Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples
Abstract
:1. Introduction
1.1. Heavy Metals
1.1.1. Determination of Metal Ions in Soil Samples
1.1.2. Identification of Metal Ions in Plants
1.2. Classical Methods the for Determination of Metal Ions in Soil Samples and Plants
Voltammetry—A Promising Analytical Method for Determination of Metal Ions
1.3. Applications of Voltammetry in the Analysis of a Single Heavy Metal
1.4. Determination of Pb
1.5. Determination of Cd
1.6. Determination of Cu
1.7. Determination of Zn
Metal | Technique | Electrode | Supporting Electrolyte | Type of Sample | Limit of Detection (LOD) | Ref. |
---|---|---|---|---|---|---|
Pb2+ | ASV | Carbon electrode Cu-shaped (Cu-CE) | 0.01 M HCl + 1 M KCl | Drinking water, sewage | 1 μM | [27] |
ASV | Glassy carbon electrode formatted with eDAQ | 1 M KNO3 | Tap water | [28] | ||
SWV | Carbon paste electrode modified with geopolymer cement | 0.2 M NaNO3 | Tap, well, and thermal water | 2.3 × 10−9 M | [29] | |
SWASV | electrode printed with ink injection printer and formatted with multiwalled carbon nanotubes | 0.1 M acetate buffer | Drinking water | 1.0 μg/L | [30] | |
SWASV | Lithographically printed electrode Bi formatted and hierarchically tubular and porous biochar | acetate buffer (0.1 M, pH 4.5) + 500 μg/L Bi3+ | Water | 0.02 μg/L | [31] | |
SWASV | Lithographically printed electrode carbon modified with dopamine polymer and polypyrolle hydrogel | Acetate buffer (pH 4.5) | River water | 0.15 μg/L | [32] | |
SWASV | Glassy carbon electrode modified with Fe3O4 in a Schiff base network | 10−1 M ΚΝO3 | Food | 0.95 nM | [33] | |
SWASV | Graphene oxide electrode modified with Bi and N | 0.1 M, pH 4.5 acetate buffer | Tap water | 10.9 pM | [34] | |
SWASV | Glassy carbon electrode modified with Bi and Bi2O3 | 0.1 M acetate buffer | Tap water, canal water, soil near a factory | 6.3 nM | [35] | |
SWASV | Glassy carbon electrode modified with two-dimensional MXene with blue color | 0.01 Μ, phosphate buffer, pH 6.5 | Bottled water, tap water, lake water | 0.97 nM | [36] | |
LSASV | Coal paste electrode modified with clay | 0.1 M KCl | Water, biological water | [39] | ||
DPSV | Graphite-cork electrode | 0.5 M H2SO4, 0.1 M, acetate buffer, pH 4.5 | Hair dye | 1.06 μΜ (0.5 M H2SO4), 1.26 μΜ (0.1 M acetate buffer, pH 4.5) | [40] | |
DPASV | Glassy carbon electrode modified with polypyrolle, Bi film, and metal organic frame | 0.5 mM K3[Fe(CN)6] + 1 M KCl | Tap water, groundwater sample | 0.05 μg/L | [41] | |
DPASV | Glassy carbon electrode modified with bismuth film, Nafion, and a worm-like carbon structure with nitrogen admixture | 0.1 M acetate buffer, pH 4.5 | Lake water, tap water | 0.2 μg/L | [42] | |
SWASV | rGO/MoS2/CS nanocomposite modified glassy carbon electrode | 0.10 M acetate buffer | tobacco | 0.0016 μM | [37] | |
SWASV | Bismuth film-modified electrode | 0.2 Μ acetate buffer solution | Soil | [38] | ||
Cd2+ | CV SWASV | loaded titanium dioxide nanotube array electrode | 0.1 M acetate buffer | Soil and tea | 0.01 μM | [47] |
SWASV | Glassy carbon electrode modified with poly-L-tyrosine and bismuth reminiscent of buds | 5.0 mM KCl + 3.0 μM Bi3+ | Rice | 0.11 nΜ | [44] | |
SWASV | Glassy carbon electrode modified with MnO2, Bi2O3, and graphene oxide | 0.1 M acetate buffer | Water | 0.22 μg/L | [45] | |
SWASV | Glassy carbon electrode modified with metal organic frame iron with amine | acetate buffer | Water | 0.03 μΜ | [46] | |
LSV | Glassy carbon electrode modified with 1,2-di-[o-aminothiophenyl | 0.1 M LiClO4 | Real samples | 1.7 μg/L | [48] | |
DPV | Glassy carbon electrode modified with nano-Fe3O2, MoS2, and Nafion | 0.1 M acetate buffer, pH 4.2 | Sea water | 0.053 μg/L | [49] | |
DPASV | Graphite rod electrode modified with organic metal frame and graphene oxide | 0.1 Μ phosphate buffer, pH 5.0 | River water, dam water, sewage | 0.03 μg/L | [50] | |
SWASV | Glassy carbon electrode modified with graphite containing Se | 1 M phosphate buffer | Drinking water | 1.9 μg/L, Hg: 4.3 μg/L | [51] | |
Cu2+ | CV | prion-derived copper(II)-binding peptide aassembled onto a gold electrode | 0.2 M phosphate buffer | Coffee arabica | 8.0 × 10−8 M (5.1 μg L−1) | [58] |
SWASV | Selective Ca2+ ion | 0.1 M acetate buffer | Drinking water | 1 μΜ | [52] | |
SWV | Gold electrode with (3-mercaptopropyl)-trimethoxysilane modified with microfiber organosilicate gel containing amino acid | 0.1 M KCl solution + 2 × 10−3 M [Fe(CN)6]3−/4− + 5 × 10−3 M [Ru(NH3)6]3+ | Tap water, lake water | 2.6 pM | [53] | |
DPCSV | Carbon paste electrode modified with biosensor Mesorhizobium opportonistum | 0.01M HClO4 | Drinking water | 2.0 × 10−8 M | [54] | |
DPASV | Glassy carbon electrode modified with Nafion solution, multiwalled carbon nanotubes, and 1-butyl-3-methylimidazole hexafluorophosphate | 0.1 M acetate buffer + 0.1 M KCl | Juice and tea drinks | 16 μg/L | [55] | |
AdASV | Pencil graphite electrode formatted with Cu2+ and cyclam | 1 × 10−3 M CuSO4/1 M H2SO4 | Sea water | 16 nM | [56] | |
DPV | Magnetic carbon paste electrode, L-cysteine functionalized core–shell | Phosphate buffer, pH 5.0 | Water | 0.4 nM | [57] | |
Zn2+ | Batch Injection Analysis (BIA)-SWASV | Diamond electrode with boron admixture | Britton–Robinson (BR) 0.04 M | Pharmaceutical samples | 0.2 μΜ | [59] |
2. Applications of Voltammetric Analysis for Two Heavy Metals Simultaneously
2.1. Simultaneous Determination of Pb and Cd
2.2. Simultaneous Determination of Pb and Cu
2.3. Simultaneous Determination of Cd and Cu
2.4. Simultaneous Determination of Cu and As
2.5. Simultaneous Determination of Cu and Hg
Metals | Technique | Electrode | Supporting Electrolyte | Type of Sample | Limit of Detection (LOD) | Ref. |
---|---|---|---|---|---|---|
Pb2+, Cd2+ | ASV | Hg film electrode | Coastal and transitional waters | 4.0 ng/L, 0.50 ng/L | [60] | |
ASV | Hanging Hg drop electrode | 9.00 mL model brine | Brine | [61] | ||
ASV | Cu film electrode | 0.1 M HCl + 0.4 M NaCl | Tap water | 0.6 μg/L, 1.8 μg/L | [62] | |
SWV | Carbon paste electrode modified with Bi film | 0.01 Μ, acetate buffer, pH 4.6 | Water | 0.3 μg/L, 0.5 μg/L | [63] | |
SWASV | Lithographically printed electrode based on graphite and covered with Nafion | acetate buffer 50 mM + NaCl 50 mM, pH 4.6 | Spring water, sea water | [64] | ||
SWASV | Carbon paste electrode modified from multiwalled carbon nanotubes and antimony trioxide | 0.01 M HCl | Tap water | 1.2 μg/L, 1.7 μg/L | [65] | |
SWASV | Lithographically printed black carbon electrode with poly(propyleneimine) | acetate buffer 0.1 M, pH 4.6 | Tap water | 3.6 μg/L, 15.3 μg/L | [66] | |
SWASV | Glassy carbon electrode modified with a reduced graphene oxide nanocomposite decorated with (BiO)2CO3 and Nafion | 3 M KCl | Water | 0.24 µg/L, 0.16 µg/L | [67] | |
SWASV | Polythionine-modified glassy carbon electrode (in the presence of Bi) and multiwall carbon nanotubes | 0.1 M, acetate buffer, pH 3.5 | Water | 0.4 nM, 0.6 nM | [68] | |
SWASV | Glassy carbon electrode modified with carbon combined with N, and Ti3C2-ΜΧene | 5 mM [Fe(CN)6]3−/4− solution + 0.10 M KCl | Sea water, tap water | 1.10 nM, 2.55 nM | [69] | |
SWASV | Carbon electrode modified with Hg | 0.1 M HCl | Vegetable oil | 0.01 µg/kg, 0.06 µg/kg | [70] | |
SWASV | Glassy carbon electrode modified with nanoporous Bi, superficially decorated with Bi2O3 | 0.1 M, acetate buffer, pH 3.0–5.5, | Tap water | 0.02 µg/L, 0.03 µg/L | [71] | |
SWASV | electrode modified with salicylidene-2-amino benzyl alcohol and multiwalled carbon nanotubes | 0.1 M acetate buffer | Rice water, tobacco extract, raw milk | 0.012 ng/L, 0.02 ng/L | [72] | |
SWASV | Lithographically printed electrode formatted with Nafion | 0.1 M acetate buffer | Sewage | 8.4 μg/L, 0.032 mg/L | [73] | |
DPASV | Lithographically printed electrode bismuthene-modified two-dimensional carbon | 0.1 M acetate buffer, pH 4.5 | Certified estuarine water samples | 0.06 μg/L, 0.07 μg/L | [74] | |
DPASV | Glassy carbon electrode modified with silane bentonite decorated with Ag nanoparticles | acetate buffer, pH 4.0 | River water | 0.88 µg/L, 0.79 µg/L | [75] | |
DPASV | Glassy carbon electrode modified with polyrutin and Ag nanoparticles | 0.1 M, acetate buffer, pH 5 | Tap water, soil sample, hair | 3 nM, 10 nM | [76] | |
DPASV | Polypyrol-modified pencil graphite electrode and CO2 | 0.1 M acetate buffer | Natural water | 0.018 nM, 0.023 nM | [99] | |
DPASV | Glassy carbon electrode modified with Sb and Bi | 0.1 M acetate buffer, pH 4.5 | CRM soil sample, tap water | 0.01 μg/L, 0.5 μg/L | [77] | |
DPASV | Glassy carbon electrode modified with Nafion and Bi nanoplates | 0.1 M acetate buffer, pH 4.5 | Tap water, sewage | 0.178 nM, 0.376 nM | [78] | |
DPASV | Lithographically printed electrode two-dimensional microfiber modified with Sb | 0.01 M HCl, pH 2 | Certified estuarine water | 0.1 µg/L, 0.9 μg/L | [79] | |
DPSV | Glassy carbon electrode rotating disc modified with Sb | 0.01 M HCl | Soil water, soil | 1.1 μg/L, 1.4 μg/L | [80] | |
DPASV | Glassy carbon electrode modified with carbon black and polyriboflavin in the presence of Bi | 0.1 M, acetate buffer, pH 5 | Rice, honey, vegetables | 0.13 nM, 0.16 nM | [81] | |
DPAdSV | Carbon paste electrode modified with charcoal | 0.1 M, acetate buffer, pH 4.8 | Samples of biochar (charcoal) from coffee tree husks | 0.2 µg/L, 1.7 µg/L | [82] | |
SWASV | Glassy carbon electrode modified with Bi | 0.2 M, acetate buffer, pH 5 | Soil | [83] | ||
SWASV | Glassy carbon electrode coated with poly(amidoamine) dendrimer-functionalized magnetic graphene oxide | 0.1 M acetate buffer | Water | 130 ng/L, 70 ng/L | [84] | |
SWASV | in situ electroplating bismuth film-modified glassy carbon electrode | 0.2 M acetate buffer | Soil | [88] | ||
SWASV | electrode made of glass carbon modified by bismuth film | 0.2 M acetate buffer | Soil | [86,87] | ||
SWASV | bismuth film-modified glassy carbon electrode | Acetate buffer | Soil | [85] | ||
Cd2+, Cu2+ | SWV | electrode modified with poly(butylene-terephthalate adipate) copolymer and carbon nitrite dots | 0.1 M phosphate buffer, pH 3.0 | Tap water | 2.7 μM (Cd), 7.09 μΜ (Cu) | [94] |
CSV | Groundwater, soil, and Alhagi maurorum plants | 0.011 ng/mL (Cu2+) 0.013 ng/mL (Cd2+) | [95] | |||
Cu2+, As3+ | SWASV | Nanostar gold electrode | Britton–Robinson buffer | River water, tap water | 42.5 μg/L, 2.9 μg/L | [96] |
SWASV | Glassy carbon electrode with a new polymethyldopa-based nanocomposite material together with gold nanoparticles immobilized on the surface of magnetic graphene oxide | 0.1 M acetate buffer + 0.1 M KCl, (pH 6.0) | Drinking water, pool water | 0.11 μg/L, 0.15 μg/L | [97] | |
Cu2+, Hg2+ | SWASV | gold electrode (GE) | Tea, Spinach, Tomato, Apple | [98] |
3. Applications of Voltammetric Analysis for Three or More Heavy Metals Simultaneously
3.1. Simultaneous Determination of Cu, Mn, and Zn
3.2. Simultaneous Determination of Pb, Cd, and Hg
3.3. Simultaneous Determination of Pb, Cd, and Cu
3.4. Simultaneous Determination of Pb, Cd, and Zn
3.5. Simultaneous Determination of Pb, Cu, and Zn
3.6. Simultaneous Determination of Cd, Cu, and Zn
3.7. Simultaneous Determination of Cd, Cu, and Hg
3.8. Simultaneous Determination of Pb, Cd, Cu, and Hg
3.9. Simultaneous Determination of Pb, Cd, Cu, and Zn
3.10. Simultaneous Determination of Pb and Other Heavy Metals
Metal | Technique | Electrode | Supporting Electrolyte | Type of Sample | Limit of Detection (LOD) | Ref. |
---|---|---|---|---|---|---|
Pb2+, Cd2+, Hg2+ | DPASV | carbon fiber electrode | 0.01 M acetate buffer | Plant Soil | 2.10, 0.93, 1.85 µg/L Cd, Pb, Hg | [130] |
ASV | 3D-printed electrode graphene/polylactic acid | 1 mM Ferrocenemethanol + 0.5 M KCl | Tap water | Hg: 6.1 nM | [101] | |
DPSV | Nanoel Modified with Au | Liquid foods (cow’s milk, orange juice, apple juice) | 1.0 μg/L, 1.1 μg/L, 1.2 μg/L | [102] | ||
DPASV | Carbon paste electrode modified with Na2CO3 and active Hordeum vulgare L. powder | 0.1 M HCl | River water, tap water | 0.0691 nM, 1.82 nM, 0.237 nM | [103] | |
Pb2+, Cd2+, Cu2+ | SWV | Carbon paste electrode modified with Bigarreau Burlat shell core | acetate buffer (0.2 M) | Tap water, sea water, industrial wastewater | 8.48 μg/L, 9.56 μg/L, 9.77 μg/L | [104] |
SWSV | Microgel modified with high-density carbon nanotube fiber rods | Tap water | −0.45 nM (92 ng/L), 0.26 nM (55 ng/L) in simulated drinking water −0.24 nM (27 ng/L) in tap water, 0.25 nM (28 ng/L) in simulated drinking water −6.0 nM, (376 ng/L) in tap water, 0.32 nM (20 ng/L) in simulated drinking water | [105] | ||
SWASV | Antifouling microelectrode arrays integrated in gel | 1 ng/L, 0.7 ng/L, 6.6 ng/L | [106] | |||
SWASV | Glassy carbon electrode modified with Fe3O4 and D-valine | 0.1 M acetate buffer | Water | 18.89 nM, 18.38 nM, 7.481 nM | [107] | |
SWASV | Glassy carbon electrode modified with nanostructure ZnO and Nafion | 0.1 M KCl + 5.10−3 M [Ru(NH3)6]3 | Water | 11.88 nM, 16.21 nM, 47.33 nM | [108] | |
DPASV | Hanging Drop Hg electrode (HDME) | KCl 0.5 M, pH 6.0 | Water | [109] | ||
DPASV | Biochar electrode in a metal form modified with B | 0.1 M acetate buffer | Rural irrigation water | 4 nM, 54 nM, 24 nM | [110] | |
Pb2+, Cd2+, Cu2+, Hg2+ | DPASV | fullerene-chitosan-modified glassy carbon electrode | 0.1 M acetate buffer | Tap water, Milk, Honey | 3 nM (0.6 ppb), 14 nM (0.9 ppb), 1 nM (0.2 ppb) and 21 nM Hg, Cu, Pb, and Cd | [123] |
DPASV | Lithographically printed electrode carbon modified with Ag nanoparticles | 1 M, acetate buffer, pH 4.4 | Tap water, rainwater, lake water | 2.5 μg/L, 0.4 μg/L, 0.73 μg/L, 0.7 μg/L | [120] | |
DPSV | Magnetic glassy carbon electrode modified with Fe3O4 and silica | 1 M acetate buffer, pH 5 | Milk | 16.5 nM, 56.1 nM, 79.4 nM, 56.7 nM | [121] | |
Pb2+, Cd2+, Zn2+ | ASV | Polymeric electrode loaded with carbon fiber embedded in plastic fluid base | 0.10 M acetate buffer | Fish feed | [111] | |
SWASV | Pencil graphite electrode modified with multiwalled carbon nanotubes and Bi | acetate buffer, pH 4.5 | Water | 0.27 μg/L, 0.43 μg/L, 1.63 μg/L | [112] | |
SWASV | Lithographically printed carbon electrode modified with poly(3,4-ethylenedioxythiophene) fibers with polyvinyl alcohol aqueous solution and Ag nanoparticles | 0.1 M acetate buffer, pH 4.6 | Drinking water | 8 μg/L, 3 μg/L, 6 μg/L | [113] | |
SWASV | Carbon paste electrode modified with CuO and TbFeO3 | acetate buffer, pH 4.8 | Pasteurized milk, apple juice, drinking water | 0.12 mg/L, 0.29 mg/L, 0.48 mg/L | [114] | |
SWASV | Carbon paste electrode modified with Bi and Sb | acetate buffer, pH 5.6 | Water | 0.29 mg/L, 0.27 mg/L, 1.46 mg/L | [115] | |
Pb2+, Cu2+, Zn2+ | SWASV | multiwalled Composite Carbon Nanotubes from Gold Nanoparticles with Polyaniline | 0.1 M acetate buffer, pH 5.0 | Water | 0.037 μg/L, 0.017 μg/L, 0.039 μg/L | [116] |
Pb2+, Cd2+, Cu2+, Zn2+ | SWASV | hanging mercury drop electrode (HMDE) | 0.01 Μ−1 EDTA-Na2 + 0.15 Μ NaCl + 0.5 Μ HCl | Tea, Spinach Tomato, Apple | [98] | |
ASV | glassy carbon modified with Bi(III) | 0.1 M acetate buffer | Soil | 0.91 mg/kg (Zn), 0.88 mg/kg (Cd), 1.1 mg/kg (Cu), 0.88 mg/kg (Pb) | [17] | |
SWASV | Lithographically printed electrode carbon modified Bi and Hg | 1.0 M acetate buffer, pH 4.5 | Surface water | 0.082 μg/L, 0.16 μg/L, 0.64 μg/L, 0.97 μg/L | [123] | |
SWASV | Pencil graphite electrode modified with multiwalled carbon nanotubes, Na-montmorilonite, and Bi nanoparticles | 0.1 M acetate buffer, pH 4.5 | Tap water | 0.008 μΜ, 0.097 μΜ, 0.157 μΜ, 0.707 µM | [124] | |
Pb2+ and other metals | SWV | Glassy carbon electrode modified with Schiff base network | 0.1 M KNO3 + 0.01 M HCl | Edible samples | 0.00072 μΜ | [125] |
SWASV | electrode modified with multiwalled carbon nanotubes and N,N′-di(salicylaldehyde)-1,2-diaminobenzene | 0.1 M NaNO3 | Lake water, soil sample | 0.3 nM | [126] | |
SWASV | Glassy carbon electrode modified with Bi nanoparticles and dopamine polymer in multiwalled carbon nanotubes | 0.1 M acetate buffer, pH 5 | Tap water, mineral water, sewage | 0.07 μg/L, Tl+: 0.04 μg/L | [127] | |
SWV | Carbon paste electrode modified with Ethylenediaminetetraacetic acid | 0.1 M NaCl | Drinking water | 2.33 nM | [128] | |
SWASV | 3D-printed electrode using polylactic acid with graphene admixture | 0.01 M HCl | Gunshot samples (GSR) | 0.5 μg/L | [129] | |
Cd2+, Cu2+, Zn2+ | SWASV | Lithographically printed electrode carbon modified with polyethyleneimide, graphene oxide, and graphite | 0.25 M acetate buffer, pH 4.5 | Water | 0.53 μg/L, 1.52 μg/L, 0.23 μg/L | [117] |
Cd2+, Cu2+, Hg2+ | SWASV | Ligand-coated magnetite nanoparticle carbon paste electrode | B–R buffer | Water, Tobacco, Carrot, Rice, Fish, Shrimp | 0.3, 0.1, 0.05 ng/mL for Cd2+, Cu2+, Hg2+ | [118,119] |
Cu2+, Zn2+, Mn2+ | DPSV and SWSV | pencil graphite electrode | 0.01 M acetate buffer | Soil | 0.01 mg/L (Cu2+), 0.02 mg/L (Zn2+), 0.25 mg/L (Mn2+) | [100] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xhanari, K.; Finšgar, M. Recent advances in the modification of electrodes for trace metal analysis: A review. Analyst 2023, 148, 5808–5820. [Google Scholar] [CrossRef]
- Keramari, V.; Karastogianni, S.; Girousi, S. New Prospects in the Electroanalysis of Heavy Metal Ions (Cd, Pb, Zn, Cu): Development and Application of Novel Electrode Surfaces. Methods Protoc. 2023, 6, 60. [Google Scholar] [CrossRef]
- Jose, J.; Prakash, P.; Jeyaprabha, B.; Abraham, R.; Mathew, R.M.; Zacharia, E.S.; Thomas, V.; Thomas, J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: A review. J. Iran. Chem. Soc. 2023, 20, 775–791. [Google Scholar] [CrossRef]
- Pratiwi, N.H.; Azis, M.Y.; Setiyanto, H. Review of Developments of Modified Carbon-Based Electrodes on Electrochemical Sensors for Water Environment Monitoring. Anal. Bioanal. Chem. Res. 2024, 11, 91–109. [Google Scholar] [CrossRef]
- Diédhiou, I.; Fall, B.; Gaye, C.; Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Fall, M.; Raouafi, N. Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: A review. Int. J. Mater. Res. 2023, 114, 79–99. [Google Scholar] [CrossRef]
- Tang, L.W.; Alias, Y.; Zakaria, R.; Woi, P.M. Progress in electrochemical sensing of heavy metals based on amino acids and its composites. Crit. Rev. Anal. Chem. 2023, 53, 869–886. [Google Scholar] [CrossRef]
- Kaur, H.; Siwal, S.S.; Chauhan, G.; Saini, A.K.; Kumari, A.; Thakur, V.K. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere 2022, 304, 135182. [Google Scholar] [CrossRef]
- Zheng, J.; Rahim, M.A.; Tang, J.; Allioux, F.M. Post-transition metal electrodes for sensing heavy metal ions by stripping voltammetry. Adv. Mater. Technol. 2022, 7, 2100760. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis Group: Ann Arbor, MI, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Golia, E.E.; Diakoloukas, V. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: A robust quadratic regression approach of soil pollution prediction. Environ. Sci. Pollut. Res. Int. 2022, 29, 29544–29561. [Google Scholar] [CrossRef]
- Angelaki, A.; Dionysidis, A.; Sihag, P.; Golia, E.E. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land 2022, 11, 290. [Google Scholar] [CrossRef]
- Papadimou, S.G.; Golia, E.E. Green and sustainable practices for an energy plant cultivation on naturally contaminated versus spiked soils. The impact of ageing soil pollution in the circular economy framework. Environ. Res. 2024, 246, 118130. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.; Dimirkou, A.; Floras, S.A. Spatial monitoring of arsenic and heavy metals in the Almyros area, Central Greecelectrode Statistical approach for assessing the sources of contamination. Environ. Monit. Assess. 2015, 187, 399. [Google Scholar] [CrossRef] [PubMed]
- Liava, V.; Golia, E.E. Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas. Waste Manag. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Papadimou, S.G.; Barbayiannis, N.; Golia, E.E. Preliminary investigation of the use of Silybum marianum (L.) Gaertn. as a Cd accumulator in contaminated Mediterranean soils: The relationships among cadmium (Cd) soil fractions and plant Cd content. Euro-Mediterr. J. Environ. Integr. 2024, 9, 405–417. [Google Scholar] [CrossRef]
- Vasilou, C.; Tsiropoulos, N.G.; Golia, E.E. Phytoremediation & Valorization of Cu-contaminated Soils through Cannabis sativa (L.) Cultivation: A Smart Way to Produce Cannabidiol (CBD) in Mediterranean Soils. Waste Biomass Valor. 2024, 15, 1711–1724. [Google Scholar] [CrossRef]
- Keramari, V.; Papadimou, S.G.; Golia, E.E.; Girousi, S. Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils. Biosensors 2024, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Stankovic, S.; Kalaba, P.; Stankovic, A.R. Biota as toxic metal indicators. Environ. Chem. Lett. 2014, 12, 63–84. [Google Scholar] [CrossRef]
- Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Oriakhi, C.O. Fundamentals of Electrochemistry. In Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations; Oxford Academic: New York, NY, USA, 2020; pp. 406–431. [Google Scholar] [CrossRef]
- Hawkes, S.J. What is a “Heavy Metal”? J. Chem. Educ. 1997, 74, 1374. [Google Scholar] [CrossRef]
- Duffus, J.H. Heavy Metals”—A Meaningless Term? Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Savéant, J.-M. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kasuno, M.; Osuga, H.; Shina, K.; Yamazaki, T. Coulometric Anodic Stripping Voltammetry of Lead at Copper Column Electrode. Electroanalysis 2021, 33, 1502–1509. [Google Scholar] [CrossRef]
- Huseinov, A.; Hoque, A.; Ruble, K.A.; Dee, B.J.; Alvarez, N.T. Reagentless Dissolution and Quantification of Particulate Lead in Tap Water via Membrane Electrolysis. Anal. Chem. 2023, 95, 9297–9303. [Google Scholar] [CrossRef] [PubMed]
- Pengou, M.; Ngassa, G.B.; Boutianala, M.; Tchakouté, H.K.; Nanseu-Njiki, C.P.; Ngameni, E. Geopolymer cement–modified carbon paste electrode: Application to electroanalysis of traces of lead(II) ions in aqueous solution. J. Solid State Electrochem. 2021, 25, 1183–1195. [Google Scholar] [CrossRef]
- Rahm, C.; Torres-Canas, F.; Gupta, P.; Poulin, P.; Alvarez, N.T. Inkjet Printed Multi-walled Carbon Nanotube Sensor for the Detection of Lead in Drinking Water. Electroanalysis 2020, 32, 1533–1545. [Google Scholar] [CrossRef]
- Chen, X.; Lu, K.; Lin, D.; Li, Y.; Yin, S.; Zhang, Z.; Tang, M.; Chen, G. Hierarchical Porous Tubular Biochar Based Sensor for Detection of Trace Lead (II). Electroanalysis 2021, 33, 473–482. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, H.; Cheng, Y.; Feng, T.; Lan, M.; Zuo, S. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hydrogel. J. Electroanal. Chem. 2021, 902, 115815. [Google Scholar] [CrossRef]
- Jalali Sarvestani, M.R.; Madrakian, T.; Afkhami, A. Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@Schiff base Network1 modified glassy carbon electrode. Talanta 2022, 250, 123716. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-T.; Chen, W.-S.; Fan, K.-H.; Chiang, C.-Y.; Wu, C.-W. Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction. J. Solid State Electrochem. 2022, 26, 2699–2711. [Google Scholar] [CrossRef]
- Wang, C.; Niu, Q.; Liu, D.; Dong, X.; You, T. Electrochemical sensor based on Bi/Bi2O3 doped porous carbon composite derived from Bi-MOFs for Pb2+ sensitive detection. Talanta 2023, 258, 124281. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Ge, H.; Zhang, J.; Yang, P.; Wu, Z. Facile fabrication of 2D MXene loading Co-doped Prussian blue nanoparticles for ultrasensitive electrochemical assay of trace lead ion. J. Electroanal. Chem. 2023, 935, 117320. [Google Scholar] [CrossRef]
- Guo, C.; Wang, C.; Sun, H.; Dai, D.; Gao, H. A simple electrochemical sensor based on rGO/MoS2/CS modified GCE for highly sensitive detection of Pb(ii) in tobacco leaves. RSC Adv. 2021, 11, 29590–29597. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, G.; Liu, G. Coupling Square Wave Anodic Stripping Voltammetry with Support Vector Regression to Detect the Concentration of Lead in Soil under the Interference of Copper Accurately. Sensors 2020, 20, 6792. [Google Scholar] [CrossRef]
- Jaber, L.; Elgamouz, A.; Kawde, A.-N. An insight to the filtration mechanism of Pb(II) at the surface of a clay ceramic membrane through its preconcentration at the surface of a graphite/clay composite working electrode. Arab. J. Chem. 2022, 15, 104303. [Google Scholar] [CrossRef]
- Barros, T.M.; de Araújo, D.M.; de Melo, A.T.L.; Martínez-Huitle, C.A.; Vocciante, M.; Ferro, S.; dos Santos, E.V. An Electroanalytical Solution for the Determination of Pb2+ in Progressive Hair Dyes Using the Cork–Graphite Sensor. Sensors 2022, 22, 1466. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, C.; Xue, Q.; Wang, R.; Chen, L.; Liu, Z.; He, L. Highly efficient detection of Pb(II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode. Diam. Relat. Mater. 2022, 130, 109477. [Google Scholar] [CrossRef]
- Xu, C.; Liu, J.; Bi, Y.; Ma, C.; Bai, J.; Hu, Z.; Zhou, M. Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Anal. Chim. Acta 2020, 1116, 16–26. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, R.; Zhang, C.; Yi, Y.; He, Y.; Zhu, G. Recent Advances in Electrochemical Sensing of Lead Ion. J. Electrochem. Soc. 2024, 171, 016504. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Zhai, W.-Y.; Liu, Y.-Q. Study on Cd2+ Determination Using Bud-like Poly-L-Tyrosine/Bi Composite Film Modified Glassy Carbon Electrode Combined with Eliminating of Cu2+ Interference by Electrodeposition. Electroanalysis 2021, 33, 744–754. [Google Scholar] [CrossRef]
- Feng, J.; Qi, J. Facile synthesis of graphene oxide coated 3D bimetallic oxide MnO2/Bi2O3 microspheres for voltammetric detection of cadmium ion in water. J. Solid State Chem. 2023, 322, 124007. [Google Scholar] [CrossRef]
- Garg, N.; Deep, A.; Sharma, A.L. Sensitive Detection of Cadmium Using Amine-Functionalized Fe-MOF by Anodic Stripping Voltammetry. Ind. Eng. Chem. Res. 2023, 62, 9735–9746. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, M.; Lin, C.; Yang, M.; Fang, L.; Liu, J.; Zhao, N.; Huang, X. Uniform manganese-loaded titanium dioxide nanotube arrays for accurate detection of trace Cd2+ in water, soil and tea: Enhanced stability and sensitivity. Chem. Eng. J. 2020, 400, 125972. [Google Scholar] [CrossRef]
- Levanen, G.; Dali, A.; Leroux, Y.; Lupoi, T.; Betelu, S.; Michel, K.; Ababou-Girard, S.; Hapiot, P.; Dahech, I.; Cristea, C.; et al. Specific electrochemical sensor for cadmium detection: Comparison between monolayer and multilayer functionalization. Electrochim. Acta 2023, 464, 142962. [Google Scholar] [CrossRef]
- Gao, J.; Qiu, C.; Qu, W.; Zhuang, Y.; Wang, P.; Yan, Y.; Wu, Y.; Zeng, Z.; Huang, G.; Deng, R.; et al. Detection of Cd2+ based on Nano-Fe3O4/MoS2/Nafion/GCE sensor. Anal. Sci. 2023, 39, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ke, Z.; Feng, L.; Liu, B. Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements. Chemosphere 2023, 329, 138710. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Deshmukh, S.; Roy, S.S.; Dhar, B.B. Selenium-doped Graphite for Electrochemical Sensing and Adsorption of Hg(II) and Cd(II) Ions. ChemElectroChem 2023, 10, 202201044. [Google Scholar] [CrossRef]
- Park, S.; Maier, C.S.; Koley, D. Anodic stripping voltammetry on a carbon-based ion-selective electrode. Electrochim. Acta 2021, 390, 138855. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Su, J.; Zhang, B.; Liu, J. Electrospun amino-containing organosilica gel nanofibers for the ultrasensitive determination of Cu(II). J. Electroanal. Chem. 2021, 882, 114976. [Google Scholar] [CrossRef]
- Alasağ, Ö.; Alpat, Ş.; Alpat, S.K. Voltammetric Determination of Copper by Biosorption-based Mesorhizobium Opportonistum Modified Microbial Biosensor. Electroanalysis 2022, 34, 1701–1710. [Google Scholar] [CrossRef]
- Li, G.; Feng, S.; Yan, L.; Yang, L.; Huo, B.; Wang, L.; Luo, S.; Yang, D. Direct electrochemical detection of Cu(Ⅱ) ions in juice and tea beverage samples using MWCNTs-BMIMPF6-Nafion modified GCE electrodes. Food Chem. 2023, 404, 134609. [Google Scholar] [CrossRef]
- Challier, L.; Forget, A.; Bazin, C.; Tanniou, S.; Le Doare, J.; Davy, R.; Bernard, H.; Tripier, R.; Laes-Huon, A.; Le Poul, N.L. An ultrasensitive and highly selective nanomolar electrochemical sensor based on an electrocatalytic peak shift analysis approach for copper trace detection in water. Electrochim. Acta 2022, 434, 141298. [Google Scholar] [CrossRef]
- Fayazi, M.; Ghanei-Motlagh, M.; Karami, C. Application of magnetic nanoparticles modified with L-cysteine for pre-concentration and voltammetric detection of copper(II). Microchem. J. 2022, 181, 107652. [Google Scholar] [CrossRef]
- Magarelli, G.; da Silva, J.G.; Ribeiro, C.L.; de Freita, T.V.; Rodrigues, M.A.; de Souza Gil, E.; Maraccinni, P.; de Souza, J.R.; de Castro, C.S.P.; Bemquerer, M.P. A voltammetric peptide biosensor for Cu2+ metal ion quantification in coffee seeds. J. Inorg. Biochem. 2024, 251, 112441. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.M.A.C.; Rocha, R.G.; Munoz, R.A.A.; Richter, E.M. A Batch Injection Analysis System with Square-wave Voltammetric Detection for Fast and Simultaneous Determination of Zinc and Ascorbic Acid. Electroanalysis 2021, 33, 90–96. [Google Scholar] [CrossRef]
- Caetano, M.; dos Santos, M.M.C.; Rosa, N.; Carvalho, I.; Rodríguez, J.G.; Belzunce-Segarra, M.J.; Menchaca, I.; Larreta, J.; Sanz, M.R.; Millán-Gabet, V.; et al. Metals concentrations in transitional and coastal waters by ICPMS and voltammetry analysis of spot samples and passive samplers (DGT). Mar. Pollut. Bull. 2022, 179, 113715. [Google Scholar] [CrossRef] [PubMed]
- Drwal, K.; Górska, Z.; Bończak, P.; Krasnodębska-Ostręga, B. Voltammetric Analysis of Cadmium and Lead (Undesirable Elements) in Brine, Supported by Solid Phase Extraction—The Right Solution of the Analytical Challenge. Electroanalysis 2023, 35, e202200397. [Google Scholar] [CrossRef]
- Obrez, D.; Kolar, M.; Tasić, N.; Hočevar, S.B. Study of different types of copper electrodes for anodic stripping voltammetric detection of trace metal ions. Electrochim. Acta 2023, 457, 142480. [Google Scholar] [CrossRef]
- de Oliveira, C.; Maciel, J.V.; Christ-Ribeiro, A.; Guarda, A.; Dias, D. A Voltammetric Approach for the Simultaneous Determination of Cd and Pb in Water Applying Carbon Paste Electrode Modified with Bismuth Film. J. Anal. Chem. 2022, 77, 369–375. [Google Scholar] [CrossRef]
- Colozza, N.; Cacciotti, I.; Moscone, D.; Arduini, F. Effects of Humidity, Temperature and Bismuth Electrodeposition on Electroanalytical Performances of Nafion-coated Printed Electrodes for Cd2+ and Pb2+ Detection. Electroanalysis 2020, 32, 345–357. [Google Scholar] [CrossRef]
- Majidian, M.; Raoof, J.B.; Hosseini, S.R.; Ojani, R.; Barek, J.; Fischer, J. Novel Type of Carbon Nanotube Paste Electrode Modified by Sb2O3 for Square Wave Anodic Stripping Voltammetric Determination of Cd2+ and Pb2+. Electroanalysis 2020, 32, 2260–2265. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Tshwenya, L.; Moscone, D.; Arduini, F.; Arotiba, O.A. A Poly(Propylene Imine) Dendrimer and Carbon Black Modified Flexible Screen Printed Electrochemical Sensor for Lead and Cadmium Co-detection. Electroanalysis 2020, 32, 3009–3016. [Google Scholar] [CrossRef]
- Zhao, G.; Sedki, M.; Ma, S.; Villarreal, C.; Mulchandani, A.; Jassby, D. Bismuth subcarbonate decorated reduced graphene oxide nanocomposite for the sensitive stripping voltammetry analysis of Pb(II) and Cd(II) in water. Sensors 2020, 20, 6085. [Google Scholar] [CrossRef]
- Seifi, A.; Afkhami, A.; Madrakian, T. Highly sensitive and simultaneous electrochemical determination of lead and cadmium ions by poly(thionine)/MWCNTs-modified glassy carbon electrode in the presence of bismuth ions. J. Appl. Electrochem. 2022, 52, 1513–1523. [Google Scholar] [CrossRef]
- Zhang, X.; An, D.; Bi, Z.; Shan, W.; Zhu, B.; Zhou, L.; Yu, L.; Zhang, H.; Xia, S.; Qiu, M. Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J. Electroanal. Chem. 2022, 911, 116239. [Google Scholar] [CrossRef]
- Shishov, A.; Volodina, N.; Semenova, E.; Navolotskaya, D.; Ermakov, S.; Bulatov, A. Reversed-phase dispersive liquid-liquid microextraction based on decomposition of deep eutectic solvent for the determination of lead and cadmium in vegetable oil. Food Chem. 2022, 373, 131456. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Sun, J.; Wang, C.; Zhu, G.; Bai, L.-P.; Jiang, Z.-H.; Zhang, W. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochem. Commun. 2022, 136, 107233. [Google Scholar] [CrossRef]
- Gayathri, J.; Sivalingam, S.; Narayanan, S.S. Novel synthesized SABA/MWCNTs composite to detect Cd2+ and Pb2+ ions in real samples of rice water, tobacco extract and raw milk. J. Mol. Liq. 2023, 387, 122586. [Google Scholar] [CrossRef]
- Ong, C.S.; Zaharum, N.H.B.; Nor, N.M.; Ahmad, A.L.; Ng, Q.H.; Razak, K.A.; Low, S.C. Morphology and atomic configuration control of heavy metal attraction modified layer on screen-printed electrode to enhance electrochemical sensing performance. J. Electroanal. Chem. 2023, 939, 117477. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochim. Acta 2020, 362, 137144. [Google Scholar] [CrossRef]
- Lalmalsawmi, J.; Sarikokba; Tiwari, D.; Kim, D.-J. Simultaneous detection of Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry: Use of highly efficient novel Ag0(NPs) decorated silane grafted bentonite material. J. Electroanal. Chem. 2022, 918, 116490. [Google Scholar] [CrossRef]
- Zhou, L.; Sekar, S.; Chen, J.; Lee, S.; Kim, D.Y.; Manikandan, R. A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II)ions in environmental samples. Colloids Surf. A Physicochem. Eng. 2022, 648, 129082. [Google Scholar] [CrossRef]
- Muna, G.W.; Barrera, E.; Robinson, L.; Majeed, H.; Jones, K.; Damschroder, A.; Vila, A. Electroanalytical performance of a Bismuth/Antimony composite glassy carbon electrode in detecting lead and cadmium. Electroanalysis 2023, 35, 202300019. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Park, H.; Jo, W.; Lee, W.; Park, J. Detection of Heavy Metals in Water Environment Using Nafion-Blanketed Bismuth Nanoplates. ACS Sustain. Chem. Eng. 2023, 11, 6844–6855. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Oliveira, F.M.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors 2023, 11, 219. [Google Scholar] [CrossRef]
- Huo, R.; Liu, L.; Chanthasa, C.; Okazaki, T.; Sazawa, K.; Sugawara, K.; Kuramitz, H. Microdroplet anodic stripping voltammetry at the in situ preparing antimony-modified rotating disk electrode for determination of Cd(II) and Pb(II). Electroanalysis 2023, 35, 202200528. [Google Scholar] [CrossRef]
- Karazan, Z.M.; Roushani, M. Selective determination of cadmium and lead ions in different food samples by poly (riboflavin)/carbon black-modified glassy carbon electrode. Food Chem. 2023, 423, 136283. [Google Scholar] [CrossRef]
- Mendonça, M.Z.M.; de Oliveira, F.M.; Petroni, J.M.; Lucca, B.G.; da Silva, R.A.B.; Cardoso, V.L.; de Melo, E.I. Biochar from coffee husks: A green electrode modifier for sensitive determination of heavy metal ions. J. Appl. Electrochem. 2023, 53, 1461–1471. [Google Scholar] [CrossRef]
- Liu, N.; Ye, W.; Liu, G.; Zhao, G. Improving the accuracy of stripping voltammetry detection of Cd2+ and Pb2+ in the presence of Cu2+ and Zn2+ by machine learning: Understanding and inhibiting the interactive interference among multiple heavy metals. Anal. Chim. Acta 2022, 1213, 339956. [Google Scholar] [CrossRef]
- Baghayeri, M.; Alinezhad, H.; Fayazi, M.; Tarahomi, M.; Ghanei-Motlagh, R.; Maleki, B. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim. Acta 2019, 312, 80–88. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, G. A Portable Electrochemical System for the On-Site Detection of Heavy Metals in Farmland Soil Based on Electrochemical Sensors. IEEE Sens. J. 2018, 18, 5645–5655. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, G.; Ye, W.; Wang, J.; Liu, G. VUV-H2O2 photolysis as a pretreatment method for improving the SWASV detection accuracies of Cd2+ and Pb2+ in soil extracts. J. Environ. Chem. Eng. 2022, 10, 107813. [Google Scholar] [CrossRef]
- Liu, N.; Ye, W.; Zhao, G.; Liu, G. Release of free-state ions from fulvic acid-heavy metal complexes via VUV/H2O2 photolysis: Photodegradation of fulvic acids and recovery of Cd2+ and Pb2+ stripping voltammetry currents. Environ. Pollut. 2022, 315, 120420. [Google Scholar] [CrossRef]
- Ye, W.; Liu, N.; Zhao, G.; Liu, G. Accurate Detection of Cd2+ and Pb2+ Concentrations in Soils by Stripping Voltammetry Peak Areas under the Mutual Interference of Multiple Heavy Metals. Metals 2023, 13, 270. [Google Scholar] [CrossRef]
- Antunović, V.; Tripković, T.; TomaŠević, B.; BaoŠić, R.; Jelić, D.; Lolić, A. Voltammetric Determination of Lead and Copper in Wine by Modified Glassy Carbon Electrode. Anal. Sci. 2021, 37, 353–358. [Google Scholar] [CrossRef]
- Magni, M.; Sironi, D.; Ferri, M.; Trasatti, S.; Campisi, S.; Gervasini, A.; Papacchini, M.; Cristiani, P. High-Content Hydroxyapatite Carbon Composites for the Electrochemical Detection of Heavy Metal Cations in Water. ChemElectroChem 2023, 10, 202201017. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Liu, T.; Li, W.; Hao, X.; Lu, Q.; Liang, X.; Liu, F.; Liu, F.; Wang, C.; et al. Highly sensitive detection of Pb2+ and Cu2+ based on ZIF-67/MWCNT/Nafion-modified glassy carbon electrode. Anal. Chim. Acta 2020, 1124, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Soares, P.I.; Lima, T.M.; do Nascimento, L.A.; Coelho, R.M.; Franco, D.L.; Pereira, A.C.; Ferreira, L.F. Co-detection of Copper and Lead in Artisanal Sugarcane Spirit Using Caffeic Acid-modified Graphite Electrodes. Electroanalysis 2023, 35, 202200302. [Google Scholar] [CrossRef]
- Buljac, M.; Radić, J.; Buzuk, M.; Škugor Rončević, I.; Vladislavić, N.; Krivić, D.; Marijanović, A. Application of the Stripping Voltammetry Method for the Determination of Copper and Lead Hyperaccumulation Potential in Lunaria annua L. Chemosensors 2022, 10, 52. [Google Scholar] [CrossRef]
- Maciel, C.C.; de Barros, A.; Mazali, I.O.; Ferreira, M. Flexible biodegradable electrochemical sensor of PBAT and CNDs composite for the detection of emerging pollutants. J. Electroanal. Chem. 2023, 940, 117491. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F. Simultaneous determination of Cd(II) and Cu(II) using stripping voltammetry in groundwater, soil and Alhagi maurorum plants in industrial and urban areas in Northern Border, Saudi Arabia with luminol as a chelating agent. Water Sci. Technol. 2015, 72, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Lu, D.; Brack, E.; Drew, C.; Kurup, P. Voltammetric codetection of arsenic(III) and copper(II) in alkaline buffering system with gold nanostar modified electrodes. Anal. Chim. Acta 2020, 1107, 63–73. [Google Scholar] [CrossRef]
- Nodehi, M.; Baghayeri, M.; Veisi, H. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 2021, 230, 122288. [Google Scholar] [CrossRef] [PubMed]
- Melucci, D.; Locatelli, M.; Locatellii, C. Trace level voltammetric determination of heavy metals and total mercury in tea matrices (Camellia sinensis). Food Chem. Toxicol. 2013, 62, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Shyam Sunder, G.S.; Rohanifar, A.; Adhikari, S. Electrochemical determination of Pb2+ and Cd2+ with a poly(pyrrole-1-carboxylic acid) modified electrode. J. Electroanal. Chem. 2022, 911, 116221. [Google Scholar] [CrossRef]
- Kiliç, H.D.; Deveci, S.; Dönmez, K.B.; Çetinkaya, E.; Karadağ, S.; Doğu, M. Application of stripping voltammetry method for the analysis of available copper, zinc and manganese contents in soil samples. Int. J. Environ. Analyt. Chem. 2018, 98, 308–322. [Google Scholar] [CrossRef]
- Walters, J.G.; Ahmed, S.; Rodríguez, I.M.T.; O’Neil, G.D. Trace Analysis of Heavy Metals (Cd, Pb, Hg) Using Native and Modified 3D Printed Graphene/Poly(Lactic Acid) Composite Electrodes. Electroanalysis 2020, 32, 859–866. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.; Zou, X.; Xu, Y.; Xu, X. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef] [PubMed]
- Djemmoe, L.G.; Njanja, E.; Tchieno, F.M.M.; Ndinteh, D.T.; Ndungu, P.G.; Tonle, I.K. Activated Hordeum vulgare L. dust as carbon paste electrode modifier for the sensitive electrochemical detection of Cd2+, Pb2+ and Hg2+ ions. Int. J. Environ. Anal. Chem. 2020, 100, 1429–1445. [Google Scholar] [CrossRef]
- Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S.; El Mahi, M.; Lotfi, E.M.; Labjar, N. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. Chem. Data Collect. 2021, 32, 100642. [Google Scholar] [CrossRef]
- Gupta, P.; Rahm, C.; Jiang, D.; Gupta, V.K.; Heineman, W.R.; Justin, G.; Alvarez, N.T. Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes. Anal. Chim. Acta 2021, 1155, 338353. [Google Scholar] [CrossRef]
- Abdou, M.; Tercier-Waeber, M.-L. New insights into trace metal speciation and interaction with phytoplankton in estuarine coastal waters. Mar. Pollut. Bull. 2022, 181, 113845. [Google Scholar] [CrossRef]
- Manjunatha Kumara, K.S.; Nagaraju, D.H.; Yhobu, Z.; Nayan Kumar, H.N.; Budagumpi, S.; Kumar Bose, S.; Shivakumar, P.; Palakollu, V.N. Tuning the Surface Functionality of Fe3O4 for Sensitive and Selective Detection of Heavy Metal Ions. Sensors 2022, 22, 8895. [Google Scholar] [CrossRef] [PubMed]
- Belcovici, A.; Fort, C.I.; Mureşan, L.E.; Perhaiţa, I.; Borodi, G.; Turdean, G.L. Zinc oxide nanostructured platform for electrochemical detection of heavy metals. Electroanalysis 2023, 35, 202200395. [Google Scholar] [CrossRef]
- Kulpa-Koterwa, A.; Ryl, J.; Górnicka, K.; Niedziałkowski, P. New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+. J. Mol. Liq. 2022, 368, 120710. [Google Scholar] [CrossRef]
- Shen, Y.; Xue, Y.; Xia, X.; Zeng, S.; Zhang, J.; Li, K. Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd2+, Pb2+ and Cu2+: Theoretical insight into the role of CxBOy(H). Carbon 2023, 214, 118350. [Google Scholar] [CrossRef]
- Partheni, V.; Svarnias, K.; Economou, A.; Kokkinos, C.; Fielden, P.R.; Baldock, S.J.; Goddard, N.J. Voltammetric Determination of Trace Heavy Metals by Sequential-injection Analysis at Plastic Fluidic Chips with Integrated Carbon Fiber-based Electrodes. Electroanalysis 2021, 33, 1930–1935. [Google Scholar] [CrossRef]
- Ustabasi, G.S.; Yilmaz, I.; Ozcan, M.; Cetinkaya, E. Simultaneous, Selective and Highly Sensitive Voltammetric Determination of Lead, Cadmium, and Zinc via Modified Pencil Graphite Electrodes. Electroanalysis 2022, 34, 1237–1244. [Google Scholar] [CrossRef]
- Ngoensawat, U.; Pisuchpen, T.; Sritana-Anant, Y.; Rodthongkum, N.; Hoven, V.P. Conductive electrospun composite fibers based on solid-state polymerized Poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions. Talanta 2022, 241, 123253. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi-Moghaddam, H.; Amiri, M.; Javar, H.A.; Yousif, Q.A.; Salavati-Niasari, M. Green synthesis and characterization of Tb-Fe-O-Cu ceramic nanocomposite and its application in simultaneous electrochemical sensing of zinc, cadmium and lead. Arab. J. Chem. 2022, 15, 103988. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Beltagi, A.M.; Hathoot, A.A.; Azzem, M.A. Simultaneous voltammetric sensing of Zn2+, Cd2+, and Pb2+ using an electrodeposited Bi-Sb nanocomposite modified carbon paste electrode. RSC Adv. 2023, 13, 7118–7128. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, X.; Zhao, S. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem. J. 2021, 170, 106726. [Google Scholar] [CrossRef]
- Biasi, A.D.L.M.; Takara, E.A.; Scala-Benuzzi, M.L.; Valverde, A.M.; Gómez, N.N.; Messina, G.A. Modification of electrodes with polymer nanocomposites: Application to the simultaneous determination of Zn(II), Cd(II), and Cu(II) in water samples. Anal. Chim. Acta 2023, 1273, 341499. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Moosavi, R.; Madrakian, T.; Keypour, H.; Ramezani-Aktij, A.; Mirzaei-Monsef, M. Construction and Application of an Electrochemical Sensor for Simultaneous Determination of Cd(II), Cu(II) and 864 Hg(II) in Water and Foodstuff Samples. Electroanalysis 2014, 26, 786–795. [Google Scholar] [CrossRef]
- Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H.; Rezaeivala, M. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Anal. Chim. Acta 2013, 771, 21–30. [Google Scholar] [CrossRef]
- Naseri, M.; Mohammadniaei, M.; Ghosh, K.; Sarkar, S.; Sankar, R.; Mukherjee, S.; Pal, S.; Dezfouli, E.A.; Halder, A.; Qiao, J.; et al. A Robust Electrochemical Sensor Based on Butterfly-shaped Silver Nanostructure for Concurrent Quantification of Heavy Metals in Water Samples. Electroanalysis 2023, 35, 202200114. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, W. Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem. 2023, 406, 135034. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Meng, Z.; Zhang, H.; Zheng, J. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Mikrochim. Acta 2018, 185, 274. [Google Scholar] [CrossRef]
- Yıldız, C.; Bayraktepe, D.E.; Yazan, Z. Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. Monatsh. Chem. 2021, 152, 1527–1537. [Google Scholar] [CrossRef]
- Yıldız, C.; Bayraktepe, D.E.; Yazan, Z.; Önal, M. Bismuth nanoparticles decorated on Na-montmorillonite-multiwalled carbon nanotube for simultaneous determination of heavy metal ions- electrochemical methods. J. Electroanal. Chem. 2022, 910, 116205. [Google Scholar] [CrossRef]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Simultaneous determination of Pb2+ and Hg2+ at food specimens by a Melamine-based covalent organic framework modified glassy carbon electrode. Food Chem. 2023, 402, 134246. [Google Scholar] [CrossRef]
- Gayathri, J.; Sivalingam, S.; Narayanan, S.S. Synthesis and characterization of Schiff base ligand-mutliwalled carbon nanotubes as mercury-free electrochemical sensor for detecting toxic metals in aquatic treatment. Diam. Relat. Mater. 2023, 136, 109984. [Google Scholar] [CrossRef]
- Nodehi, M.; Baghayeri, M.; Kaffash, A. Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of Tl (1) and Pb (II) using stripping voltammetry. Chemosphere 2022, 301, 134701. [Google Scholar] [CrossRef] [PubMed]
- Laghlimi, C.; Ziat, Y.; Moutcine, A.; Hammi, M.; Zarhri, Z.; Ifguis, O.; Chtaini, A. A new sensor based on graphite carbon paste modified by an organic molecule for efficient determination of heavy metals in drinking water. Chem. Data Collect. 2021, 31, 100595. [Google Scholar] [CrossRef]
- Castro, S.V.F.; Lima, A.P.; Rocha, R.G.; Cardoso, R.M.; Montes, R.H.O.; Santana, M.H.P.; Richter, E.M.; Munoz, R.A.A. Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Anal. Chim. Acta 2020, 1130, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.M.; Siegenthaler, J.; Benedict, A.; Allen, B.; Martinez, R.M.; Zhang, W.; Li, W. Heavy Metal Sensing in plant and soil solutions using carbon fiber electrode. Sens. Actuators A. Phys. 2024, 370, 115232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziathanasiou, E.; Liava, V.; Golia, E.E.; Girousi, S. Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples. Analytica 2024, 5, 358-383. https://doi.org/10.3390/analytica5030023
Chatziathanasiou E, Liava V, Golia EE, Girousi S. Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples. Analytica. 2024; 5(3):358-383. https://doi.org/10.3390/analytica5030023
Chicago/Turabian StyleChatziathanasiou, Efthymia, Vasiliki Liava, Evangelia E. Golia, and Stella Girousi. 2024. "Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples" Analytica 5, no. 3: 358-383. https://doi.org/10.3390/analytica5030023
APA StyleChatziathanasiou, E., Liava, V., Golia, E. E., & Girousi, S. (2024). Analytical Applications of Voltammetry in the Determination of Heavy Metals in Soils, Plant Tissues, and Water—Prospects and Limitations in the Co-Identification of Metal Cations in Environmental Samples. Analytica, 5(3), 358-383. https://doi.org/10.3390/analytica5030023