Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure
Abstract
:1. Introduction
2. Methods
2.1. Study #1—Pivotal Preclinical Trial of the Spheroid Reservoir Bioartificial Liver—Glorioso et al. [32]
2.2. Novel Spheroid Reservoir Bioartificial Liver Improves Survival of Nonhuman Primates in a Toxin-Induced Model of Acute Liver Failure—Li et al. [33]
2.3. Randomized Trial of Spheroid Reservoir Bioartificial Liver in Porcine Model of Post Hepatectomy Liver Failure—Chen et al. [29]
3. Statistics
4. Results
4.1. Overview
4.2. Survival
4.3. Serum Ammonia Levels and Other Liver Specific Serum Parameters
4.4. Neuroprotection of SRBAL Treatment in Animal Models of ALF
4.5. Effect of SRBAL on Proinflammatory Cytokines and Transmission of Xenozoonosis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trefts, E.; Gannon, M.; Wasserman, D.M. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Clemmesen, J.O.; Larsen, F.S.; Kondrup, J.; Hansen, B.A.; Ott, P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 1999, 29, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.R.; Kronsten, V.T.; Hughes, R.D.; Shawcross, D.L. Pathophysiology of cerebral oedema in acute liver failure. World J. Gastroenterol. 2013, 19, 9240–9255. [Google Scholar] [CrossRef] [PubMed]
- Wendon, J.; Lee, W. Encephalopathy and cerebral edema in the setting of acute liver failure: Pathogenesis and management. Neurocrit. Care 2008, 9, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Warrillow, S.; Bellomo, R. Intensive Care Management of Severe Acute Liver Failure; Vincent, J.L., Ed.; Annual Update in Intensive Care and Emergency Medicine 2015; Springer: Cham, Switzerland, 2015; Volume 2015, pp. 415–430. [Google Scholar]
- Stravitz, R.T.; Lee, W.M. Acute liver failure. Lancet 2019, 394, 869–881. [Google Scholar] [CrossRef]
- Ostapowicz, G.; Lee, W.M. Acute hepatic failure: A Western perspective. J. Gastroenterol. Hepatol. 2000, 15, 480–488. [Google Scholar] [CrossRef]
- Kumar, R.; Anand, U.; Priyadarshi, R.N. Liver transplantation in acute liver failure: Dilemmas and challenges. World J. Transplant. 2021, 11, 187–202. [Google Scholar] [CrossRef]
- Simpson, K.J.; Bates, C.M.; Henderson, N.C.; Wigmore, S.J.; Garden, O.J.; Lee, A.; Pollok, A.; Masterton, G.; Hayes, P.C. The utilization of liver transplantation in the management of acute liver failure: Comparison between acetaminophen and non-acetaminophen etiologies. Liver Transplant. 2009, 15, 600–609. [Google Scholar] [CrossRef]
- Kiley, J.E.; Pender, J.C.; Welch, H.F.; Welsh, S. Ammonia intoxication treated by hemodialysis. N. Engl. J. Med. 1958, 259, 1156–1161. [Google Scholar] [CrossRef]
- Nyberg, S.L.; Peshwa, M.V.; Payne, W.D.; Hu, W.-S.; Cerra, F.B. Evolution of the bioartificial liver: The need for randomized clinical trials. Am. J. Surg. 1993, 166, 512–521. [Google Scholar] [CrossRef]
- Legallais, C.; Kim, D.; Mihaila, S.M.; Mihajlovic, M.; Figliuzzi, M.; Bonandrini, B.; Salerno, S.; Yengej Yousef, F.A.; Rookmaaker, M.B.; Sanchez Romero, N.; et al. Bioengineering organs for blood detoxification. Adv. Healthc. Mater. 2018, 7, 1800430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figaro, S.; Dumé, A.-S.; Rada, H.; Capone, S.; Bengrine, A.; Baze, A.; Rabenirina, E.; Semenzato, N.; Herpe, Y.-E.; Faivre, J.; et al. SUPPLIVER: Bioartificial supply for liver failure. IRBM 2015, 36, 101–109. [Google Scholar] [CrossRef]
- Tandon, R.; Froghi, S. Artificial liver support systems. J. Gastroenterol. Hepatol. 2021, 36, 1164–1179. [Google Scholar] [CrossRef] [PubMed]
- Sponholz, C.; Matthes, K.; Rupp, D.; Backaus, W.; Klammt, S.; Karailieva, D.; Baushke, A.; Settmacher, U.; Kohl, M.; Clemens, M.G.; et al. Molecular adsorbent recirculating system and single-pass albumin dialysis in liver failure—A prospective, randomised crossover study. Crit. Care. 2016, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Kortgen, A.; Rauchfuss, F.; Götz, M.; Settmacher, U.; Bauer, M.; Sponholz, C. Albumin dialysis in liver failure: Comparison of molecular adsorbent recirculating system and single pass albumin dialysis—A retrospective analysis. Ther. Apher. Dial. 2009, 13, 419–425. [Google Scholar] [CrossRef]
- Camus, C.; Locher, C.; Saliba, F.; Goubaux, B.; Bonadona, A.; Lavayssiere, L.; Paugam, C.; Quinart, A.; Barbot, O.; Dharancy, S.; et al. Outcome of patients treated with molecular adsorbent recirculating system albumin dialysis: A national multicenter study. JGH Open 2020, 4, 757–763. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Subramanian, R.M.; Olson, J.C.; Speiser, J.L.; Durkalski-Mauldin, V.L.; Abraldes, J.G.; Bigam, D.L.; Flynn, M.M.; Rapaka, B.; Shropshire, B.M.; et al. Use of the Molecular Adsorbent Recirculating System in Acute Liver Failure: Results of a Multicenter Propensity Score-Matched Study. Crit. Care Med. 2022, 50, 286–295. [Google Scholar] [CrossRef]
- Matsumura, K.N.; Guevara, G.R.; Huston, H.; Hamilton, W.L.; Rikimaru, M.; Yamasaki, G.; Matsumura, M.S. Hybrid bioartificial liver in hepatic failure: Preliminary clinical report. Surgery 1987, 101, 99–103. [Google Scholar]
- Margulis, M.S.; Erukhimo, E.A.; Andreiman, L.A.; Viksna, L.M. Temporary organ substitution by hemoperfusion through suspension of active donor hepatocytes in a total complex of intensive therapy in patients with acute hepatic insufficiency. Resuscitation 1989, 18, 85–94. [Google Scholar] [CrossRef]
- Kelly, J.H.; Darlington, G.J. Modulation of the liver specific phenotype in the human hepatoblastoma line Hep G2. In Vitro Cell. Dev. Biol. 1989, 25, 217–222. [Google Scholar] [CrossRef]
- Sauer, I.M.; Zeilinger, K.; Obermayer, N.; Pless, G.; Grünwald, A.; Pascher, A.; Mieder, T.; Roth, S.; Goetz, M.; Kardassis, D.; et al. Primary human liver cells as source for modular extracorporeal liver support—A preliminary report. Int. J. Artif. Organs 2002, 25, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Sauer, I.M.; Kardassis, D.; Zeilinger, K.; Pascher, A.; Grünwald, A.; Pless, G.; Irgang, M.; Kraemer, M.; Puhl, G.; Frank, J.; et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003, 10, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, A.A.; Brown, R.S., Jr.; Busuttil, R.W.; Fair, J.; McGuire, M.B.; Rosenthal, P.; Am Esch, J.S., II; Lerut, J.; Nyberg, S.L.; Salizzoni, M.; et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann. Surg. 2004, 239, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.B.; Howe, C.C.; Aden, D.P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980, 209, 497–499. [Google Scholar] [CrossRef]
- Mavri-Damelin, D.; Damelin, L.H.; Eaton, S.; Rees, M.; Selden, C.; Hogdson, H.J.F. Cells for bioartificial liver devices: The human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol. Bioeng. 2008, 99, 644–651. [Google Scholar] [CrossRef]
- Mavri-Damelin, D.; Eaton, S.; Damelin, L.H.; Rees, M.; Hogdson, H.J.F.; Selden, C. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2. Int. J. Biochem. Cell. Biol. 2007, 39, 555–564. [Google Scholar] [CrossRef]
- Enat, R.; Jefferson, D.M.; Ruiz-Opazo, N.; Gatmaitan, Z.; Leinward, L.A.; Reid, L.M. Hepatocyte proliferation in vitro: Its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc. Natl. Acad. Sci. USA 1984, 81, 1411–1415. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S.; Joo, D.J.; Shaheen, M.; Li, Y.; Wang, Y.; Yang, J.; Nicolas, C.T.; Predmore, K.; Amiot, B.; Michalak, G.; et al. Randomized trial of spheroid reservoir bioartificial liver in porcine model of posthepatectomy liver failure. Hepatology 2019, 69, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Brophy, C.M.; Luebke-Wheeler, J.L.; Amiot, B.P.; Khan, H.; Remmel, R.P.; Rinaldo, P.; Nyberg, S.L. Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function. Hepatology 2009, 49, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, S.L.; Hardin, J.; Amiot, B.; Argikar, U.A.; Remmel, R.P.; Rinaldo, P. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transplant. 2005, 11, 901–910. [Google Scholar] [CrossRef]
- Glorioso, J.M.; Mao, S.A.; Rodysill, B.; Mounajjed, T.; Kremers, W.K.; Elgilani, F.; Hickey, R.D.; Haugaa, H.; Rose, C.F.; Amiot, B.; et al. Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J. Hepatol. 2015, 63, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Q.; Wang, Y.; Weng, C.; He, Y.; Gao, M.; Yang, G.; Li, L.; Chen, F.; Shi, Y.; et al. Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure. Theranostics 2018, 8, 5562–5574. [Google Scholar] [CrossRef] [PubMed]
- Court, F.G.; Laws, P.E.; Morrison, C.P.; Teague, B.D.; Metcalfe, M.S.; Wemyss-Holden, S.A.; Dennison, A.R.; Maddern, G.J. Subtotal hepatectomy: A porcine model for the study of liver regeneration. J. Surg. Res. 2004, 116, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M. Acetaminophen Toxicity: A History of Serendipity and Unintended Consequences. Clin. Liver Dis. 2020, 16, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Henderson, N.C.; Nelson, L.J.; Dabos, C.; Filippi, C.; Bellamy, C.; Howie, F.; Clutton, R.E.; King, T.; Lee, A.; et al. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure. BMC Gastroenterol. 2010, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henne-Bruns, D.; Artwohl, J.; Kremer, B. Acetaminophen-induced acute hepatic failure in pigs: Controversical results to other animal models. Res. Exp. Med. 1988, 188, 463–472. [Google Scholar] [CrossRef]
- Kalpana, K.; Ong, H.S.; Soo, K.C.; Tan, S.Y.; Prema Raj, J. An improved model of galactosamine-induced fulminant hepatic failure in the pig. J. Surg. Res. 1999, 82, 121–130. [Google Scholar] [CrossRef]
- Cao, H.; Yang, F.; Yu, J.; Pan, Q.; Li, J.; Zhou, P.; Li, Y.; Pan, X.; Li, J.; Wang, Y.; et al. Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Med. 2012, 10–56. [Google Scholar] [CrossRef] [Green Version]
- Sang, J.-F.; Shi, X.-L.; Han, B.; Huang, T.; Huang, X.; Ren, H.-Z.; Ding, Y.-T. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 602–611. [Google Scholar] [CrossRef]
- Sielaff, T.D.; Hu, M.Y.; Rollins, M.D.; Bloomer, J.R.; Amiot, B.; Hu, W.-S.; Cerra, F.B. An anesthetized model of lethal canine galactosamine fulminant hepatic failure. Hepatology 1995, 21, 796–804. [Google Scholar]
- Nyberg, S.L.; Cerra, F.B.; Gruetter, R. Brain lactate by magnetic resonance spectroscopy during fulminant hepatic failure in the dog. Liver Transpl. Surg. 1998, 4, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Lu, H.; Lu, X.; Wang, D.; Wang, Z.; Dai, W.; Wang, J.; Liu, P. Effect of tumor necrosis factor-α on the expression of the ammonia transporter Rhcg in the brain in mice with acute liver failure. J. Neuroinflammation 2018, 15, 234. [Google Scholar] [CrossRef] [PubMed]
- Takamura, M.; Matsuda, Y.; Yamagiwa, S.; Tamura, Y.; Honda, Y.; Suzuki, K.; Ichida, T.; Aoyagi, Y. An inhibitor of c-Jun NH2-terminal kinase, SP600125, protects mice from D-galactosamine/lipopolysaccharide-induced hepatic failure by modulating BH3-only proteins. Life Sci. 2007, 80, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.-Q.; Gong, D.-Y.; Leng, X.-H.; Bai, L.; Liu, C.; Wang, L.-C.; Tang, L. Inhibiting the expression of hepatocyte nuclear factor 4 alpha attenuates lipopolysaccharide/D-galactosamine-induced fulminant hepatic failure in mice. Hepatobiliary Pancreat. Dis. Int. 2012, 11, 624–629. [Google Scholar] [CrossRef]
- Hefler, J.; Marfil-Garza, B.A.; Pawlick, R.L.; Freed, D.H.; Karvellas, C.J.; Bigam, D.L.; Shapiro, A.M.J. Preclinical models of acute liver failure: A comprehensive review. PeerJ 2021, 9, e12579. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Ishiguro, S.; Fukunaga, K. Large-animal models of fulminant hepatic failure. J. Artif. Organs. 2003, 6, 9–13. [Google Scholar] [CrossRef]
- Schreckenbach, T.; Liese, J.; Bechstein, W.O.; Moench, C. Posthepatectomy liver failure. Dig. Surg. 2012, 29, 79–85. [Google Scholar] [CrossRef]
- Pagano, D.; di Francesco, F.; Echeverri, G.J.; de Martino, M.; Ricotta, C.; Occhipinti, G.; Pagano, V.; Oliva, E.; Minervini, M.I.; Gridelli, B.G.; et al. Development of a standardized model for liver failure in pigs: Anatomopathophysiologic findings after extended liver resection. Transplant. Proc. 2012, 44, 2029–2032. [Google Scholar] [CrossRef]
- Arkadopoulos, N.; Defterevos, G.; Nastos, C.; Papalois, A.; Kalimeris, K.; Papoutsidakis, N.; Kampouroglou, G.; Kypriotis, D.; Pafiti, A.; Kostopanagiotou, G.; et al. Development of a porcine model of post-hepatectomy liver failure. J. Surg. Res. 2011, 170, e233–e242. [Google Scholar] [CrossRef]
- Hung, K.-C.; Yong, C.-C.; Chen, Y.-S.; Eng, H.-L.; Kuo, F.-Y.; Lin, C.-C.; Young, T.-H.; Kobayashi, E.; Chen, C.-L.; Wang, C.-C. A surgical model of fulminant hepatic failure in rabbits. Liver Int. 2007, 27, 1333–1341. [Google Scholar] [CrossRef]
- Moharib, M.N.; Olszewski, W.L.; Mikhail, N.E.; Nossier, M.M.F.; Atta, S.S.A.H.; Saber, M.A. Allogenic hepatocyte transplantation in immunomodulated Lewis rats with acute liver insufficiency following hepatectomy. J. Egypt. Soc. Parasitol. 2014, 44, 221–228. [Google Scholar] [PubMed]
- Pitkin, Z.; Mullon, C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif. Organs 1999, 23, 829–833. [Google Scholar] [CrossRef]
- Di Nicuolo, G.; D’Alessandro, A.; Andria, B.; Scuderi, V.; Scognamiglio, M.; Tammaro, A.; Mancini, A.; Cozzolino, S.; Di Florio, E.; Bracco, A.; et al. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2010, 17, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, S.L.; Hibbs, J.R.; Hardin, J.A.; Germer, J.J.; Persing, D.H. Transfer of porcine endogenous retrovirus across hollow fiber membranes: Significance to a bioartificial liver. Transplantation 1999, 67, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Nedredal, G.I.; Amiot, B.P.; Nyberg, P.; Luebke-Wheeler, J.; Lillegard, J.B.; McKenzie, T.J.; Nyberg, S.L. Optimization of mass transfer for toxin removal and immunoprotection of hepatocytes in a bioartificial liver. Biotechnol Bioeng 2009, 104, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Michaels, M.G.; Simmons, R.L. Xenotransplant-associated zoonoses. Strategies for prevention. Transplantation 1994, 57, 1–7. [Google Scholar] [CrossRef]
- Nelson, E.D.; Larson, E.; Joo, D.J.; Mao, S.; Glorioso, J.; Rmilah, A.A.; Zhou, W.; Jia, Y.; Mounajjed, T.; Shi, M.; et al. Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine. Tissue Eng. Part A 2022, 28, 150–160. [Google Scholar] [CrossRef]
- Ogle, B.M.; Butters, K.A.; Plummer, T.B.; Ring, K.R.; Knudsen, B.E.; Litzow, M.R.; Cascalho, M.; Platt, J.L. Spontaneous fusion of cells between species yields transdifferentiation and retroviral transfer in vivo. FASEB J. 2004, 18, 548–550. [Google Scholar] [CrossRef]
- Ogle, B.M.; Cascalho, M.; Platt, J.L. Biological implications of cell fusion. Nat. Rev. Mol. Cell. Biol. 2005, 6, 567–575. [Google Scholar] [CrossRef]
- DeMatteo, R.P.; Fong, Y.; Blumgart, L.H. Surgical treatment of malignant liver tumours. Best Pract. Res. Clin. Gastroenterol. 1999, 13, 557–574. [Google Scholar] [CrossRef]
- McCarter, M.D.; Fong, Y. Metastatic liver tumors. Semin. Surg. Oncol. 2000, 19, 177–188. [Google Scholar] [CrossRef]
- Saliba, F.; Camus, C.; Durand, F.; Mathurin, P.; Letierce, A.; Delafosse, B.; Berange, K.; Perrigault, P.F.; Belnard, M.; Ichaï, P.; et al. Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: A randomized, controlled trial. Ann. Intern. Med. 2013, 159, 522–531. [Google Scholar] [CrossRef]
- Yu, Y.; Fisher, J.E.; Lillegard, J.B.; Rodysill, B.; Amiot, B.; Nyberg, S.L. Cell therapies for liver diseases. Liver Transpl. 2012, 18, 9–21. [Google Scholar] [CrossRef]
Author and Year | Glorioso et al. [32] | Li et al. [33] | Chen et al. [29] |
---|---|---|---|
Species | Domestic pig | Rhesus monkey | Domestic pig |
Animal number [n] | 18 | 30 | 18 |
Sex [F/M] | F | M | F |
Average body weight [kg] | 45.0 (±1.7) | 7.7 (±0.4) | 28.0 (±1.2) |
ALF induction method | Drug induced ALF | Drug induced ALF | surgical induced ALF |
Concentration of applied drug | 0.75 g/kg D-galactosamine | 0.1 mg/kg α-amanitin + 1.0 μg/kg lipopolysaccharide | - |
Resected liver lobs | - | - | Left lateral, medial right lateral liver lobe |
Start of individual treatment after ALF induction | T48 | T12, T24, T36 | T24 |
Duration of treatment [hours] | 2 × 6 h or 24 h | 6 h | 24 h |
Average spheroid mass [g] | 117.4 (±48.3) | 100.2 (±3.3) | 207.9 (±21.8) |
Hepatocytes viability [%] | 96.7 (±2.2) | 98.0 (±1.0) | 96.2 (±1.9) |
Source of hepatocytes | Domestic pig | Bama miniature pig | Domestic pig |
Comparison | Study | 72 h Survival | 90 h Survival | 336 h Survival |
---|---|---|---|---|
SMT vs. SRBAL | Glorioso et al. | 0.9 | 0.01 | N/A |
Li et al. | 0.001 | 0.001 | 0.001 | |
Chen et al. | <0.001 | <0.001 | <0.001 | |
Combined value | <0.001 | <0.001 | <0.001 | |
NCBAL vs. SRBAL | Glorioso et al. | 0.1 | 0.05 | N/A |
Li et al. | 0.080 | 0.001 | 0.001 | |
Chen et al. | 0.001 | 0.001 | 0.001 | |
Combined value | <0.001 | <0.001 | <0.001 |
SMT vs. SRBAL | BAL vs. SRBAL | ||||||||
---|---|---|---|---|---|---|---|---|---|
Time Point | Serum Parameter | Glorioso et al. [32] | Li et al. [33] | Chen et al. [29] | Fischer’s Method | Glorioso et al. [32] | Li et al. [33] | Chen et al. [29] | Fischer’s Method |
0 h | AST | 1.000 | 0.512 | 0.761 | 0.930 | 1.000 | 0.722 | 0.937 | 0.993 |
Bil | 1.000 | 0.341 | 0.341 | 0.636 | 1.000 | 0.341 | 0.341 | 0.636 | |
NH3 | 1.000 | 0.182 | 0.732 | 0.673 | 1.000 | 0.940 | 0.508 | 0.961 | |
12 h | AST | 1.000 | 0.369 | 0.210 | 0.529 | 1.000 | 0.064 | 0.946 | 0.468 |
Bil | 1.000 | 0.640 | 0.475 | 0.881 | 1.000 | 0.934 | 0.783 | 0.996 | |
NH3 | 1.000 | 0.134 | 0.230 | 0.325 | 1.000 | 0.136 | 0.174 | 0.278 | |
36 h | AST | 0.006 | 0.876 | 0.563 | 0.072 | 0.466 | 0.062 | 0.508 | 0.208 |
Bil | 0.005 | 0.716 | 0.760 | 0.062 | 0.016 | 0.888 | 0.438 | 0.118 | |
NH3 | 0.022 | 0.002 | 0.702 | 0.002 | 0.603 | 0.019 | 0.494 | 0.111 | |
48 h | AST | 0.137 | 0.343 | 0.902 | 0.387 | 0.663 | 0.052 | 0.767 | 0.296 |
Bil | <0.001 | 0.837 | 0.728 | 0.002 | <0.001 | 0.551 | 0.761 | 0.008 | |
NH3 | 0.003 | <0.001 | 0.366 | <0.001 | 0.026 | 0.013 | 0.636 | 0.010 | |
72 h | AST | 0.225 | 0.022 | 0.124 | 0.022 | 0.957 | 0.007 | 0.446 | 0.070 |
Bil | 0.001 | 0.939 | 0.202 | 0.006 | 0.001 | 0.453 | 0.342 | 0.006 | |
NH3 | 0.004 | <0.001 | 0.055 | <0.001 | 0.002 | 0.004 | 0.066 | <0.001 | |
90 h | AST | 0.512 | 0.013 | 0.179 | 0.037 | 0.691 | 0.005 | 0.567 | 0.049 |
Bil | 0.007 | 0.812 | 0.326 | 0.052 | 0.008 | 0.658 | 0.722 | 0.082 | |
NH3 | 0.007 | 0.000 | 0.141 | <0.001 | 0.005 | 0.004 | 0.193 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felgendreff, P.; Tharwat, M.; Hosseiniasl, S.M.; Amiot, B.P.; Minshew, A.; Rmilah, A.A.A.; Sun, X.; Duffy, D.; Kremers, W.K.; Nyberg, S.L. Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure. Livers 2022, 2, 387-399. https://doi.org/10.3390/livers2040029
Felgendreff P, Tharwat M, Hosseiniasl SM, Amiot BP, Minshew A, Rmilah AAA, Sun X, Duffy D, Kremers WK, Nyberg SL. Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure. Livers. 2022; 2(4):387-399. https://doi.org/10.3390/livers2040029
Chicago/Turabian StyleFelgendreff, Philipp, Mohammad Tharwat, Seyed M. Hosseiniasl, Bruce P. Amiot, Anna Minshew, Anan A. Abu Rmilah, Xiaoye Sun, Dustin Duffy, Walter K. Kremers, and Scott L. Nyberg. 2022. "Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure" Livers 2, no. 4: 387-399. https://doi.org/10.3390/livers2040029
APA StyleFelgendreff, P., Tharwat, M., Hosseiniasl, S. M., Amiot, B. P., Minshew, A., Rmilah, A. A. A., Sun, X., Duffy, D., Kremers, W. K., & Nyberg, S. L. (2022). Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure. Livers, 2(4), 387-399. https://doi.org/10.3390/livers2040029