On Design Challenges of Portable Nuclear Magnetic Resonance System
Abstract
:1. Introduction
2. Background Theory and Optimization Algorithm
3. Finite Element Analysis and Simulation Results
4. Prototyping and Experimental Results of a Candidate Optimized NMR Structure
4.1. Experimental Validation: Challenges and Noise Mitigation Approach in a Portable NMR Setup
4.2. Off-the-Shelf Lightweight NMR and Magnetic Resonance Imaging Spectrometer versus Optimally Designed Portable NMR Tool
4.3. Free Induction Decay and Larmor Frequency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, S.; Sun, N. Portable CMOS NMR System With 50-kHz IF, 10-μs Dead Time, and Frequency Tracking. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4576–4588. [Google Scholar] [CrossRef]
- Christodoulou, A.G.; Kellman, P.; Liang, Z.P. Accelerating Cardiovascular Magnetic Resonance Imaging: Signal Processing Meets Nuclear Spins [Life Sciences]. IEEE Signal Process Mag. 2014, 31, 138–143. [Google Scholar] [CrossRef]
- Riederer, S.J. Current technical development of magnetic resonance imaging. IEEE Eng. Med. Biol. Mag. 2000, 19, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Crooks, L.E. An Introduction to Magnetic Resonance Imaging. IEEE Eng. Med. Biol. Mag. 1985, 4, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.F.; Lobo, C.M.S.; Colnago, L.A. Monitoring Electrochemical Reactions in Situ with Low Field NMR: A Mini-Review. Appl. Sci. 2019, 9, 498. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C. Design and Analysis of the Novel Test Tube Magnet as a Device for Portable Nuclear Magnetic Resonance. IEEE Trans. Magn. 2007, 43, 3555–3557. [Google Scholar] [CrossRef]
- Haacke, E.M.; Zhi-Pei, L. Challenges of imaging structure and function with MRI. IEEE Eng. Med. Biol. Mag. 2000, 19, 55–62. [Google Scholar] [CrossRef]
- Eroglu, S.; Friedman, G.; Magin, R.L. Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR. IEEE Trans. Magn. 2001, 37, 2787–2789. [Google Scholar] [CrossRef]
- Kowalski, M.E.; Jin, J.M. A numerical study of the field dependence of signal-to-noise ratio in high-field MRI. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Boston, MA, USA, 8–13 July 2001; Volume 361, pp. 366–369. [Google Scholar]
- Halbach, K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 1980, 169, 1–10. [Google Scholar] [CrossRef]
- Sonawane, S.T.; Meribout, M. Halbach array design targeting nuclear magnetic resonance. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates, 6–8 December 2016; pp. 1–4. [Google Scholar]
- Meribout, M.; Sonowan, S. Optimal Halbach Magnet Array Design for Portable NMR Targeting Multiphase Flow Metering Applications. IEEE Trans. Magn. 2019, 55, 4001207. [Google Scholar] [CrossRef]
- Purchase, A.R.; Vidarsson, L.; Wachowicz, K.; Liszkowski, P.; Sun, H.; Sarty, G.E.; Sharp, J.C.; Tomanek, B. A Short and Light, Sparse Dipolar Halbach Magnet for MRI. IEEE Access 2021, 9, 95294–95303. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Ren, Y.; Wang, D. Electromagnetic Design and Mechanical Behavior Analysis of an 850 MHz All REBCO Nuclear Magnetic Resonance Magnet. IEEE Trans. Appl. Supercond. 2021, 31, 4600609. [Google Scholar] [CrossRef]
- Windt, C.W.; Soltner, H.; Van Dusschoten, D.; Blümler, P. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF. J. Magn. Reson. 2011, 208, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Meixner, M.; Kochs, J.; Foerst, P.; Windt, C.W. An integrated magnetic resonance plant imager for mobile use in greenhouse and field. J. Magn. Reson. 2021, 323, 106879. [Google Scholar] [CrossRef]
- Gohari, A.; Hekmati, A.; Mosallanejadand, A.; Torkaman, H.; Afjei, E. Design and Comparative Finite Element And Thermal Analysis of 1-Phase Cylindrical Transformer for Low-Power Applications. In Proceedings of the 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, 2–4 February 2021; pp. 1–5. [Google Scholar]
- Boyer, T.H. The force on a magnetic dipole. Am. J. Phys. 1988, 56, 688–692. [Google Scholar] [CrossRef]
- Soltner, H.; Blümler, P. Dipolar Halbach magnet stacks made from identically shaped permanent magnets for magnetic resonance. Concepts Magn. Reson. Part A 2010, 36A, 211–222. [Google Scholar] [CrossRef]
- Bajaj, V.S.; Paulsen, J.; Harel, E.; Pines, A. Zooming in on microscopic flow by remotely detected MRI. Science 2010, 330, 1078–1081. [Google Scholar] [CrossRef]
- Halpern-Manners, N.W.; Kennedy, D.J.; Trease, D.R.; Teisseyre, T.Z.; Malecek, N.S.; Pines, A.; Bajaj, V.S. Gradient-free microfluidic flow labeling using thin magnetic films and remotely detected MRI. J Magn Reson 2014, 249, 135–140. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Scheven, U.M. An NMR technique for rapid measurement of flow. J. Magn. Reson. 2005, 172, 31–35. [Google Scholar] [CrossRef]
- Dalitz, F.; Cudaj, M.; Maiwald, M.; Guthausen, G. Process and reaction monitoring by low-field NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 60, 52–70. [Google Scholar] [CrossRef]
- Gomez, M.V.; de la Hoz, A. NMR reaction monitoring in flow synthesis. Beilstein J. Org. Chem. 2017, 13, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Hilty, C.; McDonnell, E.E.; Granwehr, J.; Pierce, K.L.; Han, S.-I.; Pines, A. Microfluidic gas-flow profiling using remote-detection NMR. Proc. Natl. Acad. Sci. USA 2005, 102, 14960–14963. [Google Scholar] [CrossRef] [PubMed]
- Granwehr, J.; Harel, E.; Han, S.; Garcia, S.; Pines, A.; Sen, P.N.; Song, Y.Q. Time-of-flight flow imaging using NMR remote detection. Phys. Rev. Lett. 2005, 95, 075503. [Google Scholar] [CrossRef] [PubMed]
- Harel, E.; Granwehr, J.; Seeley, J.A.; Pines, A. Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR. Nat. Mater. 2006, 5, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Harel, E.; Hilty, C.; Koen, K.; McDonnell, E.E.; Pines, A. Time-of-Flight Flow Imaging of Two-Component Flow inside a Microfluidic Chip. Phys. Rev. Lett. 2007, 98, 017601. [Google Scholar] [CrossRef] [PubMed]
- Harel, E.; Pines, A. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution. J. Magn. Reson. 2008, 193, 199–206. [Google Scholar] [CrossRef]
- Kumar, R.; Hosseinzadehtaher, M.; Hein, N.; Shadmand, M.; Jagadish, S.; Ghanbarian, B. Challenges and advances in measuring sap flow in agriculture and agroforestry: A review with focus on nuclear magnetic resonance. Front. Plant Sci. 2022, 13, 1036078. [Google Scholar] [CrossRef]
- Windt, C.W.; Nabel, M.; Kochs, J.; Jahnke, S.; Schurr, U. A Mobile NMR Sensor and Relaxometric Method to Non-destructively Monitor Water and Dry Matter Content in Plants. Front. Plant Sci. 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Colnago, L.A.; Wiesman, Z.; Pages, G.; Musse, M.; Monaretto, T.; Windt, C.W.; Rondeau-Mouro, C. Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. J. Magn. Reson. 2021, 323, 106899. [Google Scholar] [CrossRef]
- Poulichet, P.; Fakri, A.; Delabie, C.; Phuc, H.D.; Cong, T.T.; Fakri-Bouchet, L. Simulation and optimisation of homogeneous permanent magnet for portable NMR applications. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–6. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Magnet material | Neodymium |
Dimensions | 1″ (Length) × 1″(Width) × 1″(Height) |
Pull rating | 81.86 lbs |
Weight | 0.267 lbs |
Remenance (Rem) | 13.22 kGauss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinzadehtaher, M.; D’silva, S.; Baker, M.; Kumar, R.; Hein, N.T.; Shadmand, M.B.; Jagadish, S.V.K.; Ghanbarian, B. On Design Challenges of Portable Nuclear Magnetic Resonance System. J. Nucl. Eng. 2023, 4, 323-337. https://doi.org/10.3390/jne4020025
Hosseinzadehtaher M, D’silva S, Baker M, Kumar R, Hein NT, Shadmand MB, Jagadish SVK, Ghanbarian B. On Design Challenges of Portable Nuclear Magnetic Resonance System. Journal of Nuclear Engineering. 2023; 4(2):323-337. https://doi.org/10.3390/jne4020025
Chicago/Turabian StyleHosseinzadehtaher, Mohsen, Silvanus D’silva, Matthew Baker, Ritesh Kumar, Nathan T. Hein, Mohammad B. Shadmand, S.V. Krishna Jagadish, and Behzad Ghanbarian. 2023. "On Design Challenges of Portable Nuclear Magnetic Resonance System" Journal of Nuclear Engineering 4, no. 2: 323-337. https://doi.org/10.3390/jne4020025
APA StyleHosseinzadehtaher, M., D’silva, S., Baker, M., Kumar, R., Hein, N. T., Shadmand, M. B., Jagadish, S. V. K., & Ghanbarian, B. (2023). On Design Challenges of Portable Nuclear Magnetic Resonance System. Journal of Nuclear Engineering, 4(2), 323-337. https://doi.org/10.3390/jne4020025