Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Binary Mixtures
2.3. Thermal Analyses—DSC and TGA/DTG
2.4. X-ray Diffraction Spectroscopy
2.5. Fourier Transform Infrared Spectroscopy
2.6. High-Performance Liquid Chromatography
3. Results
3.1. Thermal Characterisation of Fenbendazole
3.2. Thermal Analysis of the Physical Mixtures by DSC and TGA/DTG
3.3. Physical and Chemical Analysis of the Mixtures by XRD, FTIR, and HPLC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3334, Fenbendazole. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fenbendazole (accessed on 1 August 2022).
- Goossens, E.; Dorny, P.; Vercammen, F.; Vercruysse, J. Field evaluation of the efficacy of fenbendazole in captive wild ruminants. Vet. Record 2005, 157, 582–586. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.C.; Joffe, L.S.; Simon, K.S.; Castelli, R.F.; Reis, F.C.G.; Bryan, A.M.; Borges, B.S.; Medeiros, L.C.S.; Bocca, A.L.; Del Poeta, M.; et al. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model. Antimicrob. Agents Chemother. 2020, 64, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhu, L. Dewormer drug fenbendazole has antiviral effects on BoHV-1 productive infection in cell cultures. J. Vet. Sci. 2020, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Liu, Y.; Rockwell, S. Fenbendazole as a potential anticancer drug. Anticancer Res. 2013, 33, 355–362. [Google Scholar]
- Movahedi, F.; Gu, W.; Soares, C.P.; Xu, Z.P. Encapsulating Anti-Parasite Benzimidazole Drugs into Lipid-Coated Calcium Phosphate Nanoparticles to Efficiently Induce Skin Cancer Cell Apoptosis. Front. Nanotechnol. 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Aycock-Williams, A.; Pham, L.; Liang, M.; Adisetiyo, H.A.; Geary, L.A.; Cohen, M.B.; Casebolt, D.B.; Roy-Burman, P. Effects of fenbendazole and vitamin E succinate on the growth and survival of prostate cancer cells. J. Cancer Res. Exp. Oncol. 2011, 3, 115–121. [Google Scholar]
- Chiang, R.S.; Syed, A.B.; Wright, J.L. Fenbendazole Enhancing Anti-Tumor Effect: A Case Series. Clin. Oncol. Case Rep. 2021, 4, 2–5. [Google Scholar]
- Shaikh, R.; O’Brien, D.P.; Croker, D.M.; Walker, G.M. The development of a pharmaceutical oral solid dosage forms. Comput. Aided Chem. Eng. 2018, 41, 27–65. [Google Scholar]
- Bezerra, G.S.N.; Pereira, M.A.V.; Ostrosky, E.A.; Barbosa, E.G.; de Moura, F.V.; Ferrari, M.; Aragão, C.F.S.; Gomes, A.P.B. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J. Therm. Anal. Calorim. 2017, 127, 1683–1691. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration. ICH Q8(R2) Pharmaceutical Development. Workshop Qual. By Des. Pharm. 2009, 8, 28. [Google Scholar]
- Thakkar, R.; Thakkar, R.; Pillai, A.; Ashour, E.A.; Repka, M.A. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: A comprehensive review. Int. J. Pharm. 2020, 576, 118989. [Google Scholar] [CrossRef] [PubMed]
- Tiţa, B.; Fuliaş, A.; Bandur, G.; Marian, E.; Tiţa, D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J. Pharm. Biomed. Anal. 2011, 56, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.V.; Fonseca, G.D.; Silva-Júnior, A.A.; Fernandes-Pedrosa, M.F.; De, M.; Barbosa, E.G.; Gomes, A.P.B.; dos Santos, K.S.C.R. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J. Therm. Anal. Calorim. 2014, 116, 1091–1100. [Google Scholar] [CrossRef]
- De Barros Lima, Í.P.; Lima, N.G.P.B.; Barros, D.M.C.; Oliveira, T.S.; Mendonҫa, C.M.S.; Barbosa, E.G.; Raffin, F.N.; de Lima e Moura, T.F.A.; Gomes, A.P.B.; Ferrari, M.; et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J. Therm. Anal. Calorim. 2015, 120, 719–732. [Google Scholar] [CrossRef]
- Matos, A.P.S.; Costa, J.S.; Boniatti, J.; Seiceira, R.C.; Pitaluga, A.; Oliveira, D.L.; Viçosa, A.L.; Holandino, C. Compatibility study between diazepam and tablet excipients: Infrared spectroscopy and thermal analysis in accelerated stability conditions. J. Therm. Anal. Calorim. 2017, 127, 1675–1682. [Google Scholar] [CrossRef]
- Bezerra, G.S.N.; Colbert, D.M.; O’Donnell, C.; Cao, Z.; Geever, J.; Geever, L. Compatibility Study Between Fenbendazole and Poly(Ethylene Oxide) with Application in Solid Dispersion Formulations Using Hot-Melt Extrusion. J. Pharm. Innov. 2022, 1–13. [Google Scholar] [CrossRef]
- Tita, I.C.; Lupa, L.; Tita, B.; Stan, R.L.; Vicas, L. Compatibility Studies of Valsartan with Different Pharmaceutical Excipients. Rev. Chim 2019, 70, 2590–2600. Available online: https://revistadechimie.ro/Articles.asp?ID=7386 (accessed on 1 September 2022).
- Shakar AA, M.; Hossain, M.J.; Kayesh, R.; Rahman, A.; Sultan, M.Z. Incompatibility of Bisoprolol Fumarate with Some Super-disintegrating Agents. Br. J. Pharm. Res. 2015, 5, 137–145. [Google Scholar] [CrossRef]
- Patel, P. Preformulation Studies: An Integral Part of Formulation Design. In Pharmaceutical Formulation Design—Recent Practices; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Melian, M.E.; Munguía, A.B.; Faccio, R.; Palma, S.; Domínguez, L. The Impact of Solid Dispersion on Formulation, Using Confocal Micro Raman Spectroscopy as Tool to Probe Distribution of Components. J. Pharm. Innov. 2018, 13, 58–68. [Google Scholar] [CrossRef]
- Chadha, R.; Bhandari, S. Drug-excipient compatibility screening-Role of thermoanalytical and spectroscopic techniques. J. Pharm. Biomed. Anal. 2014, 87, 82–97. [Google Scholar] [CrossRef]
- Ali, O.T.; Hassan, W.S.; Khayyat, A.N.; Almalki, A.J.; Sebaiy, M.M. HPLC Determination of Imidazoles with Variant Anti-Infective Activity in Their Dosage Forms and Human Plasma. Molecules 2020, 26, 129. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Residues of Some Veterinary Drugs in Foods and Animals 1998. Available online: http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-vetdrugs/details/en/c/26/ (accessed on 1 August 2022).
- Attia, A.K.; Saad, A.S.; Alaraki, M.S.; Elzanfaly, E.S. Study of thermal analysis behavior of fenbendazole and rafoxanide. Adv. Pharm. Bull. 2017, 7, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, L.N.C.; Tavares, A.C.M.; Ferreira, B.T.; Reis, A.K.C.A.; Katiki, L.M. Inclusion complexes and self-assembled cyclodextrin aggregates for increasing the solubility of benzimidazoles. Braz. J. Pharm. Sci. 2019, 55. [Google Scholar] [CrossRef] [Green Version]
- Kolašinac, N.; Kachrimanis, K.; Homšek, I.; Grujić, B.; Urić, Z.; Ibrić, S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int. J. Pharm. 2012, 436, 161–170. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Yoganathan, R.; Mammucari, R.; Foster, N.R. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide. J. Phys. Conf. Ser. 2010, 2015, 1–5. [Google Scholar] [CrossRef]
- Cipriano, T.F.; Da Silva, A.L.N.; Da Fonseca Thomé Da Silva, A.H.M.; De Sousa, A.M.F.; Da Silva, G.M.; Rocha, M.G. Thermal, rheological and morphological properties of poly(Lactic Acid) (PLA) and talc composites. Polimeros 2014, 24, 276–282. [Google Scholar]
- Li, D.; Guo, G.; Fan, R.; Liang, J.; Deng, X.; Luo, F.; Qian, Z. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int. J. Pharm. 2013, 441, 365–372. [Google Scholar] [CrossRef]
- Backes, E.H.; de Pires, L.N.; Costa, L.C.; Passador, F.R.; Pessan, L.A. Analysis of the degradation during melt processing of pla/biosilicate® composites. J. Compos. Sci. 2019, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, G.S.N.; de Lima, T.A.M.; Colbert, D.M.; Geever, J.; Geever, L. Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion. Polymers 2022, 14, 4188. [Google Scholar] [CrossRef]
- Balu, R.; Sampath Kumar, T.S.; Ramalingam, M.; Ramakrishna, S. Electrospun polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) blends: Potential biodegradable scaffold for bone tissue regeneration. J. Biomater. Tissue Eng. 2011, 1, 30–39. [Google Scholar] [CrossRef]
- Tanase-Opedal, M.; Espinosa, E.; Rodríguez, A.; Chinga-Carrasco, G. Lignin: A biopolymer from forestry biomass for biocomposites and 3D printing. Materials 2019, 12, 3006. [Google Scholar] [CrossRef] [Green Version]
- Soto, C.; Otipka, R.; Contreras, D.; Yáñez, J.; Toral, M.I. Co-determination of two antiparasitics drugs by derivative spectrophotometry and its photodegradation studies. J. Chil. Chem. Soc. 2013, 58, 1824–1829. [Google Scholar] [CrossRef] [Green Version]
- Surov, A.O.; Vasilev, N.A.; Vener, M.V.; Parashchuk, O.D.; Churakov, A.V.; Magdysyuk, O.V.; Perlovich, G.L. Pharmaceutical Salts of Fenbendazole with Organic Counterions: Structural Analysis and Solubility Performance. Cryst. Growth Des. 2021, 21, 4516–4530. [Google Scholar] [CrossRef]
- Esfahani, M.K.M.; Alavi, S.E.; Cabot, P.J.; Islam, N.; Izake, E.L. Pegylated mesoporous silica nanoparticles (Mcm-41): A promising carrier for the targeted delivery of fenbendazole into prostrate cancer cells. Pharmaceutics 2021, 13, 1605. [Google Scholar] [CrossRef] [PubMed]
- Garala, K.; Joshi, P.; Patel, J.; Ramkishan, A.; Shah, M. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrapani, V.Y.; Gnanamani, A.; Giridev, V.R.; Madhusoothanan, M.; Sekaran, G. Electrospinning of Type I Collagen and PCL Nanofibers Using Acetic Acid. J. Appl. Polym. Sci. 2012, 125, 3221–3227. [Google Scholar] [CrossRef]
- Chieng, B.W.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Hussein, M.Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2014, 6, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Panicker, C.Y.; Varghese, H.T.; Narayana, B.; Divya, K.; Sarojini, B.K.; War, J.A.; Alsenoy, C.V.; Fun, H.K. FT-IR, NBO, HOMO-LUMO, MEP analysis and molecular docking study of Methyl N-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl)phenyl]amino}[(methoxycarbonyl) imino]methyl)carbamate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 29–42. [Google Scholar] [CrossRef]
- Mohan, S.; Sundaraganesan, N.; Mink, J. FTIR and Raman studies on benzimidazole. Spectrochim. Acta Part A Mol. Spectrosc. 1991, 47, 1111–1115. [Google Scholar] [CrossRef]
- Pezzoli, R.; Hopkins, M.; Direur, G.; Gately, N.; Lyons, J.G.; Higginbotham, C.L. Micro-injection moulding of poly(Vinylpyrrolidone-vinyl acetate) binary and ternary amorphous solid dispersions. Pharmaceutics 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Siahi, M.R.; Rahimi, S.; Monajjemzadeh, F. Analytical investigation of the possible chemical interaction of methyldopa with some reducing carbohydrates used as pharmaceutical excipients. Adv. Pharm. Bull. 2018, 8, 657–666. [Google Scholar] [CrossRef]
DSC | TGA | DTG | |||||
---|---|---|---|---|---|---|---|
Excipients | Transition | Tonset [°C] | Tm [°C] | ΔH [J g−1] | ∆T [°C] a | ∆m [%] | Tpeak [°C] |
P 407 | 1st Endo | 51 | 57 | 185 | |||
146–398 | 96 | 288 | |||||
PCL | 1st Endo | 55 | 63 | 112 | |||
233–470 | 92 | 409 | |||||
471–547 | 6 | 514 | |||||
PLA | 1st Endo | 145 | 152 | 48 | |||
286–411 | 98 | 378 | |||||
Physical mixtures | Transition | Tonset [°C] | Tm [°C] | ΔH [J g−1] | ∆T [°C] a | ∆m [%] | Tpeak [°C] |
Fen + P 407 | 1st Endo | 52 | 58 | 88 | |||
2nd Endo | 219 | 236 | 46 | 142–301 | 11 | 233 | |
3rd Endo | 268 | 283 | 17 | 302–339 | 5 | 319 | |
340–480 | 52 | 378 | |||||
481–700 | 28 | 615 | |||||
Fen + PCL | 1st Endo | 56 | 62 | 54 | |||
2nd Endo | 217 | 235 | 71 | 140–274 | 6 | 230 | |
3rd Endo | 268 | 283 | 12 | 275–433 | 63 | 398 | |
434–497 | 6 | 462 | |||||
498–700 | 22 | 591 | |||||
Fen + PLA | 1st Endo | 143 | 148 | 3 | |||
2nd Endo | 225 | 232 | 100 | 173–234 | 2 | 216 | |
3rd Endo | 246 | 250 | 2 | 235–259 | 2 | 239 | |
260–449 | 78 | 320 | |||||
450–700 | 15 | 604 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, G.S.N.; Moritz, V.F.; de Lima, T.A.d.M.; Colbert, D.M.; Geever, J.; Geever, L. Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniques. Analytica 2022, 3, 448-461. https://doi.org/10.3390/analytica3040031
Bezerra GSN, Moritz VF, de Lima TAdM, Colbert DM, Geever J, Geever L. Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniques. Analytica. 2022; 3(4):448-461. https://doi.org/10.3390/analytica3040031
Chicago/Turabian StyleBezerra, Gilberto S. N., Vicente F. Moritz, Tielidy A. de M. de Lima, Declan M. Colbert, Joseph Geever, and Luke Geever. 2022. "Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniques" Analytica 3, no. 4: 448-461. https://doi.org/10.3390/analytica3040031