Rapid and Precise Approaches for XRF Analysis of Rare Earth Niobates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Samples of Rare Earth Niobates
2.3. Preliminary Characterization Using SEM-EDX
2.4. Sample Preparation
2.5. Spectral Overlap
2.6. Selection of Conditions for XRF Analysis
2.7. Background Correction
2.8. XRF Measurements
2.8.1. XRF Analysis with the Fundamental Parameters Method
2.8.2. XRF Analysis with Calibration Curves Using Oxide Mixtures
2.8.3. XRF Analysis with Calibration Curves Using Synthesized Calibration Samples
2.9. ICP-OES Measurements
3. Results and Discussion
3.1. SEM-EDX
3.2. The Results of XRF Measurements
3.2.1. The Results of XRF Analysis with FPM
3.2.2. The Results of XRF Analysis with Calibration Curves Using Oxide Mixtures
3.2.3. The Results of XRF with Calibration Curves Using Synthesized Calibration Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ege, A.; Özkan, A. Thermoluminescence kinetic parameters of yttrium niobate. Optik 2022, 259, 168983. [Google Scholar] [CrossRef]
- Oliveira, L.R.; Moscardini, S.B.; Molina, E.F.; Nassar, E.J.; Verelst, M.; Rocha, L.A. Effect of gadolinium incorporation on the structure and luminescence properties of niobium-based materials. Nanotechnology 2018, 29, 235204. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.R.; Nassar, E.J.; Verelst, M.; Rocha, L.A. Synthesis and characterization of Nb2O5:La3+,Eu3+ phosphors obtained by the non-hydrolytic sol-gel process. J. Braz. Chem. Soc. 2015, 26, 2558–25570. [Google Scholar] [CrossRef]
- Xiao, X.; Yan, B. In-situ chemical co-precipitation composition of hybrid precursors and luminescence of Y1−xGdxNbO4:RE3+ (RE = Tb, Eu) micron crystalline phosphors. J. Alloys Compd. 2008, 456, 447–451. [Google Scholar] [CrossRef]
- Hsiao, Y.J.; Fang, T.H.; Chang, Y.S.; Chang, Y.H.; Liu, C.H.; Ji, L.W.; Jywe, W.Y. Structure and luminescent properties of LaNbO4 synthesized by sol–gel process. J. Lumin. 2007, 126, 866–870. [Google Scholar] [CrossRef]
- Doi, Y.; Harada, Y.; Hinatsu, Y. Crystal structures and magnetic properties of fluorite-related oxides Ln3NbO7 (Ln = lanthanides). J. Solid State Chem. 2009, 182, 709–715. [Google Scholar] [CrossRef]
- Wakeshima, M.; Hinatsu, Y. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln = rare earths, M = transition metals). J. Solid State Chem. 2010, 183, 2681–2688. [Google Scholar] [CrossRef]
- Vente, J.F.; Helmholdt, R.B.; IJdo, D.J.W. The Structure and Magnetic Properties of Pr3MO7 with M = Nb, Ta, and Sb. J. Solid State Chem. 1994, 108, 18–23. [Google Scholar] [CrossRef]
- Abe, R.; Higashi, M.; Zou, Z.; Sayama, K.; Abe, Y.; Arakawa, H. Photocatalytic water splitting into H2 and O2 over R3TaO7 and R3NbO7 (R = Y, Yb, Gd, La): Effect of crystal structure on photocatalytic activity. J. Phys. Chem. B 2004, 108, 811–814. [Google Scholar] [CrossRef]
- Masloboeva, S.M.; Biryukova, I.V.; Efremov, I.N.; Teplyakova, N.A.; Palatnikov, M.N. Obtaining and studying photorefractive and optical properties of lithium niobate single crystal co-doped with gadolinium and boron. Opt. Quantum Electron. 2024, 56, 835. [Google Scholar] [CrossRef]
- Tang, X.-D.; Ye, H.-Q.; Liu, H.; Ma, C.-X.; Zhao, Z. A novel visible-light-driven photocatalyst Sm2InNbO7 for H2 or O2 evolution. Chem. Phys. Lett. 2009, 484, 48–53. [Google Scholar] [CrossRef]
- Cai, L.; Nino, J.C. Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y). J. Eur. Ceram. Soc. 2007, 27, 3971–3976. [Google Scholar] [CrossRef]
- Wu, F.; Wu, P.; Zong, R.; Feng, J. Investigation on thermo-physical and mechanical properties of Dy3(Ta1-xNbx)O7 ceramics with order-disorder transition. Ceram. Int. 2019, 45, 15705–15710. [Google Scholar] [CrossRef]
- Wu, F.; Wu, P.; Zhou, Y.; Chong, X.; Feng, J. The thermo-mechanical properties and ferroelastic phase transition of RENbO4 (RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics. J. Am. Ceram. Soc. 2020, 103, 2727–2740. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zheng, Q.; Feng, J. Structures, and Thermophysical Properties Characterizations of (La1-xHox)3NbO7 Solid Solutions as Thermal Barrier Coatings. Front. Mater. 2021, 8, 703098. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Hu, M.; Zhang, L.; Wang, J.; Zhang, Z.; Liang, X.; Guo, J.; Feng, J. Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering. Appl. Phys. Lett. 2021, 118, 071905. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Xiang, H.; Dai, F.-Z.; Wang, X.; Xu, W.; Sun, K.; Peng, Z.; Zhou, Y. High entropy defective fluorite structured rare earth niobates and tantalates for thermal barrier applications. J. Adv. Ceram. 2020, 9, 303–311. [Google Scholar] [CrossRef]
- Priscillal, I.J.D.; Wang, S.-F. Nanoengineered lanthanum niobate nanocaviar anchored carbon nanofibers for trace level detection of menadione in environmental samples. Environ. Res. 2023, 227, 115794. [Google Scholar] [CrossRef] [PubMed]
- Mielewczyk-Gryn, A.; Gdula-Kasica, K.; Kusz, B.; Gazda, M. High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate. Ceram. Int. 2013, 39, 4239–4244. [Google Scholar] [CrossRef]
- Liao, J.; Nie, L.; Liu, S.; Liu, B.; Wen, H. Yb3+ concentration dependence of upconversion luminescence in Y2Sn2O7:Yb3+/Er3+ nanophosphors. J. Mater. Sci. 2014, 49, 6081–6086. [Google Scholar] [CrossRef]
- Song, D.; Kim, J.; Lyu, G.; Pyeon, J.; Jeon, H.-B.; Oh, Y.-S.; Song, T.; Paik, U.; Jung, Y.-G. Effect of cation substitution on thermophysical properties of fluorite A3BO7 ceramics. J. Alloys Compd. 2021, 883, 160848. [Google Scholar] [CrossRef]
- Li, B.; Gu, Z.; Lin, J.; Su, M.-Z. Photoluminescence of Eu3+-activated GdTaO4 with both M type and M′ type structures. J. Mater. Sci. 2000, 35, 1139–1143. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. Photoluminescent Efficiency of Phosphors with Electronic Transitions in Localized Centers. J. Electrochem. Soc. 1968, 115, 1067. [Google Scholar] [CrossRef]
- Massabni, A.M.G.; Montandon, G.J.M.; Couto dos Santos, M.A. Synthesis and Luminescence Spectroscopy of YNbO4 Doped with Eu(III). Mater. Res. 1998, 1, 1–4. [Google Scholar] [CrossRef]
- Wright, A.J.; Wang, Q.; Huang, C.; Nieto, A.; Chen, R.; Luo, J. From high-entropy ceramics to Compositionally Complex ceramics: A case study of fluorite oxides. J. Eur. Ceram. Soc. 2020, 40, 2120–2129. [Google Scholar] [CrossRef]
- Wright, A.J.; Wang, Q.; Ko, S.-T.; Chung, K.M.; Chen, R.; Luo, J. Size disorder as a descriptor for predictingreduced thermal conductivity in medium- and high-entropy pyrochlores. Scr. Mater. 2020, 181, 76–81. [Google Scholar] [CrossRef]
- Siqueira, K.P.F.; Soares, J.C.; Granado, E.; Bittar, E.M.; de Paula, A.M.; Moreira, R.L.; Dias, A. Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln = La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis. J. Solid State Chem. 2014, 209, 63–68. [Google Scholar] [CrossRef]
- Schramm, R. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements. Phys. Sci. Rev. 2016, 1, 20160061. [Google Scholar] [CrossRef]
- Sitko, R.; Zawisza, B.; Czaja, M. Fundamental parameters method for determination of rare earth elements in apatites by wavelength-dispersive X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 2005, 20, 741–745. [Google Scholar] [CrossRef]
- Wu, W.; Xu, T.; Hao, Q.; Wang, Q.; Zhang, S.; Zhao, C. Applications of X-ray fluorescence analysis of rare earths in China. J. Rare Earths 2010, 28, 30–36. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Belonovsky, A.V.; Katzman, Y.M. Application of fundamental parameter methodin X-ray fluorescence analysis of pulp productsin ore concentration. Mining 2021, 5, 84–88. [Google Scholar]
- Abramov, A.V.; Polovov, I.B. Method for Determining Mass Fractions of Principal and Impurity Elements in Salt Fluoride Systems by X-ray Fluorescence Analysis. RU Patent 2772103, 16 May 2022. [Google Scholar]
- Guskov, A.V.; Gagarin, P.G.; Guskov, V.N.; Tyurin, A.V.; Khoroshilov, A.V.; Gavrichev, K.S. Thermodynamic Properties of Gadolinium Tantalate Gd3TaO7. Russ. J. Phys. Chem. A 2022, 96, 1195–1203. [Google Scholar] [CrossRef]
- Gagarin, P.G.; Guskov, A.V.; Guskov, V.N.; Nikiforova, G.E.; Khoroshilov, A.V.; Tyurin, A.V.; Gavrichev, K. S Sm3TaO7: Heat capacity and thermal expansion. Russ. J. Inorg. Chem. 2022, 67, 2183–2192. [Google Scholar] [CrossRef]
- Wright, A.J.; Wang, Q.; Hu, C.; Yeh, Y.-T.; Chen, R.; Luo, J. Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition. Acta Mater. 2021, 211, 116858. [Google Scholar] [CrossRef]
- Wright, A.J.; Wang, Q.; Yeh, Y.-T.; Zhang, D.; Everett, M.; Neuefeind, J.; Chen, R.; Luo, J. Short-range order and origin of the low thermal conductivity in compositionally complex rare-earth niobates and tantalates. Acta Mater. 2022, 235, 118056. [Google Scholar] [CrossRef]
- DeKalb, E.L.; Fassel, V.A. Optical Atomic Emission and Absorption Methods; Gschneidner, K.A., Jr., Eyring, L., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1979; Volume 4, pp. 405–440. [Google Scholar] [CrossRef]
- Jalas, P.; Ruottinen, J.-P.; Hemminki, S. XRF Analysis of jewelry using fully standardless fundamental parameter approach. Gold Technol. 2022, 35, 28–34. [Google Scholar]
- Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2023; 432p. [Google Scholar]
Element | Analytical Line | Crystal Analyzer (Reflection Order) | Wavelength, nm | Overlaps: Analytical Line/Wavelength, nm |
---|---|---|---|---|
Er | Lα1 | LiF200 (1) | 0.1784 | No overlaps |
Lβ1 | LiF200 (1) | 0.1587 | No overlaps | |
Lα1 | C002 (2) | 0.1784 | No overlaps | |
Lβ1 | C002 (2) | 0.1587 | No overlaps | |
Y | Kα | LiF200 (1) | 0.0830 | No overlaps |
Kα | LiF200 (2) | 0.0830 | Yb Lα (1) | |
Kβ | LiF200 (2) | 0.0739 | Nb Kα/0.0748 Yb Lβ2 (1) | |
Lα | PET (1) | 0.6450 | Nb LI/0.6518 | |
Lβ1 | PET (1) | 0.6212 | No overlaps | |
Yb | Lα1 | LiF200 (1) | 0.1672 | Y Kα (2) |
Lβ1 | LiF200 (1) | 0.1476 | Y Kβ2 (2) Nb Kα (2) | |
Lα1 | C002 (2) | 0.1672 | No overlaps | |
Lβ1 | C002 (2) | 0.1476 | Er Lβ2/0.1514 | |
Nb | Kα | LiF200 (2) | 0.0748 | Y Kβ/0.0739 Yb Lβ2 (1) |
Kβ | LiF200 (2) | 0.0664 | No overlaps | |
Lβ1 | C002 (1) | 0.5493 | No overlaps | |
Lα | PET (1) | 0.5725 | No overlaps | |
Lβ1 | PET (1) | 0.5493 | No overlaps |
Element | Analytical Line | Wavelength, nm | Crystal Analyzer | Reflection Order | Measuring Time, s | Tube Current, mA |
---|---|---|---|---|---|---|
Y | Kα | 0.0830 | LiF200 | 1 | 10 | 0.1 |
Er | Lα | 0.1784 | C002 | 2 | 10 | 0.5 |
Yb | Lα | 0.1672 | C002 | 2 | 10 | 0.5 |
Nb | Kβ | 0.0664 | LiF200 | 2 | 30 | 3.5 |
Sample Code | Chemical Formula | Weight of Mixed Powders, g | Content, wt% | ||||||
---|---|---|---|---|---|---|---|---|---|
Er2O3 | Y2O3 | Yb2O3 | Nb2O5 | Er | Y | Yb | Nb | ||
CS 1 | Er0.85Y1.05Yb1.1NbO7 | 1.63 | 1.19 | 2.17 | 1.28 | 26.38 | 14.02 | 27.29 | 14.65 |
CS 2 | Er1.05Y1.1Yb0.85NbO7 | 2.01 | 1.24 | 1.67 | 1.28 | 22.54 | 14.8 | 30.18 | 14.73 |
CS 3 | Er1.25Y0.5Yb1.25NbO7 | 2.39 | 0.56 | 2.46 | 1.28 | 28.08 | 15.64 | 23.52 | 14.86 |
CS 4 | Er0.75Y1.5Yb0.75NbO7 | 1.43 | 1.69 | 1.48 | 1.28 | 30.99 | 6.59 | 32.06 | 13.77 |
CS 5 | Er1.25Y0.75YbNbO7 | 2.39 | 0.85 | 1.97 | 1.28 | 21.14 | 22.47 | 21.87 | 15.65 |
CS 6 | Er0.65Y1.35YbNbO7 | 1.24 | 1.52 | 1.97 | 1.28 | 31.98 | 10.2 | 26.47 | 14.21 |
2 REEs | |||||||
Sample Code | Chemical Formula | Content, wt% | |||||
Y | Yb | Nb | |||||
CS2-1 | Y2.75Yb0.25NbO7 | 49.63 | 8.78 | 18.85 | |||
CS2-2 | Y2.5Yb0.5NbO7 | 43.27 | 16.84 | 17.37 | |||
CS2-3 | Y2.25Yb0.75NbO7 | 37.41 | 24.27 | 17.37 | |||
CS2-4 | Y1.75Yb1.25NbO7 | 26.97 | 37.50 | 16.11 | |||
CS2-5 | Y1.25Yb1.75NbO7 | 17.96 | 48.93 | 15.01 | |||
CS2-6 | Y0.75Yb2.25NbO7 | 10.09 | 58.91 | 14.06 | |||
CS2-7 | Y0.5Yb2.5NbO7 | 6.52 | 63.44 | 13.62 | |||
CS2-8 | Y0.25Yb2.75NbO7 | 3.16 | 67.69 | 13.22 | |||
3 REEs | |||||||
Sample Code | Chemical Formula | Content, wt% | |||||
Er | Y | Yb | Nb | ||||
CS3-1 | Er0.85Y1.05Yb1.1NbO7 | 26.38 | 14.02 | 27.29 | 14.65 | ||
CS3-2 | Er1.05Y1.1Yb0.85NbO7 | 22.54 | 14.8 | 30.18 | 14.73 | ||
CS3-3 | Er1.25Y0.5Yb1.25NbO7 | 28.08 | 15.64 | 23.52 | 14.86 | ||
CS3-4 | Er0.75Y1.5Yb0.75NbO7 | 30.99 | 6.59 | 32.06 | 13.77 | ||
CS3-5 | Er1.25Y0.75YbNbO7 | 21.14 | 22.47 | 21.87 | 15.65 | ||
CS3-6 | Er0.65Y1.35YbNbO7 | 31.98 | 10.2 | 26.47 | 14.21 |
30T1 | ||||||||||
Element | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Mean | RSD | ±Δ |
O | 16.46 | 5.34 | 15.44 | 11.73 | 7.37 | 14.53 | 15.64 | 12.36 | 35.63 | 10.36 |
Y | 11.22 | 4.24 | 12.32 | 7.77 | 6.14 | 9.21 | 10.39 | 8.76 | 32.92 | 6.78 |
Nb | 10.50 | 3.73 | 9.90 | 7.25 | 5.10 | 9.31 | 10.12 | 7.99 | 33.62 | 6.32 |
Er | 29.22 | 39.65 | 28.79 | 34.86 | 40.16 | 40.53 | 21.57 | 33.54 | 21.65 | 17.08 |
Yb | 32.60 | 47.03 | 33.55 | 38.39 | 41.24 | 26.42 | 42.27 | 37.36 | 18.63 | 16.37 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | - | - | - |
30S | ||||||||||
Element | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Mean | RSD | ±Δ |
O | 15.56 | 17.20 | 15.78 | 12.52 | 14.74 | 19.53 | 18.04 | 16.20 | 14.20 | 5.41 |
Y | 10.88 | 11.14 | 10.80 | 9.75 | 10.21 | 12.96 | 12.14 | 11.13 | 9.91 | 2.59 |
Nb | 10.59 | 10.99 | 10.49 | 9.02 | 9.94 | 12.06 | 11.05 | 10.59 | 8.98 | 2.24 |
Er | 31.77 | 30.77 | 31.55 | 34.58 | 32.87 | 28.26 | 29.72 | 31.36 | 6.57 | 4.85 |
Yb | 31.20 | 29.89 | 31.38 | 34.14 | 32.24 | 27.19 | 29.05 | 30.73 | 7.35 | 5.31 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | - | - | - |
SER | ||||||||||
Element | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Mean | RSD | ±Δ |
O | 19.25 | 22.59 | 16.15 | 27.13 | 22.62 | 17.06 | 13.50 | 19.76 | 23.58 | 10.96 |
Y | 12.65 | 13.65 | 12.14 | 15.28 | 14.10 | 12.09 | 9.52 | 12.78 | 14.39 | 4.32 |
Nb | 11.87 | 13.63 | 12.26 | 15.67 | 14.37 | 11.84 | 9.36 | 12.71 | 16.14 | 4.83 |
Er | 28.48 | 25.75 | 30.13 | 21.46 | 25.14 | 29.69 | 33.90 | 27.79 | 14.55 | 9.51 |
Yb | 27.75 | 24.38 | 29.32 | 20.46 | 23.77 | 29.33 | 33.72 | 26.96 | 16.35 | 10.37 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | - | - | - |
A | ||||||||
Element | Method | Sample | ||||||
2Y1Yb | 1Y1Yb | 1Y2Yb | ||||||
Y | XRF with FPM | 36.25 | 25.18 | 16.35 | ||||
ICP-OES | 39.89 | 27.35 | 16.60 | |||||
Yb | XRF with FPM | 40.46 | 52.88 | 64.86 | ||||
ICP-OES | 39.24 | 53.35 | 65.63 | |||||
Nb | XRF with FPM | 23.30 | 21.95 | 18.79 | ||||
ICP-OES | 20.86 | 19.30 | 17.76 | |||||
B | ||||||||
Element | Method | Sample | ||||||
30T1 | 30T2 | 30S | 10T | SER | ||||
Er | XRF with FPM | 33.07 | 31.26 | 31.31 | 31.57 | 31.56 | ||
ICP-OES | 33.09 | 30.30 | 31.42 | 31.65 | 32.00 | |||
Y | XRF with FPM | 15.79 | 16.44 | 16.43 | 16.58 | 16.93 | ||
ICP-OES | 16.24 | 17.06 | 16.46 | 16.97 | 16.96 | |||
Yb | XRF with FPM | 32.40 | 32.42 | 32.07 | 32.17 | 30.87 | ||
ICP-OES | 33.30 | 33.35 | 32.62 | 32.98 | 31.44 | |||
Nb | XRF with FPM | 18.74 | 19.88 | 20.19 | 19.68 | 16.93 | ||
ICP-OES | 17.37 | 18.60 | 19.50 | 18.38 | 19.60 |
Element | Method | Sample | ||||
---|---|---|---|---|---|---|
30T1 | 30T2 | 30S | 10T | SER | ||
Er | XRF, X ± Δ, %wt | 27.96 ± 0.10 | 25.80 ± 0.62 | 25.59 ± 0.18 | 26.71 ± 0.57 | 27.69 ± 0.43 |
RSD, % | 0.15 | 1.03 | 0.30 | 0.91 | 0.66 | |
ICP-OES, X ± Δ, %wt | 26.28 ± 0.22 | 24.66 ± 0.26 | 24.82 ± 0.25 | 25.36 ± 0.23 | 25.60 ± 0.26 | |
t-test | 18.11 | 8.21 | 6.91 | 10.89 | 16.83 | |
Y | XRF, X ± Δ, %wt | 12.36 ± 0.43 | 12.72 ± 0.20 | 12.66 ± 0.13 | 13.06 ± 0.10 | 12.60 ± 0.37 |
RSD, % | 1.49 | 0.68 | 0.45 | 0.34 | 1.24 | |
ICP-OES, X ± Δ, %wt | 12.90 ± 0.13 | 13.57 ± 0.15 | 13.00 ± 0.11 | 13.61 ± 0.15 | 13.57 ± 0.14 | |
t-test | 6.76 | 12.06 | 6.70 | 8.24 | 14.60 | |
Yb | XRF, X ± Δ, %wt | 25.88 ± 0.30 | 25.60 ± 0.27 | 24.90 ± 0.11 | 25.91 ± 0.53 | 24.12 ± 0.36 |
RSD, % | 0.50 | 0.44 | 0.19 | 0.87 | 0.63 | |
ICP-OES, X ± Δ, %wt | 26.44 ± 0.25 | 26.53 ± 0.22 | 26.42 ± 0.27 | 26.42 ± 0.27 | 25.15 ± 0.23 | |
t-test | 4.94 | 9.30 | 7.65 | 3.82 | 9.38 | |
Nb | XRF, X ± Δ, %wt | 14.43 ± 0.23 | 14.07 ± 0.33 | 14.68 ± 0.21 | 14.45 ± 0.27 | 15.31 ± 0.11 |
RSD, % | 0.67 | 1.00 | 0.60 | 0.80 | 0.31 | |
ICP-OES, X ± Δ, %wt | 13.79 ± 0.12 | 14.80 ± 0.18 | 15.40 ± 0.14 | 14.73 ± 0.14 | 15.68 ± 0.14 | |
t-test | 10.85 | 8.33 | 11.21 | 3.97 | 0.07 |
A | ||||||||
Element | Method | Sample | ||||||
2Y1Yb | 1Y1Yb | 1Y2Yb | ||||||
Y | XRF, X ± Δ, %wt | 31.62 ± 0.28 | 22.25 ± 0.10 | 13.83 ± 0.08 | ||||
RSD, % | 0.37 | 0.19 | 0.24 | |||||
ICP-OES, X ± Δ, %wt | 31.83 ± 0.30 | 22.15 ± 0.25 | 13.72 ± 0.15 | |||||
t-test | 1.61 | 0.91 | 1.93 | |||||
Yb | XRF, X ± Δ, %wt | 31.82 ± 0.35 | 43.00 ± 0.29 | 54.26 ± 0.40 | ||||
RSD, % | 0.47 | 0.29 | 0.31 | |||||
ICP-OES, X ± Δ, %wt | 31.32 ± 0.34 | 43.20 ± 0.39 | 54.24 ± 0.44 | |||||
t-test | 0.05 | 1.20 | 0.11 | |||||
Nb | XRF, X ± Δ, %wt | 16.79 ± 0.12 | 15.52 ± 0.18 | 14.50 ± 0.08 | ||||
RSD, % | 0.32 | 0.50 | 0.22 | |||||
ICP-OES, X ± Δ, %wt | 16.65 ± 0.17 | 15.63 ± 0.16 | 14.68 ± 0.16 | |||||
t-test | 2.02 | 1.43 | 0.04 | |||||
B | ||||||||
Element | Method | Sample | ||||||
30T1 | 30T2 | 30S | 10T | SER | ||||
Er | XRF, X ± Δ, %wt | 26.18 ± 0.12 | 24.82 ± 0.22 | 24.70 ± 0.23 | 25.44 ± 0.19 | 25.74 ± 0.18 | ||
RSD, % | 0.19 | 0.37 | 0.39 | 0.31 | 0.30 | |||
ICP-OES, X ± Δ, %wt | 26.28 ± 0.22 | 24.66 ± 0.26 | 24.82 ± 0.25 | 25.36 ± 0.23 | 25.60 ± 0.26 | |||
t-test | 1.04 | 1.46 | 1.07 | 0.85 | 1.24 | |||
Y | XRF, X ± Δ, %wt | 13.06 ± 0.13 | 13.63 ± 0.13 | 13.06 ± 0.07 | 13.70 ± 0.12 | 13.56 ± 0.14 | ||
RSD, % | 0.41 | 0.39 | 0.24 | 0.37 | 0.45 | |||
ICP-OES, X ± Δ, %wt | 12.90 ± 0.13 | 13.57 ± 0.15 | 13.00 ± 0.11 | 13.61 ± 0.15 | 13.57 ± 0.14 | |||
t-test | 0.04 | 0.91 | 1.21 | 1.42 | 0.21 | |||
Yb | XRF, X ± Δ, %wt | 26.12 ± 0.23 | 26.67 ± 0.25 | 25.93 ± 0.17 | 26.48 ± 0.20 | 25.09 ± 0.25 | ||
RSD, % | 0.37 | 0.40 | 0.28 | 0.33 | 0.42 | |||
ICP-OES, X ± Δ, %wt | 26.44 ± 0.25 | 26.53 ± 0.22 | 25.77 ± 0.27 | 26.42 ± 0.27 | 25.15 ± 0.23 | |||
t-test | 0.04 | 1.42 | 1.36 | 0.50 | 0.62 | |||
Nb | XRF, X ± Δ, %wt | 13.90 ± 0.15 | 14.82 ± 0.12 | 15.53 ± 0.15 | 14.70 ± 0.15 | 15.51 ± 0.11 | ||
RSD, % | 0.45 | 0.33 | 0.40 | 0.43 | 0.31 | |||
ICP-OES, X ± Δ, %wt | 13.79 ± 0.12 | 14.80 ± 0.18 | 15.40 ± 0.14 | 14.73 ± 0.14 | 15.68 ± 0.14 | |||
t-test | 2.05 | 0.29 | 2.09 | 0.43 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkhipenko, A.A.; Marina, G.E.; Ryumin, M.A.; Doronina, M.S.; Korotkova, N.A.; Ksenofontova, T.D.; Baranovskaya, V.B. Rapid and Precise Approaches for XRF Analysis of Rare Earth Niobates. Analytica 2024, 5, 343-357. https://doi.org/10.3390/analytica5030022
Arkhipenko AA, Marina GE, Ryumin MA, Doronina MS, Korotkova NA, Ksenofontova TD, Baranovskaya VB. Rapid and Precise Approaches for XRF Analysis of Rare Earth Niobates. Analytica. 2024; 5(3):343-357. https://doi.org/10.3390/analytica5030022
Chicago/Turabian StyleArkhipenko, Alexandra Alexandrovna, Galina Evgenievna Marina, Mikhail Alexandrovich Ryumin, Marina Sergeevna Doronina, Natalia Alexandrovna Korotkova, Tatiana Dmitrievna Ksenofontova, and Vasilisa Borisovna Baranovskaya. 2024. "Rapid and Precise Approaches for XRF Analysis of Rare Earth Niobates" Analytica 5, no. 3: 343-357. https://doi.org/10.3390/analytica5030022
APA StyleArkhipenko, A. A., Marina, G. E., Ryumin, M. A., Doronina, M. S., Korotkova, N. A., Ksenofontova, T. D., & Baranovskaya, V. B. (2024). Rapid and Precise Approaches for XRF Analysis of Rare Earth Niobates. Analytica, 5(3), 343-357. https://doi.org/10.3390/analytica5030022