Human Milk: Fast Determination of Docosahexaenoic Acid (DHA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sample
2.1.2. Reagents, Standards
2.2. Methods
3. Results and Discussion
3.1. Optimization of the Direct Method for Quantification of DHA in Human Milk
3.2. Validation of the Direct Method for the Quantification of DHA in Human Milk
3.3. Applicability of the Method in Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stam, J.; Sauer, J.J.P.; Boehm, G. Can we define an infant’s need from the composition of human milk? Am. J. Clin. Nutr. 2013, 98, 521S–528S. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Yi, D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Sherry, C.L.; Oliver, J.S.; Marriage, B.J. Docosahexaenoic acid supplementation in lactating women increases breast milk and plasma docosahexaenoic acid concentrations and alters infant omega 6: 3 fatty acid ratio. Prostaglandins Leukot. Essent. Fat. Acids 2015, 95, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Bobiński, R.; Bobińska, J. Fatty acids of human milk—A review. Int. J. Vitam. Nutr. Res. 2020, 92, 280–291. [Google Scholar] [CrossRef]
- He, X.; Mclorry, S.; Hernell, O.; Lönnerdal, B.; Slupsky, C.M. Digestion of human milk fat in healthy infants. Nutr. Res. 2020, 83, 15–29. [Google Scholar] [CrossRef]
- Kus-Yamashita, M.M.M.; Mancini-Filho, J. Ácidos graxos. In Funções Plenamente Reconhecidas de Nutrients, 2nd ed.; ILSI Brasil: São Paulo, Brasil, 2017; pp. 1–40. [Google Scholar]
- Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document. Nutrients 2016, 8, 629. [Google Scholar] [CrossRef]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Brett, M.T.; Kainz, M.J.; Taipale, S.J.; Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 2009, 106, 21197–21201. [Google Scholar] [CrossRef] [Green Version]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Volkovs, V. Fish intake reflects on DHA level in breast milk among lactating women in Latvia. Int. Breastfeed. J. 2018, 13, 33–41. [Google Scholar] [CrossRef] [Green Version]
- López-López, A.; Castellote-Bargalló, A.I.; López-Sabater, M.C. Comparison of two direct methods for the determination of fatty acids in human milk. Chromatographia 2001, 54, 743–747. [Google Scholar] [CrossRef]
- Kus-Yamashita, M.M.M.; Aued-Pimentel, S.; Mancini-Filho, J. Lipídios e ácidos graxos em fórmula infantil: Comparação de metodologias de extração convencional x direta. Rev. Inst. Adolfo Lutz 2022, 81, 1-e37903. [Google Scholar]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 1, 114–120. [Google Scholar] [CrossRef]
- Cruz-Hernandez, C.; Goeuriot, S.; Giuffrida, F.; Thakkar, S.K.; Destaillats, F. Direct quantification of fatty acids in human milk by gas chromatography. J. Chromatogr. A 2013, 1284, 174–179. [Google Scholar] [CrossRef]
- Abdulkadir, S.; Tsuchiya, M. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. J. Exp. Mar. Biol. Ecol 2008, 354, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Sunwoo, H.; Cherian, G.; Sim, J.S. Fatty acid determination in chicken egg yolk: A comparison of different methods. Poult. Sci 2000, 79, 1168–1171. [Google Scholar] [CrossRef]
- Golay, P.A.; Dionisi, F.; Hug, B.; Giuffrida, F.; Destaillats, F. Direct quantification of fatty acids in dairy powders with special emphasis on trans fatty acids content. Food Chem. 2006, 101, 1115–1120. [Google Scholar] [CrossRef]
- Castro-Gómez, P.; Fontecha, J.; Rodríguez-Alcalá, L.M. A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 2014, 128, 518–523. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Methods and Recommended Practices of the AOCS; American Oil Chemists’ Society: Urbana, IL, USA, 2009. [Google Scholar]
- Ribeiro, F.A.L.; Ferreira, M.M.C.F.; Morano, S.C.; Silva, L.R.S.; Schneider, R.P. Planilha de validação: Uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Química Nova 2008, 31, 164–171. [Google Scholar] [CrossRef]
- Brasil, Ministério da Saúde, Agência Nacional de Vigilância Sanitária (ANVISA). Rede Brasileira de Leite Humano. 2015. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/saude_crianca_aleitamento_materno_cab23.pdf (accessed on 8 July 2022).
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipid. Lab. Pract. 1973, 22, 475–494. [Google Scholar]
- Maia, E.; Rodrigues-Amaya, D. Avaliaçäo de um método simples e econômico para a metilaçäo de ácidos graxos com lipídios de diversas espécies de peixes. Rev. Inst. Adolfo Lutz 1993, 53, 27–35. [Google Scholar]
- Neto, B.B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria, 4th ed.; Bookman: Porto Alegre, Brasil, 2010. [Google Scholar]
- Kus, M.M.M.; Aued-Pimentel, S.; Mancini-Filho, J. Comparação de métodos analíticos para determinação de lipídios e ácidos graxos polinsaturados por cromatografia gasosa em fórmula infantil. Rev. Inst. Adolfo Lutz 2009, 68, 12–20. [Google Scholar]
- Inmetro—Instituto Nacional de.e Metrologia, Normalização e Qualidade Industrial. Orientação Sobre Validação de Métodos de Ensaios Químicos, DOQ-CGRE-008, Rev 9. 2020. Available online: http://www.inmetro.gov.br/credenciamento/organismos/doc_organismos.asp?tOrganismo=CalibEnsaios (accessed on 8 February 2022).
- Fournier, V.; Destaillats, F.; Hug, B.; Golay, P.A.; Joffre, F.; Juanéda, P.; Sémon, E.; Dionisi, F.; Lambelet, P.; Sébédio, J.; et al. Quantification of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization by gas–liquid chromatography. J. Chromatogr. A 2007, 1154, 353–359. [Google Scholar] [CrossRef] [PubMed]
- AOAC—Association of Official Analytical Chemistry. AOAC International. Appendix K: Guidelines for Dietary Supplements and Botanicals—Part I AOAC Guidelines for Single-Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. J AOAC Int 1–15. 2013. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600167/pdf/nihms443717.pdf (accessed on 3 March 2022).
- Council of Europe. 2.4.29. Composition of fatty acids in oils rich in omega-3 acids. In European Pharmacopeia; Council of Europe: Strasbourg, France, 2008; p. 130. [Google Scholar]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P.; Kitrys, S. Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel. Eur. J. Lipid Sci. Technol. 2004, 106, 831–836. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Farag, H.A.; El-Maghraby, H.A.; Taha, N.A. Optimization of factors affecting esterification of mixed oil with high percentage of free fatty acid. Fuel Process. Technol. 2011, 92, 507–510. [Google Scholar] [CrossRef]
- Li, Z.; Kotoski, S.P.; Srigley, C.T. Matrix Extension Validation of AOCS Ce 2c-11 for Omega-3 Polyunsaturated Fatty Acids in Conventional Foods and Dietary Supplements Containing Added Marine Oil. Am. Oil Chem. Soc. 2019, 96, 509–522. [Google Scholar] [CrossRef]
- Golay, P.A.; Moulin, J. Determination of labeled fatty acids content in milk products, infant formula, and adult/pediatric nutritional formula by capillary gas chromatography: Collaborative study, final action 2012.13. J. AOAC Int. 2016, 99, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Jasińska-Melon, E.; Mojska, H.; Olêdzka, G.; Węgierek, A.; Szostak-Wêgierek, D. The Concentration of Omega-3 Fatty Acids in Human Milk Is Related to Their Habitual but Not Current Intake. Nutrients 2019, 11, 1585–1601. [Google Scholar] [CrossRef] [Green Version]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur. J. Nutr. 2022, 61, 2167–2182. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.M.; Higurashi, S.; Shimomura, Y.; Wakui, R.; Matsuura, H.; Shiota, M.; Kubouchi, H.; Yamamura, J.; Toba, Y.; Kobayashi, T. Association of DHA Concentration in Human Breast Milk with Maternal Diet and Use of Supplements: A Cross-Sectional Analysis of Data from the Japanese Human Milk Study Cohort. Curr. Dev. Nutr. 2020, 4, nzaa105. [Google Scholar] [CrossRef]
- Goor, S.A.; Dijck-Brouwer, D.J.; Hadders-Algra, M.; Doornbos, B.; Erwich, J.J.H.; Schaafsma, A.; Muskiet, F.A. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Naranjo, A.; Manjarres-Correa, L.M.; Bermúdez-Cardona, J. Pilot study of the effect of EPA+ DHA supplementation on the fatty acid profile of erythrocytes and breast milk of lactating women from Sonsón, Colombia. Curr. Res. Nutr. Food Sci. 2022, 5, 789–797. [Google Scholar] [CrossRef]
- Jensen, C.L.; Maude, M.; Anderson, R.E.; Heird, W.C. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am. J. Clin. Nutr. 2000, 71, 292s–299s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial. Pediatr. Res. 2007, 62, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, Y.N.D.V.; Marano, D.; Silva, L.M.L.; Guimarães, A.C.L.D.; Moreira, M.E.L. Are there changes in the fatty acid profile of breast milk with supplementation of omega-3 sources? A systematic review. Rev. Bras. Ginecol. Obs. 2017, 39, 128–141. [Google Scholar] [CrossRef] [Green Version]
R-Sqrt = 0.99686; Adj: 0.99769 2 ** (3-1) Design; MS Residual = 0 | |||||
---|---|---|---|---|---|
ANOVA | |||||
Factor | SS | df | MS | F | P |
(1) sample mass | 0.00015 | 1 | 0.000015 | 2157.745 | 0.000001 |
(2) volume of solutions | 0.000006 | 1 | 0.000006 | 818.748 | 0.000009 |
(3) time | 0.000000 | 1 | 0.000000 | 56.039 | 0.001703 |
Error | 0.000000 | 4 | |||
Total SS | 0.000022 | 7 |
Parameters | Values | |
---|---|---|
Regression Equation (Linear model) | 1.06 × 107x + 4.05 × 106 | |
r2 | 0.9999 | |
LD (95%) | 0.015 mg mL−1 | |
LQ (95%) | 0.020 mg mL−1 | |
Recovery (%) | L1 = 0.022 mg mL−1 | 99.10% |
L2 = 0.065 mg mL−1 | 101.33% | |
L3 = 0.109 mg mL−1 | 101.15% |
Sample (ID) | DHA (g 100 g−1) |
---|---|
1 | 0.0435 |
2 | 0.0824 |
3 | 0.0783 |
4 | 0.0721 |
5 | 0.0356 |
6 | 0.1018 |
7 | 0.0986 |
8 | 0.0900 |
9 | 0.2717 |
10 | 0.0415 |
11 | 0.0260 |
12 | 0.1145 |
13 | 0.0327 |
14 | 0.0582 |
15 | 0.0576 |
16 | 0.0455 |
17 | 0.0597 |
18 | 0.1393 |
19 | 0.0787 |
20 | 0.0630 |
Average | 0.0795 |
Standard deviation | 0.0539 |
Minimum | 0.0260 |
Maximum | 0.2717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kus-Yamashita, M.M.M.; Cano, C.B.; Monteiro, V.C.B.; Catarino, R.M. Human Milk: Fast Determination of Docosahexaenoic Acid (DHA). Analytica 2023, 4, 54-65. https://doi.org/10.3390/analytica4010006
Kus-Yamashita MMM, Cano CB, Monteiro VCB, Catarino RM. Human Milk: Fast Determination of Docosahexaenoic Acid (DHA). Analytica. 2023; 4(1):54-65. https://doi.org/10.3390/analytica4010006
Chicago/Turabian StyleKus-Yamashita, Mahyara Markievicz Mancio, Cristiane Bonaldi Cano, Vânia Claudia Barros Monteiro, and Regina Maria Catarino. 2023. "Human Milk: Fast Determination of Docosahexaenoic Acid (DHA)" Analytica 4, no. 1: 54-65. https://doi.org/10.3390/analytica4010006