Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, W.; Smith, J. Fabrication of a 1200 kg ingot of V–4Cr–4Ti alloy for the DIII–D radiative divertor program. J. Nucl. Mater. 1998, 258–263, 1425–1430. [Google Scholar] [CrossRef]
- Natesan, K.; Uz, M. Oxidation performance of V-Cr-Ti alloys. Fusion Eng. Des. 2000, 51–52, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Bartenev, S.; Kolbasov, B.; Li, E.; Romanov, P.; Romanovskij, V.; Firsin, N. An improved procedure for radiochemical processing of activated fusion-reactor-relevant V–Cr–Ti alloy. Fusion Eng. Des. 2009, 84, 427–429. [Google Scholar] [CrossRef]
- Duquesnes, V.; Guilbert, T.; Le Flem, M. French investigation of a new V–4Cr–4Ti grade: CEA-J57—Fabrication and microstructure. J. Nucl. Mater. 2012, 426, 96–101. [Google Scholar] [CrossRef]
- Fukumoto, K.; Tone, K.; Onitsuka, T.; Ishigami, T. Effect of Ti addition on microstructural evolution of V–Cr–Ti alloys to balance irradiation hardening with swelling suppression. Nucl. Mater. Energy 2018, 15, 122–127. [Google Scholar] [CrossRef]
- Fukumoto, K.-I.; Kitamura, Y.; Miura, S.; Fujita, K.; Ishigami, R.; Nagasaka, T. Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Sci. 2021, 5, 1. [Google Scholar] [CrossRef]
- Jha, D.; Ward, L.; Paul, A.; Liao, W.-K.; Choudhary, A.; Wolverton, C.; Agrawal, A. ElemNet: Deep Learning the Chemistry of Materials from Only Elemental Composition. Sci. Rep. 2018, 8, 17593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, D.; Choudhary, K.; Tavazza, F.; Liao, W.-K.; Choudhary, A.; Campbell, C.; Agrawal, A. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nat. Commun. 2019, 10, 5316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C.M. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K.; Satou, M.; Fujiwara, M.; Takanashi, K.; Hasegawa, A.; Abe, K. Mechanical properties and microstructures of high-chromium V–Cr–Ti type alloys. J. Nucl. Mater. 2004, 329–333, 457–461. [Google Scholar] [CrossRef]
- Loomis, B.; Smith, D. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties. J. Nucl. Mater. 1992, 191–194, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Loomis, B.; Smith, D. Development and testing of vanadium alloys for fusion applications. J. Nucl. Mater. 1996, 239, 139–156. [Google Scholar] [CrossRef]
- Miyazawa, T.; Muroga, T.; Nishinuma, Y. Effect of chromium content on mechanical properties of V-xCr-4Ti-0.15Y alloys. J. Plasma Fusion Res. Ser. 2015, 11, 89–93. [Google Scholar]
- Loomis, B.; Smith, D.; Garner, F. Swelling of neutron-irradiated vanadium alloys. J. Nucl. Mater. 1991, 179–181, 771–774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanabe, K. Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys. J. Nucl. Eng. 2023, 4, 317-322. https://doi.org/10.3390/jne4020024
Tanabe K. Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys. Journal of Nuclear Engineering. 2023; 4(2):317-322. https://doi.org/10.3390/jne4020024
Chicago/Turabian StyleTanabe, Katsuaki. 2023. "Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys" Journal of Nuclear Engineering 4, no. 2: 317-322. https://doi.org/10.3390/jne4020024
APA StyleTanabe, K. (2023). Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys. Journal of Nuclear Engineering, 4(2), 317-322. https://doi.org/10.3390/jne4020024