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Abstract: Paraquat intoxication is characterized by acute kidney injury and multi-organ failure,
causing substantial mortality and morbidity. This study aims to develop a 2-in-1 paper-based
analytical device to detect the concentrations of paraquat and creatinine in human serum, which
can help clinicians diagnose patients with paraquat poisoning in a more rapid and geographically
unrestricted manner. The procedure involves fabrication of a paper-based analytical device, i.e.,
printing of design on a filter paper, heating of wax-printed micro zone plates so as molten wax
diffusing into and completely through the paper to the other side, forming hydrophobic boundaries
that could act as detection zones for the paraquat colorimetric assay, and finally analysis using
ImageJ software. The paper employed a colorimetric sodium dithionite assay to indicate the paraquat
level in a buffer or human serum system in less than 10 min. In this study, colorimetric changes
into blue color could be observed by the naked eye. By curve fitting models of sodium dithionite
in normal human serum, we evaluated the serum paraquat levels for five paraquat patients. In the
sodium dithionate assay, the measured serum paraquat concentrations in patients 1–5 were 22.59,
5.99, 26.52, 35.19 and 25.00 ppm, respectively. On the other hand, by curve fitting models of the
creatinine assay in normal human serum, the measured serum creatinine concentrations were 16.10,
12.92, 13.82, 13.58 and 12.20 ppm, respectively. We found that the analytical performance of this
device can compete with the standard of Clinical Laboratory of Chang Gung Memorial Hospital,
with a less complicated sample preparation process and more rapid results. In conclusion, this 2-in-1
paper-based analytical device has the advantage of being simple and cheap, enabling rapid detection
of paraquat intoxication as well as assessment of renal prognosis.

Keywords: paraquat; creatinine; paper-based analytical device

1. Introduction

Paraquat (N, N′-dimethyl-4, 4′-bipyridinium dichloride; PQ) is a highly effective, low-cost,
and easily accessible herbicide [1]. It is used widely throughout the world and is especially prevalent
in developing countries. Its ubiquity and pervasiveness in developing countries is especially alarming,
with little to no regulations despite its lethality even in small doses [2,3]. The easy availability and
high toxicity of paraquat explain its common use to commit suicide. Reports by the World Health
Organization noting the global prevalence of acute pesticide poisoning as a means of suicide have
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resulted in significantly greater attention and efforts to remedy this situation [4,5]. Among pesticides,
paraquat is a highly toxic agent, which has a mortality rate of 60%–80% [6–8]. The mechanisms of
PQ intoxication begin with the generation of superoxide anions. Subsequent reactive steps lead to
the formation of toxic reactive oxygen species, and the oxidation of cellular NADPH (nicotinamide
adenine dinucleotide phosphate). This is the main source of reducing equivalents for intracellular
reduction in PQ poisoning, which then results in the disruption of important NADPH-dependent
biochemical reactions [9]. PQ intoxication mortality is attributed to respiratory failure resulting from
oxidative insult to the alveolar epithelium, and subsequent obliterating fibrosis or acute respiratory
distress syndrome [10].

Serum PQ concentrations have been used to diagnose the severity of poisoning [11,12]. Patients
may recover if their serum PQ concentrations remain under 0.3 ppm at 10 h after poisoning [13].
The severity index of paraquat poisoning (SIPP), an index for clinicians to determine the severity of PQ
intoxication, is determined by multiplying serum paraquat concentration on admission (ppm) by the
time to treatment (hour). SIPP values under 10 are an indication to clinicians that poisoned patients
have a higher probability of survival [14]. Different approaches to measuring PQ serum concentration
are available including high-performance liquid chromatography (HPLC)/mass spectrometry (MS),
gas chromatography, and photometry coupled with a sodium dithionite assay [11,15–19]. Another
option reported in the literature is the use of surface-enhanced Raman spectroscopy (SERS) [20–23].
The complexity, time consumption, and equipment demand of such approaches make them impractical,
especially in resource-poor environments.

Paraquat poisoning can result in multiple organ failure that primarily affect the lungs, kidneys,
heart, liver, and nervous system. As the main detoxification organ, the kidneys encounter very high
concentrations of paraquat during the body’s process of elimination. This leads to vacuolization of
the proximal tubular cells, resulting in acute small tube tubular necrosis, a common cause of acute
kidney injury and a disease/organ failure state clinically detected by measuring creatinine levels [7,8].
Normally, creatinine concentration in the human body ranges from 5.0–10.0 ppm for women and
7.0–12.0 ppm for men [24,25], with the difference being attributable to variations in muscle as a percent
of total body makeup. More muscle is correlated to higher creatinine levels. The level of onset for acute
kidney injury has been defined as a serum creatinine levels greater than 15 ppm [26]. The incidence
of acute kidney injury following paraquat exposure is approximately 50%. Average serum creatinine
levels reach a peak at approximately five days post-ingestion, and usually normalize within three
weeks [27]. Clinically, only patients who have developed kidney failure will receive ameliorative
hemodialysis [26]. Typically, the clinical sequence of treatment approaches aims to determine the
symptoms of severe organ failure at the time of diagnosis in order to deduce necessary treatment
methods. Symptomatically, kidney failure follows low urine output or no urine output, as the kidneys
fail or become compromised, and they lose their ability to regulate fluids and electrolytes and to
remove waste products from the body. Early detection of serum creatinine levels is a critical step
toward reducing organ failure numbers.

In recent years, paper-based analytical devices (PADs) have become increasingly well-developed,
potential translational medicine platforms for disease diagnostics [28–32]. Using various fabrication
methods such as wax patterning, inkjet printing, flexographic printing, photolithography, paper
cutting, and shaping [33], paper has been used as a viable substrate material with distinct advantages.
These include power-free fluid transport via capillary action, a high surface area-to-volume ratio that
improves detection limits for colorimetric methods, and the ability to store reagents in active form
within a natively fibrous network [33]. As with many disease and illness states, adequate treatment
requires timely diagnosis. The 2-in-1 PADs we have developed are notably timely diagnostic tools
capable of simultaneously determining serum PQ and creatinine levels. Detection time for our device
is between 10 and 20 min, at least half the time required by expensive clinical equipment. While
the diagnostic speed of our device is critically important to its usefulness, it is important to note
that our device is also inexpensive (approximately 50% less than clinical methods) and easy to use,
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with only small specimen samples required. Because early diagnosis equates to earlier treatment, and
increased patient survival rates, PADs such as ours represent a potentially life-saving alternative for
first responders.

Paraquat’s unfortunate ease of availability as a herbicide makes it a simple and straightforward
avenue for misuse, and farmers a primary victim of its deadly effects. If a patient must be sent
from a rural medical institution to a distant, better-equipped medical facility, precious diagnostic and
treatment time is consumed by transportation time. Our goal is the development of a 2-in-1 PAD that
can act as the first line of treatment in emergency situations, even before ambulance transportation.
Following adequate and rapid diagnosis “in the field”, transfer to a clinic equipped to provide necessary
therapy would ensue in a timely and effective manner.

2. Materials and Methods

2.1. Reagents

Paraquat dichloride hydrate (Sigma Aldrich, St. Louis, MO, USA); sodium hydroxide (Sigma
Aldrich); ascorbic acid (Sigma Aldrich); phosphate buffered saline (Sigma Aldrich); creatininase
(Sigma Aldrich); sarcosine oxidase (Sigma Aldrich); peroxidase (Sigma Aldrich); creatine kinase
(Sigma Aldrich); creatinine (Sigma Aldrich); ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)diammonium salt, Sigma Aldrich); Whatman qualitative filter paper No. 1 (GE Healthcare Life
Science; No. 1001-150, Budapest, Hungary).

2.2. Fabrication of 2-in-1 PADs

We used Microsoft PowerPoint as a pattern design tool. We developed a 2-in-1 pattern with three
circular sample areas, each with a diameter of 0.5 cm, and a rectangular flow channel that connected
each of the sample/test zones, 0.15 cm-wide and 1.5 cm-long. The left circle acted as the PQ detection
zone, the central circle as the specimen zone, and the right circle for creatinine detection. To fabricate
2-in-1 PADs, we used wax-based printing technology to print the design on Whatman qualitative
filter paper No. 1 using a wax printer (Xerox Phaser 8650N color printer, Xerox Corporation, Norwalk,
CT, USA). After printing, paper layers were heated to 105 ◦C for 5 min to melt the wax and allow
it to penetrate to the other side, thus creating hydrophilic detection zones with hydrophobic wax
boundaries, as shown in Figure 1a.
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Figure 1. Fabrication steps of 2-in-1 paper-based analytical devices (PADs): (a) wax fabrication of 2-in-1
PAD design; (b) procedures for spotting reagents onto 2-in-1 PADs; and (c) device display.

2.3. Colorimetric Assays

We prepared a mixture of 4 chemicals: Creatininase, sarcosine oxidase, peroxidase, and creatinine
kinase (suspended in phosphate buffered saline, PBS) at a ratio of 1:1:1:1 by volume. This mixture can
be preserved for over 2 weeks in a 4 ◦C refrigerator and still be effective. The colorimetric mechanism
we used leveraged the reaction of ABTS and H2O2 rather than the Jaffe reaction because of potential
creatinine component reaction interference [34]. The reagent application order is important when
creating our PAD due to the timing for each reaction and the order of subsequent color changes
detected by image analysis. First, we applied 4 µL of our mixture to the right circle, our creatinine
zone. Our second step was the application of 4 µL of 20 mM ABTS to our creatinine zone. Our third
step was the application of 8 µL of specimen to the central circle, allowing it to flow to both left
and right circular zones. Our fourth step was the application of 5 µL of 10% ascorbic acid to the left
circle, our PQ detection zone. The fifth and final step was the application of 5 µL of 5N NaOH to
our PQ detection zone. After maintaining our device in a humid state for 10 min, we observed the
PQ zone for any colorimetric change (blue) (Figure 2a). After maintaining our device in a humid
state for an additional 10 min, we observed the creatinine detection zone for any colorimetric change
(green) (Figure 2b). Images were preserved with a digital camera (EOS 5D Mark III, Canon, Tokyo,
Japan), and then analyzed using ImageJ software (Figure 1b). Based on our experimental results,
we determined that the detection zones of our device produced the best results when the device
was kept in a humid environment and was not allowed to dry out once reagents and test samples
were added. Furthermore, we found that keeping the device flat prevented unintended reagent and
enzyme mixing, and produced the most homogeneous and low-interference images. We also found
that colorimetric results were best and most uniform if the device was implemented using a white base
background as depicted below in Figure 1c.
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agent being added to our paper-based analytical device).

2.4. Image Analysis

Before image analysis with ImageJ, we performed a calibration using PhotoCap 6.0 software
by adjusting luminance in the white zone to a common standard (RGB average value equal to 230).
We used ImageJ to analyze the RGB color values of each zone before and after testing, and determined
the mean intensity red values of each. We placed concentration values into a standard curve formula
to determine estimated PQ and creatinine concentrations.

2.5. Clinical Samples

Human samples were collected at Chang Gung Memorial Hospital, Linkou, Taiwan. This study
complied with the guidelines of the Declaration of Helsinki and was approved by the Medical Ethics
Committee of Chang Gung Memorial Hospital.

3. Results and Discussion

3.1. PQ Standard Curve in Serum and Buffer Systems

Following our previous study [6], we elected to employ an ascorbic acid mechanism to produce
Paraquat color differences. This mechanism is stable and reaction time was suitable to our device
development. We deviated from the abovementioned study with regard to reagent application
including an increase in the concentration of ascorbic acid from 5% to 10%. The standard curves
shown in Figure 3 were created under these new conditions. The ∆R (delta red) value in Figure 3 is
the red mean intensity difference in RGB analysis after 10 min minus the image background value.
It represents the total change in red color. We gave image resolution considerable focus as an important
aspect of developing an impactful colorimetric method test. This led us to follow an alternative
approach to reagent placement that significantly influenced analyzed RGB values.
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Figure 3. Paraquat standard curve (n = 8, N = 3). Green indicates the standard curve in a buffer system,
with a concentration range of 0–100 ppm; red indicates the standard curve in a serum system, with a
concentration range of 0–50 ppm. Correlation coefficient (R2) of standard curves in both buffer and
serum systems equals 0.99.

We provided a standard curve in both the buffer and serum systems. The concentration range of
serum in our serum system was 0–50 ppm, and the concentration range of buffer in our buffer system
was 0–100 ppm. Both systems demonstrated a correlation coefficient (R2) = 0.99, but the ∆R value
between the systems indicated different tendencies. In our buffer system, the delta value was equal to
the serum system level at a higher concentration. The slope of standard curve in our buffer system
was gentle and the slope in our serum system was rather steep.

To determine the clinical viability of our device, we compared the serum system results of our
paper-based tool with serum results obtained by standard clinical means. We found the standard
curves from both to be comparable, and our device to be a suitable alternative. The detection limit
(LOD) was determined at three standard deviations from zero along the standard curve.

3.2. Creatinine Standard Curve in Serum and Buffer Systems

Normal human serum creatinine levels range from 5.0–10.0 ppm for women, and from
7.0–12.0 ppm for men. Based on these values, we established a standard curve first in a buffer
system, to ensure that the reaction on our 2-in-1 PADs was stable and that the device could be used
for colorimetric methods. We then set up a standard curve in the serum system to assess feasibility
and practicality of clinical usage. Based on the RGB intensity values from our creatinine reaction,
we designed several experiments using different backgrounds, i.e., different materials behind our
paper-based device, such as a bare desktop or white paper to determine which would provide the best
colorimetric results.

Figure 4 demonstrates that creatinine concentration in our buffer system ranged from 0.0–30.0 ppm,
and that serum ranged from 7.3–153.6 ppm. Because there is a basic, standard concentration of creatinine
in serum, our standard curve for creatinine in serum does not start at 0 ppm. The SD value of our
lowest concentration, 7.3 ppm, corresponded to 0.0549 mg/dL, and the LOD was determined at three
standard deviations from the lowest concentration along the standard curve. Standard curves in both
systems showed a correlation coefficient of 0.99, indicating a stable and accurate tendency.
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Figure 4. Creatinine standard curve (n = 8, N = 3). Red indicates the standard curve in a buffer system,
with a concentration range of 0–30.0 ppm; green indicates the standard curve in a serum system, with a
concentration range of 7.3–153.6 mg/dL. Correlation coefficient (R2) of standard curves in both buffer
system and serum system equals 0.99.

Figure 5 shows a linear regression analysis of creatinine detection, indicating a high correlation
between laboratory-determined values and values determined using our 2-in-1 PAD. The R2 of 0.9988
for our PAD is comparable to clinically obtained values.
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3.3. 2-in-1 PADs Performance

Results from using our 2-in-1 PADs to detect serum paraquat and creatinine concentration for
patient specimens (T1, T2, T3, T4, T5) provided by Linkou Chang Gung Memorial Hospital are shown
in Table 1. Of the five patient specimens, each are clinically indicated to be suffering from paraquat
poisoning without kidney failure. Based on the SIPP index, we determined that a PQ intoxication of
10 ppm was dangerous.
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Table 1. Paraquat (PQ) and creatinine detection results from five PQ-poisoned patients comparing
our detection methods and clinically determined values, which are considered to be the highest
clinical standard.

2-in-1 µPADs Paraquat (ppm) Creatinine (ppm)

Our Value Hospital Our Value Hospital

T1
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T3 43 M 2 10 20 14.4 
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glucocorticoid 

3 Dead
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T2

Micromachines 2018, 9, x 8 of 11 

Table 1. Paraquat (PQ) and creatinine detection results from five PQ-poisoned patients comparing 
our detection methods and clinically determined values, which are considered to be the highest 
clinical standard. 

2-in-1 μPADs
Paraquat (ppm) Creatinine (ppm) 

Our Value Hospital Our Value Hospital 

T1 22.59 >10 16.10 19.3 

T2 5.99 5.1 12.92 13.3

T3 26.52 >10 13.82 14.4 

T4 35.19 >10 13.58 14.3 

T5 25.0 >10 12.20 12.6

Table 2. Clinical data of patients with PQ intoxication (n = 5). 

Patient 
Number Age Sex 

Time between 

Paraquat 

Ingestion and 

Hospital 

Arrival (h) 

Blood 

Paraquat 

Level (ppm) 

Severiry Index of 

Paraquat 

Poisoning (ppm) 

Blood 

Creatinine 

Level (ppm) 

Treatment 

Duration of 

Hospitalization 

(day) 

Outcome 

T1 50 M 6 10 60 19.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T2 62 M 6 5.11 30.66 13.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T3 43 M 2 10 20 14.4 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T4 87 M 2 10 20 14.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T5 50 M 24 10 240 12.6 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

3 Dead

5.99 5.1 12.92 13.3

T3

Micromachines 2018, 9, x 8 of 11 

Table 1. Paraquat (PQ) and creatinine detection results from five PQ-poisoned patients comparing 
our detection methods and clinically determined values, which are considered to be the highest 
clinical standard. 

2-in-1 μPADs
Paraquat (ppm) Creatinine (ppm) 

Our Value Hospital Our Value Hospital 

T1 22.59 >10 16.10 19.3 

T2 5.99 5.1 12.92 13.3

T3 26.52 >10 13.82 14.4 

T4 35.19 >10 13.58 14.3 

T5 25.0 >10 12.20 12.6

Table 2. Clinical data of patients with PQ intoxication (n = 5). 

Patient 
Number Age Sex 

Time between 

Paraquat 

Ingestion and 

Hospital 

Arrival (h) 

Blood 

Paraquat 

Level (ppm) 

Severiry Index of 

Paraquat 

Poisoning (ppm) 

Blood 

Creatinine 

Level (ppm) 

Treatment 

Duration of 

Hospitalization 

(day) 

Outcome 

T1 50 M 6 10 60 19.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T2 62 M 6 5.11 30.66 13.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T3 43 M 2 10 20 14.4 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T4 87 M 2 10 20 14.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T5 50 M 24 10 240 12.6 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

3 Dead

26.52 >10 13.82 14.4

T4

Micromachines 2018, 9, x 8 of 11 

Table 1. Paraquat (PQ) and creatinine detection results from five PQ-poisoned patients comparing 
our detection methods and clinically determined values, which are considered to be the highest 
clinical standard. 

2-in-1 μPADs
Paraquat (ppm) Creatinine (ppm) 

Our Value Hospital Our Value Hospital 

T1 22.59 >10 16.10 19.3 

T2 5.99 5.1 12.92 13.3

T3 26.52 >10 13.82 14.4 

T4 35.19 >10 13.58 14.3 

T5 25.0 >10 12.20 12.6

Table 2. Clinical data of patients with PQ intoxication (n = 5). 

Patient 
Number Age Sex 

Time between 

Paraquat 

Ingestion and 

Hospital 

Arrival (h) 

Blood 

Paraquat 

Level (ppm) 

Severiry Index of 

Paraquat 

Poisoning (ppm) 

Blood 

Creatinine 

Level (ppm) 

Treatment 

Duration of 

Hospitalization 

(day) 

Outcome 

T1 50 M 6 10 60 19.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T2 62 M 6 5.11 30.66 13.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T3 43 M 2 10 20 14.4 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T4 87 M 2 10 20 14.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T5 50 M 24 10 240 12.6 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

3 Dead

35.19 >10 13.58 14.3

T5

Micromachines 2018, 9, x 8 of 11 

Table 1. Paraquat (PQ) and creatinine detection results from five PQ-poisoned patients comparing 
our detection methods and clinically determined values, which are considered to be the highest 
clinical standard. 

2-in-1 μPADs
Paraquat (ppm) Creatinine (ppm) 

Our Value Hospital Our Value Hospital 

T1 22.59 >10 16.10 19.3 

T2 5.99 5.1 12.92 13.3

T3 26.52 >10 13.82 14.4 

T4 35.19 >10 13.58 14.3 

T5 25.0 >10 12.20 12.6

Table 2. Clinical data of patients with PQ intoxication (n = 5). 

Patient 
Number Age Sex 

Time between 

Paraquat 

Ingestion and 

Hospital 

Arrival (h) 

Blood 

Paraquat 

Level (ppm) 

Severiry Index of 

Paraquat 

Poisoning (ppm) 

Blood 

Creatinine 

Level (ppm) 

Treatment 

Duration of 

Hospitalization 

(day) 

Outcome 

T1 50 M 6 10 60 19.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T2 62 M 6 5.11 30.66 13.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T3 43 M 2 10 20 14.4 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T4 87 M 2 10 20 14.3 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

1 Dead

T5 50 M 24 10 240 12.6 

Hemoperfusion 

cytotoxic agent, 

glucocorticoid 

3 Dead

25.0 >10 12.20 12.6

In the high concentration group (T1, T3, T4, T5), we saw that the color change in our PADs
correlated with high concentration detection in all cases. For the single low concentration sample
(T2), the difference between our PADs and that taken at the hospital was within 20%, indicating PADs
diagnostic viability.

Due to normal creatinine values, we were unable to see obvious color differences using our PADs.
The low creatinine concentration was detected by analyzed images and delta values found before and
after the reaction. The differences between PAD and clinical values were under 20%. We did notice
that patient T1 was suffering from a high poison intoxication level that induced serious hemolysis,
which may have influenced PAD detection efficacy.

A total of five patients with PQ exposure were included in this study. Their clinical data are
summarized in Table 2. All patients committed suicide by drinking PQ. Most patients were male elders.
Four were considered severe intoxication patients because their serum PQ concentration was greater
than 10 ppm. Apart from one patient who refused treatment, the other four patients were intensively
treated with a standard detoxification protocol including charcoal hemoperfusion, pulse therapies
with methylprednisolone and the cytotoxic agent (cyclophosphamide), and extended treatment with
dexamethasone [3,11,35,36]. The calculated SIPP score was high (74.13 ± 94.16), and each patient
had a SIPP greater than 10. Despite aggressive therapy, all patients (100%) died within 1–3 days
of intoxication.

Table 2. Clinical data of patients with PQ intoxication (n = 5).

Patient
Number Age Sex

Time between
Paraquat Ingestion

and Hospital
Arrival (h)

Blood
Paraquat

Level
(ppm)

Severiry Index
of Paraquat
Poisoning

(ppm)

Blood
Creatinine

Level
(ppm)

Treatment
Duration of

Hospitalization
(day)

Outcome

T1 50 M 6 10 60 19.3
Hemoperfusion
cytotoxic agent,
glucocorticoid

1 Dead

T2 62 M 6 5.11 30.66 13.3
Hemoperfusion
cytotoxic agent,
glucocorticoid

1 Dead

T3 43 M 2 10 20 14.4
Hemoperfusion
cytotoxic agent,
glucocorticoid

1 Dead

T4 87 M 2 10 20 14.3
Hemoperfusion
cytotoxic agent,
glucocorticoid

1 Dead

T5 50 M 24 10 240 12.6
Hemoperfusion
cytotoxic agent,
glucocorticoid

3 Dead

Note: The severity index of paraquat poisoning was derived the product of plasma paraquat level in milligrams per
liter and time from paraquat ingestion to arrival in hours.
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4. Conclusions

Based on our detection data, our 2-in-1 PADs performed comparably to the highest clinical
standard with less complicated sample preparation. Paper-based analytical devices have advantages
including low cost, disposability, carrying convenience, and they provide a platform to simultaneously
detect and analyze multiple samples. In remote areas and areas with little or no clinical availability,
PADs can be used to rapidly provide physiological indicators to on-site clinical staff, or transmitted to
remote clinical staff to judge the status of the poisoned patient [37]. Potential future work based on this
research could focus on the following three aspects: (i) accurate fluid control without pipetting errors;
(ii) development of calibration standard curves for sera having different color characteristics; and (iii) a
whole blood test that would be even more time- and cost-effective. This device can be considered a
successful detection tool for clinicians with regard to saving time, cost, and patients lives.
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