All-Step-in-One Test Kit for Paraquat Detection in Water and Vegetable Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample
2.2.1. Commercial Product of Paraquat Pesticide
2.2.2. Water Sample
2.2.3. Vegetable Samples
2.3. Paraquat Test Kit
2.4. Validation
3. Results and Discussion
3.1. Spectra of Blue Product of Paraquat Radical Ion
3.2. Optimization
3.2.1. Type of Reducing Agent
3.2.2. Reagent Concentration in Reducing Agent
3.2.3. Sample and Reagent Volume
3.2.4. Stirring Speed of Magnetic Stirrer
3.3. Stability of Standard Solution and Color-Forming Reagent
3.4. Transferring Device of Liquid Sample and Reagent
3.5. Format Use of Reducing Agent
3.6. Analytical Feature
3.7. Tolerance Limit for Possible Interfering Species
3.8. Analysis of Paraquat in Samples
3.8.1. Analysis of Paraquat in Commercial Herbicide, Water, and Vegetable Samples Using Paraquat Test Kit
3.8.2. Possibility of Paraquat Test Kit with Online Extraction for Analysis of Paraquat in Vegetable Samples
3.9. Single-Point Calibration for Paraquat Test Kit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.R.; Reigart, J.R. Paraquat and Diquat. In Recognition and Management of Pesticide Poisonings, 6th ed.; Office of Pesticide Programs U.S. Environmental Protection Agency: Washington, DC, USA, 2013; pp. 110–116. [Google Scholar]
- Nasir, T.; Herzog, G.; Hebrant, M.; Despas, C.; Liu, L.; Walcarius, A. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sens. 2018, 3, 484–493. [Google Scholar] [CrossRef]
- Rashidipour, M.; Maleki, A.; Kordi, S.; Birjandi, M.; Pajouhi, N.; Mohammadi, E.; Heydari, R.; Rezaee, R.; Rasoulian, B.; Davari, B. Pectin/Chitosan/Tripolyphosphate Nanoparticles: Efficient Carriers for Reducing Soil Sorption, Cytotoxicity, and Mutagenicity of Paraquat and Enhancing Its Herbicide Activity. J. Agric. Food Chem. 2019, 67, 5736–5745. [Google Scholar] [CrossRef]
- Zou, T.; He, P.; Cao, J.; Li, Z. Determination of paraquat in vegetables using HPLC-MS-MS. J. Chromatogr. Sci. 2015, 53, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Pollution Control Department, Ministry of Natural Resources and Environment (PCD) of Thailand. Water Quality for Freshwater Animal. Available online: https://www.pcd.go.th/wp-content/uploads/2020/05/pcdnew-2020-05-19_06-52-11_300668.pdf (accessed on 22 February 2022).
- Government Gazette. In 387, Thailand Food and Drug Administration; Ministry of Public Health of Thailand, Cabinet Publishing and the Government Gazette, Cabinet Secretariat of Thai Government: Bangkok, Thailand, 2017; Volume 134, pp. 8–33.
- Pathan, A.M.; Baseer, M.A.; Kadam, A.B.; Junne, S.B. A Novel Chromogenic Spray Reagent for Thin-Layer Chromatographic Analysis of Paraquat and Design of an Ultra-Low-Cost Sensor for On-The-Field Detection of Viologens. J. Planar Chromatogr. Mod. TLC 2019, 32, 335–338. [Google Scholar] [CrossRef]
- Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 2017, 174, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.K.; Das, J.V.; Gupta, V.K. A sensitive determination of paraquat by spectrophotometry. Talanta 1997, 45, 343–348. [Google Scholar] [CrossRef]
- Maya, F.; Estela, J.M.; Cerda, V. Improved spectrophotometric determination of paraquat in drinking waters exploiting a Multisyringe liquid core waveguide system. Talanta 2011, 85, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Infante, C.M.; Morales-Rubio, A.; de la Guardia, M.; Rocha, F.R. A multicommuted flow system with solenoid micro-pumps for paraquat determination in natural waters. Talanta 2008, 75, 1376–1381. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Tung, K.H.; Gu, P.W.; Yen, T.H.; Cheng, C.M. Rapid Simultaneous Determination of Paraquat and Creatinine in Human Serum Using a Piece of Paper. Micromachines 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuntib, P.; Jakmunee, J. Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta 2015, 144, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Kuan, C.M.; Lin, S.T.; Yen, T.H.; Wang, Y.L.; Cheng, C.M. Paper-based diagnostic devices for clinical paraquat poisoning diagnosis. Biomicrofluidics 2016, 10, 034118. [Google Scholar] [CrossRef] [PubMed]
- Seetasang, S.; Kaneta, T. On-site analysis of paraquat using a completely portable photometric detector operated with small, rechargeable batteries. Anal. Chim. Acta 2020, 1135, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Chaikhan, P.; Udnan, Y.; Sananmuang, R.; Ampiah-Bonney, R.J.; Chuachuad Chaiyasith, W. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem. J. 2020, 159, 105355. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Fu, L.; Qiu, J.; Wang, Z.; Wu, A. Colorimetric detection of paraquat in aqueous and fruit juice samples based on functionalized gold nanoparticles. J. Food Compos. Anal. 2020, 92, 103574. [Google Scholar] [CrossRef]
- Hara, S.; Sasaki, N.; Takase, D.; Shiotsuka, S.; Ogata, K.; Futagami, K.; Tamura, K. Rapid and Sensitive HPLC Method for the Simultaneous Determination of Paraquat and Diquat in Human Serum. Anal. Sci. 2007, 23, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivhare, P.; Gupta, V.K. Spectrophotometric Method for the Determination of Paraquat in Water, Grain and Plant Materials. Analyst 1991, 116, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, R.G. 10—Salinity of Inland Waters. In Limnology, 3rd ed.; Wetzel, R.G., Ed.; Academic Press: San Diego, CA, USA, 2001; p. 170. [Google Scholar]
- Fadiran, A.O.; Dlamini, S.C.; Mavuso, A. A comparative study of the phosphate levels in some surface and ground water bodiesof Swaziland. Bull. Chem. Soc. Ethiop. 2008, 22, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchen, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.J.; Ambrus, Á.; Dieterle, R.M.; Felsot, A.S.; Harris, C.A.; Holland, P.T.; Katayama, A.; Kurihara, N.; Linders, J.; Unsworth, J.; et al. Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure Appl. Chem. 2003, 75, 1123–1155. [Google Scholar] [CrossRef]
- Panuwet, P.; Siriwong, W.; Prapamontol, T.; Ryan, P.B.; Fiedler, N.; Robson, M.G.; Barr, D.B. Agricultural Pesticide Management in Thailand: Situation and Population Health Risk. Environ. Sci. Policy 2012, 17, 72–81. [Google Scholar] [CrossRef] [Green Version]
Analytical Parameter | Value | |
---|---|---|
Sodium Dithionite Solution | Sodium Dithionite Powder | |
Linear range | 0.5–10 and 10–30 mg L−1 | 0.5–10 and 10–30 mg L−1 |
Working range | 0.5–10 mg L−1 | 0.5–10 mg L−1 |
Working linear equation | Abs. = (0.0992 ± 0.0028) [PQ2+]–(0.0032 ± 0.0143) | Abs. = (0.0990 ± 0.0032) [PQ2+]–(0.0117 ± 0.0166) |
Coefficient of determination (r2) | 0.996 | 0.995 |
LOD a | 0.30 mg L−1 | 0.30 mg L−1 |
LLOQ b | 0.43 mg L−1 | 0.50 mg L−1 |
Foreign Species | Tolerance Limit (mg L−1) | Normally Found in Natural Water (mg L−1) |
---|---|---|
Cl− | 200 | 220 a |
NO3− | 2000 | 17 a |
CO32− | 1500 | 958 a |
SO42− | 2500 | 233 a |
PO43− | 800 | 0.11–0.37 b |
Na+ | 700 | 274 a |
K+ | 700 | 59 a |
Ca2+ | 1500 | 750 a |
Mg2+ | 2000 | 342 a |
Glyphosate | 150 | <1.3 × 10−4–0.037 c |
Diquat | 0.20 | 0.02 d |
Atrazine | 200 | 5.8 × 10−5–8.6 × 10−5 e |
Propanil | 300 | 0.5 f |
Sample | Paraquat Concentration (mg L−1) | Recovery (%) | ||
---|---|---|---|---|
Added | Found (n = 3) | %RSD (n = 3) | ||
Gramoxone® | - | 0.58 ± 0.01 | 2.41 | - |
0.50 | 1.09 ± 0.01 | 1.20 | 105 | |
5.00 | 5.60 ± 0.02 | 0.39 | 102 | |
Noxone® | - | 0.57 ± 0.03 | 4.61 | - |
0.50 | 1.08 ± 0.07 | 6.51 | 104 | |
5.00 | 5.79 ± 0.09 | 1.52 | 102 | |
W1 | - | <LOD | - | - |
0.50 | 0.61 ± 0.04 | 7.00 | 106 | |
5.00 | 5.17 ± 0.06 | 1.22 | 101 | |
W2 | - | <LOD | - | - |
0.50 | 0.61 ± 0.03 | 5.30 | 109 | |
5.00 | 5.20 ± 0.04 | 0.67 | 101 | |
W3 | - | <LOD | - | - |
0.50 | 0.55 ± 0.02 | 3.54 | 106 | |
5.00 | 5.14 ± 0.03 | 0.53 | 101 | |
W4 | - | <LOD | - | - |
0.5 | 0.64 ± 0.02 | 3.03 | 106 | |
5.00 | 5.20 ± 0.02 | 0.48 | 101 | |
DR | - | <LOD | - | - |
0.50 | 0.59 ± 0.02 | 2.62 | 115 | |
5.00 | 5.22 ± 0.03 | 0.60 | 103 | |
CB | - | <LOD | - | - |
0.50 | 0.59 ± 0.02 | 3.84 | 111 | |
5.00 | 5.24 ± 0.04 | 0.76 | 103 | |
CCB | - | <LOD | - | - |
0.50 | 0.61 ± 0.03 | 4.78 | 114 | |
5.00 | 5.29 ± 0.07 | 1.41 | 104 |
Samples | Paraquat Concentration (mg L−1) | %Recovery | ||
---|---|---|---|---|
Added | Found | %RSD (n = 3) | ||
DR1 | - | <LOD | - | - |
5.00 | 5.03 | - | 98 | |
DR2 | - | 0.93 ± 0.06 | 4.1 | - |
5.00 | 5.84 | 1.2 | 101 | |
DR3 | - | 3.06 ± 0.12 | 4.0 | - |
5.00 | 7.69 | 1.4 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangsum, C.; Saetear, P. All-Step-in-One Test Kit for Paraquat Detection in Water and Vegetable Samples. Analytica 2022, 3, 92-105. https://doi.org/10.3390/analytica3010007
Sangsum C, Saetear P. All-Step-in-One Test Kit for Paraquat Detection in Water and Vegetable Samples. Analytica. 2022; 3(1):92-105. https://doi.org/10.3390/analytica3010007
Chicago/Turabian StyleSangsum, Chanakarn, and Phoonthawee Saetear. 2022. "All-Step-in-One Test Kit for Paraquat Detection in Water and Vegetable Samples" Analytica 3, no. 1: 92-105. https://doi.org/10.3390/analytica3010007