A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Samples
2.3. NIR Analysis
2.4. HSI Analysis
2.5. Chemometric Analysis
3. Results
3.1. Spectral Analysis of Halloumi Cheese Using HSI Spectroscopy
3.2. Spectral Analysis of Halloumi Cheese Using NIR Spectroscopy
3.3. Chemometric Modelling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Kumar, B.; Kumar, R.; Kumar, S.; Khatkar, S.K.; Kanawjia, S. Nutritional features of goat milk—A review. Indian J. Dairy Sci. 2012, 65, 266–273. [Google Scholar]
- Pal, M.; Dudhrejiya, T.P.; Pinto, S.; Brahamani, D.; Vijayageetha, V.; Reddy, Y.; Kate, P. Goat milk products and their significance. Beverage Food World 2017, 44, 21–25. [Google Scholar]
- Tsenkova, R.; Atanassova, S.; Itoh, K.; Ozaki, Y.; Toyoda, K. Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1100 to 2400 nanometers. J. Anim. Sci. 2000, 78, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; García, M.B.M. A 100-year review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- da Paixao Teixeira, J.L.; dos Santos Carames, E.T.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A.L. Rapid adulteration detection of yogurt and cheese made from goat milk by vibrational spectroscopy and chemometric tools. J. Food Compos. Anal. 2021, 96, 103712. [Google Scholar] [CrossRef]
- Hodgkinson, A.J.; Wallace, O.A.; Boggs, I.; Broadhurst, M.; Prosser, C.G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Barreto, A.; Cruz-Tirado, J.P.; Siche, R.; Quevedo, R. Determination of starch content in adulterated fresh cheese using hyperspectral imaging. Food Biosci. 2018, 21, 14–19. [Google Scholar] [CrossRef]
- Calvano, C.D.; De Ceglie, C.; Monopoli, A.; Zambonin, C.G. Detection of sheep and goat milk adulterations by direct MALDI–TOF MS analysis of milk tryptic digests. J. Mass Spectrom. 2012, 47, 1141–1149. [Google Scholar] [CrossRef]
- da Paixao Teixeira, J.L.; dos Santos Carames, E.T.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A.L. Vibrational spectroscopy and chemometrics tools for authenticity and improvement the safety control in goat milk. Food Control 2020, 112, 107105. [Google Scholar] [CrossRef]
- Munir, M.T.; Wilson, D.I.; Yu, W.; Young, B.R. An evaluation of hyperspectral imaging for characterising milk powders. J. Food Eng. 2018, 221, 1–10. [Google Scholar] [CrossRef]
- Alinovi, M.; Wiking, L.; Corredig, M.; Mucchetti, G. Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. J. Dairy Sci. 2020, 103, 7775–7790. [Google Scholar] [CrossRef] [PubMed]
- Cortese, M.; Gigliobianco, M.R.; Magnoni, F.; Censi, R.; Di Martino, P. Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review. Molecules 2020, 25, 3047. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Zhang, L.; Yang, R.; Wang, X.; Yu, L.; Yue, X.; Ma, F.; Mao, J.; Wang, X.; Zhang, W. Mass spectrometry in food authentication and origin traceability. Mass Spectrom. Rev. 2022, 42, 1772–1807. [Google Scholar] [CrossRef] [PubMed]
- Esteki, M.; Simal-Gandara, J.; Shahsavari, Z.; Zandbaaf, S.; Dashtaki, E.; Vander Heyden, Y. A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food Control 2018, 93, 165–182. [Google Scholar] [CrossRef]
- Lei, T.; Lin, X.; Sun, D. Rapid classification of commercial Cheddar cheeses from different brands using PLSDA, LDA, and SPA–LDA models built by hyperspectral data. J. Food Meas. Charact. 2019, 13, 3119–3129. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Kokkinofta, R.; Theocharis, C.R. Chemometric analysis combined with FTIR spectroscopy of milk and Halloumi cheese samples according to species’ origin. Food Sci. Nutr. 2020, 8, 3262–3273. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, N.; Magán, C.; Oblitas, J.; Chuquizuta, T.; Avila-George, H.; Castro, W. Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process of Swiss-type cheese using spectral profiles. J. Food Eng. 2018, 219, 8–15. [Google Scholar] [CrossRef]
- Ayvaz, H.; Mortas, M.; Dogan, M.A.; Atan, M.; Yildiz Tiryaki, G.; Karagul Yuceer, Y. Near-and mid-infrared determination of some quality parameters of cheese manufactured from the mixture of different milk species. J. Food Sci. Technol. 2021, 58, 3981–3992. [Google Scholar] [CrossRef]
- Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M.F.; Fabbri, A. FT-NIR and FT-MIR spectroscopy to discriminate competitors, non compliance and compliance grated Parmigiano Reggiano cheese. Food Res. Int. 2013, 52, 214–220. [Google Scholar] [CrossRef]
- Alinovi, M.; Mucchetti, G.; Tidona, F. Application of NIR spectroscopy and image analysis for the characterization of grated Parmigiano-Reggiano cheese. Int. Dairy J. 2019, 92, 50–58. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Ghetti, M.; De Lorenzi, C.; Pozza, M.; Franzoi, M.; De Marchi, M. Feasibility of pocket-sized near-infrared spectrometer for the prediction of cheese quality traits. J. Food Compos. Anal. 2022, 105, 104245. [Google Scholar] [CrossRef]
- Visconti, L.G.; Rodríguez, M.S.; Di Anibal, C.V. Determination of grated hard cheeses adulteration by near infrared spectroscopy (NIR) and multivariate analysis. Int. Dairy J. 2020, 104, 104647. [Google Scholar] [CrossRef]
- Ozaki, Y. Near-infrared spectroscopy—Its versatility in analytical chemistry. Anal. Sci. 2012, 28, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Mouazen, A.M.; Dufour, E.; Pillonel, L.; Schaller, E.; Picque, D.; De Baerdemaeker, J.; Bosset, J. A comparison and joint use of NIR and MIR spectroscopic methods for the determination of some parameters in European Emmental cheese. Eur. Food Res. Technol. 2006, 223, 44–50. [Google Scholar] [CrossRef]
- Calvini, R.; Michelini, S.; Pizzamiglio, V.; Foca, G.; Ulrici, A. Evaluation of the effect of factors related to preparation and composition of grated Parmigiano Reggiano cheese using NIR hyperspectral imaging. Food Control 2022, 131, 108412. [Google Scholar] [CrossRef]
- Calvini, R.; Michelini, S.; Pizzamiglio, V.; Foca, G.; Ulrici, A. Exploring the potential of NIR hyperspectral imaging for automated quantification of rind amount in grated Parmigiano Reggiano cheese. Food Control 2020, 112, 107111. [Google Scholar] [CrossRef]
- Darnay, L.; Králik, F.; Oros, G.; Koncz, Á.; Firtha, F. Monitoring the effect of transglutaminase in semi-hard cheese during ripening by hyperspectral imaging. J. Food Eng. 2017, 196, 123–129. [Google Scholar] [CrossRef]
- Malegori, C.; Oliveri, P.; Mustorgi, E.; Boggiani, M.A.; Pastorini, G.; Casale, M. An in-depth study of cheese ripening by means of NIR hyperspectral imaging: Spatial mapping of dehydration, proteolysis and lipolysis. Food Chem. 2021, 343, 128547. [Google Scholar] [CrossRef]
- Ozturk, M.; Dogan, M.A.; Menevseoglu, A.; Ayvaz, H. Infrared spectroscopy combined with chemometrics as a convenient method to detect adulterations in cooking/stretching process in commercial cheese. Int. Dairy J. 2022, 128, 105312. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
Cheese Type | Intended Use | Selected Wavenumbers (cm−1)/Wavelengths (nm) | Reference |
---|---|---|---|
Parmigiano Reggiano | Ripening based on rind percentage—extra rind content and defects of the PDO cheese, due to moisture and lipid profiles which are affected by proteolysis and lipolysis (affect nitrogen fraction and the lipid content) | 5882–5656, 5305, 4322–4243, and 4566 cm−1/1700–1768, 2314–2357, and 2190 nm | [19] |
Parmigiano-Reggiano | Ripening based on rind content, as different textures, and moisture content between the inner and the rind zones of the cheese were observed | 9398–7491, and 5173–4243 cm−1/1064–1335, and 1933–2357 nm | [20] |
Emmental | Geographical origin based on chemical properties, such as fat and total nitrogen | 10000–8000 cm−1/1000–1250 nm | [24] |
Ezine | Chemical properties such as protein, fat, salt, dry matter, moisture, and ash | 10000–4000 cm−1/1000–2500 nm | [18] |
Minas | Detection of adulteration (different concentrations of cow milk) based on protein profile | 9043, 9286, 9353, and 9632 cm−1/1106, 1077, 1069, and 1038 nm | [5] |
- | Detection of adulterants, i.e., water, urea, bovine whey, and cow origin milk in goat samples with concentrations of 0 (control), 1, 5, 10, 15, and 20% v/v. | 10000–5268, 5037–4163 cm−1/1000–1898, 1985–2402 nm | [9] |
Commercial grated cheeses | Detection of adulterants, i.e., cellulose, silicon dioxide, wheat flour, wheat semolina, and sawdust in grated cheese | 4000–5000 and 6000–7000 cm−1/2500–2000, 1667–1429 nm | [22] |
Soft and semi-hard cheeses (Caciotta, Mozzarella, Mozzarella Pizza, Primo sale, Ricotta siero, and Scarmorza) | Total nitrogen, soluble nitrogen, ripening index, major minerals content (Ca, K, Mg, Na, and P), and fatty acid profile | - | [21] |
Cheese Type | Intended Use | Selected Wavenumbers (cm−1)/Wavelengths (nm) | Reference |
---|---|---|---|
Parmigiano Reggiano | Quantification of rind amount in grated cheese | 8368–8163, 7519–7463, 7143 cm−1/1195–1225, 1330–1340 and 1400 nm | [25] |
Parmigiano Reggiano | Quantification of rind amount (8, 18, 28%), and investigation of the influence of fat content and grater type in grated cheese | 28% amount of rind: 7576–7194 cm−1/1320–1390 nm 8% amount of rind: 9346, 7042–6579 cm−1/1070 nm and 1420–1520 nm | [26] |
Semi-hard cheese made from 3.5% and 5% fat cow milk | Ripening based on the effect of transglutaminase and fat content | 7210, 8403, 8104 cm−1/1387, 1190, 1234 nm | [27] |
Swiss-type cheese | Ripening based on hardness | 15385–10000 cm−1/650–1000 nm | [17] |
Proteolytic maturation: Asiago, Casera, Parmigiano Reggiano, Lipolytic reactions: Aventino, Camoscio d’ Oro, President, Gorgonzola, Biochemical behavior: Morbidezza, Formaggetta, Bel Paese Biochemical mapping over time: Formaggetta | Ripening based on surface dehydration, proteolysis, and lipolysis | Proteolytic maturation: 5917 cm−1/1690 nm, Lipolytic reactions: 4673 cm−1/2140 nm, Surface dehydration-water contribution: 7353–6667 cm−1/1360–1500 nm | [28] |
Fresh cheese | Adulterant: starch based on water content | 17123, 10276–10000 cm−1/584, 976–1000 nm | [7] |
No. of Sample | Species’ Origin (Also Confirmed by FTIR) | Colour and Texture * (Appearance after Freeze-Drying) | Fat (g/100 g) | Protein (g/100 g) |
---|---|---|---|---|
1 | Goat–sheep | Yellow | 31.4 | 30 |
2 | Goat–sheep | Yellow | 30 | 27 |
3 | Cow | White | 24 | 23 |
4 | Cow | White | 25 | 23 |
5 | Cow | White | 25 | 23 |
6 | Goat–sheep | Yellow | 30 | 24 |
7 | Cow | White | 23 | 25 |
8 | Cow | White | 26 | 22 |
9 | Goat–sheep | Yellow | 32 | 31 |
10 | Cow | White | 25 | 24 |
11 | Cow | White | 24 | 22 |
12 | Cow | White | 25 | 22 |
13 | Goat–sheep | Yellow | 30 | 23 |
14 | Goat–sheep | Yellow | 30 | 25 |
15 | Goat–sheep | Yellow (most oily) | 31 | 30 |
16 | Goat–sheep | Yellow | 30 | 28 |
17 | Goat–sheep | Yellow | 28 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarapoulouzi, M.; Logan, N.; Hardy, M.; Montgomery, H.; Haughey, S.A.; Elliott, C.T.; Theocharis, C.R. A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies. Analytica 2024, 5, 17-27. https://doi.org/10.3390/analytica5010002
Tarapoulouzi M, Logan N, Hardy M, Montgomery H, Haughey SA, Elliott CT, Theocharis CR. A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies. Analytica. 2024; 5(1):17-27. https://doi.org/10.3390/analytica5010002
Chicago/Turabian StyleTarapoulouzi, Maria, Natasha Logan, Mike Hardy, Holly Montgomery, Simon A. Haughey, Christopher T. Elliott, and Charis R. Theocharis. 2024. "A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies" Analytica 5, no. 1: 17-27. https://doi.org/10.3390/analytica5010002
APA StyleTarapoulouzi, M., Logan, N., Hardy, M., Montgomery, H., Haughey, S. A., Elliott, C. T., & Theocharis, C. R. (2024). A Pre-Trial Study to Identify Species of Origin in Halloumi Cheese Utilising Chemometrics with Near-Infrared and Hyperspectral Imaging Technologies. Analytica, 5(1), 17-27. https://doi.org/10.3390/analytica5010002