, L.V., Bruno, M.N., Eds.; Nova: Hauppauge, NY, USA, 2008; pp. 105–170. [Google Scholar]
- El-Gohery, S.S. Effect of different treatments on nutritional value of lima bean (Phaseolus lunatus) and its utilization in biscuit manufacture. Food Nutr. Sci. 2021, 12, 372–391. [Google Scholar]
- Attou, A.; Bouderoua, K.; Cheriguene, A. Effects of roasting process on nutritional and antinutritional factors of two lentils varieties (Lens culinaris. Medik) cultivated in Algeria. South Asian J. Exp. Biol. 2020, 10, 445–454. [Google Scholar] [CrossRef]
- Yadav, L.; Bhatnagar, V. Effect of soaking and roasting on nutritional and anti-nutritional components of chickpea (anti-nutritional components of chickpea (Pratap-14). Bioscan 2017, 12, 771–774. [Google Scholar]
- Kakati, P.; Deka, S.C.; Kotoki, D.; Saikia, S. Effect of traditional methods of processing on the nutrient contents and some antinutritional factors in newly developed cultivars of green gram [Vigna radiata (L.) Wilezek] and black gram [Vigna mungo (L.) Hepper] of Assam, India. Int. Food Res. J. 2010, 17, 377–384. [Google Scholar]
- Kataria, A.; Chauhan, B.; Punia, D. Antinutrients in amphidiploids (black gram× mung bean): Varietal differences and effect of domestic processing and cooking. Plant Foods Hum. Nutr. 1989, 39, 257–266. [Google Scholar] [CrossRef]
- Deshpande, S.; Sathe, S.K.; Salunkhe, D.K.; Cornforth, D.P. Effects of dehulling on phytic acid, polyphenols, and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). J. Food Sci. 1982, 47, 1846–1850. [Google Scholar] [CrossRef]
- Alajaji, S.A.; El-Adawy, T.A. Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram. J. Food Sci. Technol. 2016, 53, 337–347. [Google Scholar]
- Alajaji, S.A.; El-Adawy, T.A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Compos. Anal. 2006, 19, 806–812. [Google Scholar] [CrossRef]
- Ali, E.A.A.M.O.; Awadelkareem, A.M.; Gasim, S.; El Amir Yousif, N. Nutritional composition and anti-nutrients of two faba bean (Vicia faba L.) lines. Int. J. Adv. Res. 2014, 2, 538–544. [Google Scholar]
- Kaur, D.; Dhawan, K.; Rasane, P.; Singh, J.; Kaur, S.; Gurumayum, S.; Singhal, S.; Mehta, C.M.; Kumar, V. Effect of Different Pre-Treatments on Antinutrients and Antioxidants of Rice Bean. Acta Univ. Cibiniensis E 2020, 24, 25–38. [Google Scholar]
- Adegunwa, M.; Adebowale, A.-R.; Adegoke, B.; Kalejaiye, K.K. Effects of Treatments on the Antinutritional Factors and Functional Properties of B ambara Groundnut (V oandzeia subterranea) Flour. J. Food Process. Preserv. 2014, 38, 1875–1881. [Google Scholar] [CrossRef]
- Shi, L.; Arntfield, S.D.; Nickerson, M. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res. Int. 2018, 107, 660–668. [Google Scholar] [CrossRef]
- Brudzyński, A.; Salamon, A. The oxalic acid content in selected barley varieties grown in Poland, as well as in their malts and worts. J. Inst. Brew. 2011, 117, 67–73. [Google Scholar] [CrossRef]
- Virginia, P.; Swati, V.; Ajit, P. Effect of cooking and processing methods on oxalate content of green leafy vegetables and pulses. Asian J. Food Agro-Ind. 2012, 5, 311–314. [Google Scholar]
- Akhtar, M.S.; Israr, B.; Bhatty, N.; Ali, A. Effect of cooking on soluble and insoluble oxalate contents in selected Pakistani vegetables and beans. Int. J. Food Prop. 2011, 14, 241–249. [Google Scholar] [CrossRef]
- Grewal, A.; Jood, S. Effect of processing treatments on nutritional and antinutritional contents of green gram. J. Food Biochem. 2006, 30, 535–546. [Google Scholar] [CrossRef]
- Mendoza, E.M.T.; Barroga, C.F.; Rodriguez, F.M.; Revilleza, J.A.; Laurena, A.C. Factors affecting the nutritional quality and acceptability of mungbean [Vigna radiata (L.) Wilzeck]. Trans. Natl. Acad. Sci. Tech. 1988, 10, 305–322. [Google Scholar]
- Le, N.L.; Le, T.T.H.; Nguyen, N.T.M.; Vu, L.T.K. Impact of different treatments on chemical composition, physical, anti-nutritional, antioxidant characteristics and in vitro starch digestibility of green-kernel black bean flours. Food Sci. Technol. 2021, 42, e31321. [Google Scholar] [CrossRef]
- Jood, S.; Chauhan, B.M.; Kapoor, A.C. Polyphenols of chickpea and blackgram as affected by domestic processing and cooking methods. J. Sci. Food Agric. 1987, 39, 145–149. [Google Scholar] [CrossRef]
- Tajoddin, M.; Manohar, S.; Lalitha, J. Effect of soaking and germination on polyphenol content and polyphenol oxidase activity of mung bean (Phaseolus aureus L.) cultivars differing in seed color. Int. J. Food Prop. 2014, 17, 782–790. [Google Scholar] [CrossRef]
- Tajoddin, M.; Shinde, M.; Lalitha, J. Polyphenols of mung bean (Phaseolus aureus L.) cultivars differing in seed coat color: Effect of dehulling. J. New Seeds 2010, 11, 369–379. [Google Scholar] [CrossRef]
- Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K.; Luh, B.S. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. CRC Crit. Rev. Food Sci. Nutr. 1983, 17, 277–305. [Google Scholar] [CrossRef]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
Physical Properties | Mungbean Seeds |
---|---|
l/b ratio | 1.34 ± 0.02 |
Bulk density (kg/hL) | 75.34 ± 0.25 |
1000-kernel weight (g) | 17.5 ± 0.4 |
Parameters | Values (%) |
---|---|
Moisture | 11.33 ± 0.36 |
Crude protein (wet basis) | 26.78 ± 1.10 |
Crude fat (wet basis) | 1.52 ± 0.31 |
Crude fiber (wet basis) | 4.78 ± 0.23 |
Ash (wet basis) | 3.71 ± 0.46 |
Carbohydrate (wet basis) | 51.89 ± 1.92 |
Antinutrients | Values in Dry Basis (mg/100 g) |
---|---|
Tannin | 476.81 ± 13.38 |
Oxalate | 227.46 ± 11.67 |
Phytate | 626.54 ± 18.5 |
Total phenolic content | 771.39 ± 15.3 |
Saponin | 2617.59 ± 54.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, U.; Adhikari, N.; Gautam, N.; Poudel, R.; Timsina, P.; Dangal, A.; Giuffrè, A.M. Effects of Different Processing Methods on the Antinutritional Factors Present in Mungbean (Vigna radiata L.). Analytica 2024, 5, 414-429. https://doi.org/10.3390/analytica5030026
Pokharel U, Adhikari N, Gautam N, Poudel R, Timsina P, Dangal A, Giuffrè AM. Effects of Different Processing Methods on the Antinutritional Factors Present in Mungbean (Vigna radiata L.). Analytica. 2024; 5(3):414-429. https://doi.org/10.3390/analytica5030026
Chicago/Turabian StylePokharel, Upendra, Niraj Adhikari, Navin Gautam, Resma Poudel, Prekshya Timsina, Anish Dangal, and Angelo Maria Giuffrè. 2024. "Effects of Different Processing Methods on the Antinutritional Factors Present in Mungbean (Vigna radiata L.)" Analytica 5, no. 3: 414-429. https://doi.org/10.3390/analytica5030026
APA StylePokharel, U., Adhikari, N., Gautam, N., Poudel, R., Timsina, P., Dangal, A., & Giuffrè, A. M. (2024). Effects of Different Processing Methods on the Antinutritional Factors Present in Mungbean (Vigna radiata L.). Analytica, 5(3), 414-429. https://doi.org/10.3390/analytica5030026