Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging
Abstract
:1. Introduction
2. Food Packaging
Characteristics of Food Packaging
3. Biodegradable Films
3.1. Polysaccharides in Biodegradable Films Formulations
3.2. Additives in Biodegradable Films Formulations
4. Biodegradable Films in Food Packaging
4.1. Polysaccharide-Based Biodegradable Films for Wet and Fatty Foods
4.2. Polysaccharide-Based Biodegradable Films for Post-Harvest Foods
5. Regulatory and Safety Issues of Polysaccharide-Based Biodegradable Films
6. Challenges and Perspectives
7. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of Bioplastics for Food Packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Masuelli, M.A.; Zanon, M. State of the Art. In Biopackaging; Masuelli, M.A., Ed.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2018; pp. xv–xx. ISBN 9781498749688. [Google Scholar]
- Han, J.H. Innovations in Food Packaging; Elsevier Ltd.: London, UK, 2005. [Google Scholar]
- Davis, G.; Song, J.H. Biodegradable Packaging Based on Raw Materials from Crops and Their Impact on Waste Management. Ind. Crop. Prod. 2006, 23, 147–161. [Google Scholar] [CrossRef]
- Raheem, D. Application of Plastics and Paper as Food Packaging Materials-An Overview. Emir. J. Food Agric. 2013, 25, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, A. New Food Packaging Materials: An Introduction. In Food Packaging; Kadoya, T., Ed.; Academic Press Inc.: San Diego, CA, USA, 1990; pp. 47–51. ISBN 0123935903. [Google Scholar]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- SEMARNAT. Informe de La Situación Del Medio Ambiente En México. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf (accessed on 2 September 2019).
- Joaquid, D.D.F.; Villada, C.H.S. Propiedades Ópticas Y Permeabilidad De Vapor De Agua En Películas Producidas a Partir De Almidón. Biotecnol. Sect. Agropecu. Agroind. 2013, 11, 59–68. [Google Scholar]
- SEMARNAT. Inventario de Residuos Sólidos de La Ciudad de México. Available online: https://sedema.cdmx.gob.mx/programas/programa/residuos-solidos (accessed on 8 October 2019).
- Briassoulis, D. An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films. J. Polym. Environ. 2004, 12, 65–81. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and Properties of Rice Starch-Chitosan Blend Biodegradable Film. LWT-Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Nanoemulsions as Edible Coatings. Curr. Opin. Food Sci. 2017, 15, 43–49. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Mahunu, G.K.; Arslan, M.; Abdalhai, M.; Zhihua, L. Recent Developments in Gum Edible Coating Applications for Fruits and Vegetables Preservation: A Review. Carbohydr. Polym. 2019, 224, 115141. [Google Scholar] [CrossRef]
- Dwi Ariyanto, H.; Loon Neoh, T.; Yoshii, H. Active Packaging. In Gases in Agro-Food Processes; Cachon, R., Girardon, P., Voilley, A., Eds.; Academic Press, Inc.: San Diego, CA, USA, 2019; pp. 363–372. ISBN 9780128124659. [Google Scholar]
- Singh, P.K.; Singh, R.P.; Singh, P.; Singh, R.L. Food Hazards: Physical, Chemical, and Biological. In Food Safety and Human Health; Singh, R.L., Mondal, S., Eds.; Elsevier Inc.: London, UK, 2019; pp. 15–65. ISBN 9780128163337. [Google Scholar]
- Alexandre, E.M.C.; Pinto, C.A.; Moreira, S.A.; Pintado, M.; Saraiva, J.A. Nonthermal Food Processing/Preservation Technologies. In Saving Food: Production, Supply Chain, Food Waste and Food Consumption; Galanakis, C.M., Ed.; Elsevier Inc.: London, UK, 2019; pp. 141–169. ISBN 9780128153574. [Google Scholar]
- Stoma, M.; Dudziak, A. Eastern Poland Consumer Awareness of Innovative Active and Intelligent Packaging in the Food Industry: Exploratory Studies. Sustainability 2022, 14, 13691. [Google Scholar] [CrossRef]
- Martínez-Tenorio, Y.; López-Malo, A. Envases Activos Con Agentes Antimicrobianos y Su Aplicación En Los Alimentos. Temas Sel. Ing. Aliment. 2011, 5, 1–12. [Google Scholar]
- Díaz-Montes, E.; Castro-Muñoz, R. Trends in Chitosan as a Primary Biopolymer for Functional Films and Coatings Manufacture for Food and Natural Products. Polymers 2021, 13, 767. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.L. Intelligent and Active Packaging for Fruits and Vegetables, 1st ed.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2007; ISBN 9780849391668. [Google Scholar]
- Shinde, R.; Rodov, V.; Krishnakumar, S.; Subramanian, J. Active and Intelligent Packaging for Reducing Postharvest Losses of Fruits and Vegetables. In Postharvest Biology and Nanotechnology; Paliyath, G., Subraamanian, J., Lim, L.-T., Subramanian, K.S., Handa, A.K., Mattoo, A.K., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2018; pp. 171–189. ISBN 9781119289470. [Google Scholar]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent Food Packaging: The next Generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Embuscado, M.E.; Huber, K.C. Edible Films and Coatings for Food Applications; Springer Science & Business Media: New York, NY, USA, 2009; ISBN 9780387928234. [Google Scholar]
- Montalvo, C.; López-Malo, A.; Palou, E. Películas Comestibles de Proteína: Características, Propiedades y Aplicaciones. Temas Sel. Ing. Aliment. 2012, 6, 32–46. [Google Scholar] [CrossRef]
- Shit, S.C.; Shah, P.M. Edible Polymers: Challenges and Opportunities. J. Polym. 2014, 2014, 427259. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ye, R. Edible Active Packaging for Food Application: Materials and Technology. In Biopackaging; Masuelli, M.A., Ed.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2018; pp. 1–19. ISBN 9781498749688. [Google Scholar]
- Debeaufort, F.; Quezada-Gallo, J.-A.; Voilley, A. Edible Films and Coatings: Tomorrow’s Packagings: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annu. Rev. Food Sci. Technol. 2017, 8, 439–466. [Google Scholar] [CrossRef]
- Sánchez Aldana, D.; Contreras-Esquivel, J.C.; Nevárez-Moorillón, G.V.; Aguilar, C.N. Caracterización de Películas Comestibles a Base de Extractos Pécticos y Aceite Esencial de Limón Mexicano. CYTA-J. Food 2015, 13, 17–25. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Galus, S.; Gniewosz, M. Biopolymers-based Materials Containing Silver Nanoparticles as Active Packaging for Food Applications–A Review. Int. J. Mol. Sci. 2020, 21, 698. [Google Scholar] [CrossRef] [Green Version]
- Tharanathan, R.N. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 29. [Google Scholar] [CrossRef]
- Elsevier, B.V. Scopus. Available online: https://www.scopus.com (accessed on 14 November 2022).
- Escamilla-García, M.; García-García, M.C.; Gracida, J.; Hernández-Hernández, H.M.; Granados-Arvizu, J.Á.; Di Pierro, P.; Regalado-González, C. Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan. Int. J. Mol. Sci. 2022, 23, 10560. [Google Scholar] [CrossRef] [PubMed]
- Varun, T.K.; Senani, S.; Jayapal, N.; Chikkerur, J.; Roy, S.; Tekulapally, V.B.; Gautam, M.; Kumar, N. Extraction of Chitosan and Its Oligomers from Shrimp Shell Waste, Their Characterization and Antimicrobial Effect. Vet. World 2017, 10, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Rivers, A.; Stuckey, D.C.; Ward, K. Alginate Extraction from Sargassum Seaweed in the Caribbean Region: Optimization Using Response Surface Methodology. Carbohydr. Polym. 2020, 245, 116419. [Google Scholar] [CrossRef]
- Osemwegie, O.O.; Adetunji, C.O.; Ayeni, E.A.; Adejobi, O.I.; Arise, R.O.; Nwonuma, C.O.; Oghenekaro, A.O. Exopolysaccharides from Bacteria and Fungi: Current Status and Perspectives in Africa. Heliyon 2020, 6, e04205. [Google Scholar] [CrossRef]
- Suderman, N.; Isa, M.I.N.; Sarbon, N.M. The Effect of Plasticizers on the Functional Properties of Biodegradable Gelatin-Based Film: A Review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Physical Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch for Food Packaging. J. Food Sci. Technol. 2016, 53, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Kaewprachu, P.; Osako, K.; Rawdkuen, S. Effects of Plasticizers on the Properties of Fish Myofibrillar Protein Film. J. Food Sci. Technol. 2018, 55, 3046–3055. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.U.; Majeed, Y.; Rebezov, M.; Khayrullin, M.; Bobkova, E.; Shariati, M.A.; Chung, I.M.; Thiruvengadam, M. Potentials of Polysaccharides, Lipids and Proteins in Biodegradable Food Packaging Applications. Int. J. Biol. Macromol. 2021, 183, 2184–2198. [Google Scholar] [CrossRef]
- Hasan, M.; Rusman, R.; Khaldun, I.; Ardana, L.; Mudatsir, M.; Fansuri, H. Active Edible Sugar Palm Starch-Chitosan Films Carrying Extra Virgin Olive Oil: Barrier, Thermo-Mechanical, Antioxidant, and Antimicrobial Properties. Int. J. Biol. Macromol. 2020, 163, 766–775. [Google Scholar] [CrossRef]
- Da Silva, N.S.E.; Hernández, E.J.G.P.; Araújo, C.D.S.; Joele, M.R.S.P.; Lourenço, L.d.F.H. Development and Optimization of Biodegradable Fish Gelatin Composite Film Added with Buriti Oil. CYTA-J. Food 2018, 16, 340–349. [Google Scholar] [CrossRef]
- Rouhi, M.; Razavi, S.H.; Mousavi, S.M. Optimization of Crosslinked Poly(Vinyl Alcohol) Nanocomposite Films for Mechanical Properties. Mater. Sci. Eng. C 2017, 71, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.A.; Bierhalz, A.C.K.; Kieckbusch, T.G. Alginate and Pectin Composite Films Crosslinked with Ca2+ Ions: Effect of the Plasticizer Concentration. Carbohydr. Polym. 2009, 77, 736–742. [Google Scholar] [CrossRef]
- Delville, J.; Joly, C.; Dole, P.; Bliard, C. Solid State Photocrosslinked Starch Based Films: A New Family of Homogeneous Modified Starches. Carbohydr. Polym. 2002, 49, 71–81. [Google Scholar] [CrossRef]
- Figueiró, S.D.; Góes, J.C.; Moreira, R.A.; Sombra, A.S.B. On the Physico-Chemical and Dielectric Properties of Glutaraldehyde Crosslinked Galactomannan-Collagen Films. Carbohydr. Polym. 2004, 56, 313–320. [Google Scholar] [CrossRef]
- Su, J.F.; Yuan, X.Y.; Huang, Z.; Wang, X.Y.; Lu, X.Z.; Zhang, L.D.; Wang, S.B. Physicochemical Properties of Soy Protein Isolate/Carboxymethyl Cellulose Blend Films Crosslinked by Maillard Reactions: Color, Transparency and Heat-Sealing Ability. Mater. Sci. Eng. C 2012, 32, 40–46. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. BioTecniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Sikorski, D.; Gzyra-Jagieła, K.; Draczyński, Z. The Kinetics of Chitosan Degradation in Organic Acid Solutions. Mar. Drugs 2021, 19, 236. [Google Scholar] [CrossRef]
- Deshmukh, A.R.; Aloui, H.; Khomlaem, C.; Negi, A.; Yun, J.; Kim, H.; Kim, S.B. Biodegradable Fi Lms Based on Chitosan and Defatted Chlorella Biomass: Functional and Physical Characterization. Food Chem. 2021, 337, 1–10. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Strumia, M.C.; Alvarez Igarzabal, C.I. Cross-Linked Soy Protein as Material for Biodegradable Films: Synthesis, Characterization and Biodegradation. J. Food Eng. 2011, 106, 331–338. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Genipin-Crosslinked Gelatin/Chitosan-Based Functional Films Incorporated with Rosemary Essential Oil and Quercetin. Materials 2022, 15, 3769. [Google Scholar] [CrossRef]
- Sabbah, M.; Giosafatto, C.V.L.; Esposito, M.; Di Pierro, P.; Mariniello, L.; Porta, R. Transglutaminase Cross-Linked Edible Films and Coatings for Food Applications. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects; Kuddus, M., Ed.; Elsevier Inc.: London, UK, 2019; pp. 369–388. ISBN 9780128132807. [Google Scholar]
- Seiwert, K.; Kamdem, D.P.; Kocabaş, D.S.; Ustunol, Z. Development and Characterization of Whey Protein Isolate and Xylan Composite Films with and without Enzymatic Crosslinking. Food Hydrocoll. 2021, 120, 106847. [Google Scholar] [CrossRef]
- Khan, B.; Khan Niazi, M.B.; Jahan, Z.; Farooq, W.; Naqvi, S.R.; Ali, M.; Ahmed, I.; Hussain, A. Effect of Ultra-Violet Cross-Linking on the Properties of Boric Acid and Glycerol Co-Plasticized Thermoplastic Starch Films. Food Packag. Shelf Life 2019, 19, 184–192. [Google Scholar] [CrossRef]
- Yin, P.; Chen, C.; Ma, H.; Gan, H.; Guo, B.; Li, P. Surface Cross-Linked Thermoplastic Starch with Different UV Wavelengths: Mechanical, Wettability, Hygroscopic and Degradation Properties. RSC Adv. 2020, 10, 44815–44823. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Vergara, L.D.; Cifuentes, M.T.; Franco, A.P.; Pérez-Cervera, C.E.; Andrade-Pizarro, R.D. Development and Characterization of Edible Films Based on Native Cassava Starch, Beeswax, and Propolis. NFS J. 2020, 21, 39–49. [Google Scholar] [CrossRef]
- Díaz-Galindo, E.P.; Nesic, A.; Cabrera-Barjas, G.; Mardones, C.; Von Baer, D.; Bautista-Baños, S.; Garcia, O.D. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape Cane Extract. Molecules 2020, 25, 1306. [Google Scholar] [CrossRef] [Green Version]
- Medeiros Silva, V.D.; Coutinho Macedo, M.C.; Rodrigues, C.G.; Neris dos Santos, A.; de Freitas e Loyola, A.C.; Fante, C.A. Biodegradable Edible Films of Ripe Banana Peel and Starch Enriched with Extract of Eriobotrya Japonica Leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z.; Lacroix, M. Gelatin and Low Methoxyl Pectin Films Containing Probiotics: Film Characterization and Cell Viability. Food Biosci. 2020, 36, 100660. [Google Scholar] [CrossRef]
- Tzia, C.; Sfakianakis, P.; Giannou, V. Raw Materials of Foods: Handling and Management. In Handbook of Food Processing-Food Safety, Quality and Manufacturing Processes; Varzakas, T., Tzia, C., Eds.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2016; pp. 1–40. [Google Scholar]
- Tzia, C.; Giannou, V.; Lignou, S.; Lebesi, D. Sensory Evaluation of Foods. In Handbook of Food Processing-Food Safety, Quality and Manufacturing Processes; Varzakas, T., Tzia, C., Eds.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2016; pp. 41–72. [Google Scholar]
- Abdillah, A.A.; Charles, A.L. Characterization of a Natural Biodegradable Edible Film Obtained from Arrowroot Starch and Iota-Carrageenan and Application in Food Packaging. Int. J. Biol. Macromol. 2021, 191, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Dextran/Chitosan Blend Film Fabrication for Bio-packaging of Mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021, 45, e15489. [Google Scholar] [CrossRef]
- Azevedo, V.M.; Dias, M.V.; de Siqueira Elias, H.H.; Fukushima, K.L.; Silva, E.K.; de Deus Souza Carneiro, J.; de Fátima Ferreira Soares, N.; Borges, S.V. Effect of Whey Protein Isolate Films Incorporated with Montmorillonite and Citric Acid on the Preservation of Fresh-Cut Apples. Food Res. Int. 2018, 107, 306–313. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Hubinger, M.D. Stability, Solubility, Mechanical and Barrier Properties of Cassava Starch-Carnauba Wax Edible Coatings to Preserve Fresh-Cut Apples. Food Hydrocoll. 2012, 28, 59–67. [Google Scholar] [CrossRef]
- El-anany, A.M.; Hassan, G.F.A.; Fm, R.-A. Effects OC Edible Coatings on the Shelf-LiCe and Quality OC Anna Apple (Malus domestica Borkh) During Cold Storage. J. Food Technol. 2009, 7, 5–11. [Google Scholar]
- Sganzerla, W.G.; da Rosa, C.G.; da Silva, A.P.G.; Ferrareze, J.P.; Azevedo, M.S.; Forster-Carneiro, T.; Nunes, M.R.; de Lima Veeck, A.P. Application in Situ of Biodegradable Films Produced with Starch, Citric Pectin and Functionalized with Feijoa (Acca sellowiana (Berg) Burret) Extracts: An Effective Proposal for Food Conservation. Int. J. Biol. Macromol. 2021, 189, 544–553. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Truşcă, R.D.; Ilie, C.I.; Oprea, O.C.; Andronescu, E. Innovative Antimicrobial Chitosan/Zno/Ag Nps/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes. Foods 2020, 9, 1801. [Google Scholar] [CrossRef]
- Indumathi, M.P.; Saral Sarojini, K.; Rajarajeswari, G.R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int. J. Biol. Macromol. 2019, 132, 1112–1120. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Ul-Islam, M.; Ahmed, A.A.Q.; Ullah, M.W.; Yang, G. Silver Decorated Bacterial Cellulose Nanocomposites as Antimicrobial Food Packaging Materials. ES Food Agrofor. 2021, 6, 12–26. [Google Scholar] [CrossRef]
- da Silva Filipini, G.; Romani, V.P.; Guimarães Martins, V. Blending Collagen, Methylcellulose, and Whey Protein in Films as a Greener Alternative for Food Packaging: Physicochemical and Biodegradable Properties. Packag. Technol. Sci. 2020, 34, 91–103. [Google Scholar] [CrossRef]
- Rhim, J.W.; Wang, L.F. Mechanical and Water Barrier Properties of Agar/κ-Carrageenan/Konjac Glucomannan Ternary Blend Biohydrogel Films. Carbohydr. Polym. 2013, 96, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Aguilar, R.I.; Bautista-Baños, S.; Flores-García, G.; Zavaleta-Avejar, L. Impact of Chitosan Based Edible Coatings Functionalized with Natural Compounds on Colletotrichum Fragariae Development and the Quality of Strawberries. Food Chem. 2018, 262, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wangprasertkul, J.; Siriwattanapong, R.; Harnkarnsujarit, N. Antifungal Packaging of Sorbate and Benzoate Incorporated Biodegradable Films for Fresh Noodles. Food Control. 2021, 123, 107763. [Google Scholar] [CrossRef]
- de Farias, Y.B.; Coutinho, A.K.; Assis, R.Q.; Rios, A.d.O. Biodegradable Sodium Alginate Films Incorporated with Norbixin Salts. J. Food Process. Eng. 2020, 43, e13345. [Google Scholar] [CrossRef]
- Santos, L.G.; Alves-Silva, G.F.; Martins, V.G. Active-Intelligent and Biodegradable Sodium Alginate Films Loaded with Clitoria Ternatea Anthocyanin-Rich Extract to Preserve and Monitor Food Freshness. Int. J. Biol. Macromol. 2022, 220, 866–877. [Google Scholar] [CrossRef]
- Han, H.S.; Song, K. Bin Antioxidant Properties of Watermelon (Citrullus lanatus) Rind Pectin Films Containing Kiwifruit (Actinidia chinensis) Peel Extract and Their Application as Chicken Thigh Packaging. Food Packag. Shelf Life 2021, 28, 100636. [Google Scholar] [CrossRef]
- Muppalla, S.R.; Chawla, S.P. Effect of Gum Arabic-Polyvinyl Alcohol Films Containing Seed Cover Extract of Zanthoxylum Rhetsa on Shelf Life of Refrigerated Ground Chicken Meat. J. Food Saf. 2018, 38, e12460. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chawla, S.P. Shelf Life Extension of Chicken Packed in Active Film Developed with Mango Peel Extract. J. Food Saf. 2017, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martiny, T.R.; Raghavan, V.; de Moraes, C.C.; da Rosa, G.S.; Dotto, G.L. Bio-Based Active Packaging: Carrageenan Film with Olive Leaf Extract for Lamb Meat Preservation. Foods 2020, 9, 1795. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Wongphan, P.; Promhuad, K.; Promsorn, J.; Harnkarnsujarit, N. Blown Film Extrusion of PBAT/TPS/ZnO Nanocomposites for Shelf-Life Extension of Meat Packaging. Colloids Surfaces B Biointerfaces 2022, 214, 112472. [Google Scholar] [CrossRef] [PubMed]
- Leelaphiwat, P.; Pechprankan, C.; Siripho, P.; Bumbudsanpharoke, N.; Harnkarnsujarit, N. Effects of Nisin and EDTA on Morphology and Properties of Thermoplastic Starch and PBAT Biodegradable Films for Meat Packaging. Food Chem. 2022, 369, 130956. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, L.M.; Beganović, A.; Schwarz, M.; Noordanus, A.W.; Prem, M.; Zapf, L.; Scheibel, S.; Margreiter, G.; Huck, C.W.; Bach, K. Suitability of Biodegradable Materials in Comparison with Conventional Packaging Materials for the Storage of Fresh Pork Products over Extended Shelf-Life Periods. Foods 2020, 9, 1802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Teixeira, J.S.; Gänzle, M.M.; Saldaña, M.D.A. Development of Antimicrobial Films Based on Cassava Starch, Chitosan and Gallic Acid Using Subcritical Water Technology. J. Supercrit. Fluids 2018, 137, 101–110. [Google Scholar] [CrossRef]
- Kalem, I.K.; Bhat, Z.F.; Kumar, S.; Noor, S.; Desai, A. The Effects of Bioactive Edible Film Containing Terminalia Arjuna on the Stability of Some Quality Attributes of Chevon Sausages. Meat Sci. 2018, 140, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Hashemi, M.; Aminzare, M.; Raeisi, M.; Afshari, A.; Mirza Alizadeh, A.; Rezaeigolestani, M. Comparative Evaluation of Edible Films Impregnated with Sage Essential Oil or Lactoperoxidase System: Impact on Chemical and Sensory Quality of Carp Burgers. J. Food Process. Preserv. 2019, 43, e14070. [Google Scholar] [CrossRef]
- Ehsani, A.; Hashemi, M.; Afshari, A.; Aminzare, M.; Raeisi, M.; Zeinali, T. Effect of Different Types of Active Biodegradable Films Containing Lactoperoxidase System or Sage Essential Oil on the Shelf Life of Fish Burger during Refrigerated Storage. Lwt 2020, 117, 108633. [Google Scholar] [CrossRef]
- Carissimi, M.; Flôres, S.H.; Rech, R. Effect of Microalgae Addition on Active Biodegradable Starch Film. Algal Res. 2018, 32, 201–209. [Google Scholar] [CrossRef]
- Varzakas, T. Meat and Meat Products: Processing, Quality, and Safety. In Handbook of Food Processing-Food Safety, Quality and Manufacturing Processes; Varzakas, T., Tzia, C., Eds.; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2016; pp. 425–486. [Google Scholar]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Quality of Chicken Meat. In Animal Husbandry and Nutrition; Yucel, B., Taski, T., Eds.; IntechOpen: London, UK, 2018; pp. 63–94. [Google Scholar]
- Farahmandfar, R.; Esmaeilzadeh Kenari, R.; Asnaashari, M.; Shahrampour, D.; Bakhshandeh, T. Bioactive Compounds, Antioxidant and Antimicrobial Activities of Arum Maculatum Leaves Extracts as Affected by Various Solvents and Extraction Methods. Food Sci. Nutr. 2019, 7, 465–475. [Google Scholar] [CrossRef]
- Prasad, A.; Rossi, C.; Manoharan, R.R.; Sedlářová, M.; Cangeloni, L.; Rathi, D.; Tamasi, G.; Pospíšil, P.; Consumi, M. Bioactive Compounds and Their Impact on Protein Modification in Human Cells. Int. J. Mol. Sci. 2022, 23, 7424. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, R.; Song, Q.; Xiong, H.; Ma, J.; Xia, R.; Qiao, J. Combinational Antibacterial Activity of Nisin and 3-Phenyllactic Acid and Their Co-Production by Engineered Lactococcus Lactis. Front. Bioeng. Biotechnol. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Li, Q.; Manuel Montalban-lopez, O.P.; Manuel Montalban-lopez, O.P.K. Increasing the Antimicrobial Activity of Nisin-Based. Am. Soc. Microbiol. 2018, 84, 1–15. [Google Scholar]
- Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Al-Baarri, A.N.; Damayanti, N.T.; Legowo, A.M.; Hayakawa, S.; Tekiner, I.H. Enhanced Antibacterial Activity of Lactoperoxidase-Thiocyanate-Hydrogen Peroxide System in Reduced-Lactose Milk Whey. Int. J. Food Sci. 2019, 2019, 22–27. [Google Scholar] [CrossRef]
- Yassine, E.; Rada, B. Microbicidal Activity of Hypothiocyanite against Pneumococcus. Antibiotics 2021, 10, 1313. [Google Scholar] [CrossRef]
- Ziv, C.; Fallik, E. Postharvest Storage Techniques and Quality Evaluation of Fruits and Vegetables for Reducing Food Loss. Agronomy 2021, 11, 1133. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed. Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef]
- FAO. Pérdidas y Desperdicio de Alimentos En El Mundo–Alcance, Causas y Prevención; FAO: Düsseldorf, Germany, 2012. [Google Scholar]
- Chiofalo, B.; Lo Presti, V. Sampling Techniques for the Determination of Volatile Components in Food of Animal Origin. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press, Inc.: Cambridge, MA, USA, 2012; Volume 4, pp. 61–85. ISBN 9780123813749. [Google Scholar]
- Zhang, K.; Fang, K.; Sun, F.; Song, Y.; Qin, H. Progress in Organic Coatings The Hydrophobicity and Swelling of Methyl Cellulose Coating Synergistically Enhancing the Inkjet Printing Qualities of Cotton Fabric. Prog. Org. Coatings 2022, 173, 107187. [Google Scholar] [CrossRef]
- Rastello De Boisseson, M.; Leonard, M.; Hubert, P.; Marchal, P.; Stequert, A.; Castel, C.; Favre, E.; Dellacherie, E. Physical Alginate Hydrogels Based on Hydrophobic or Dual Hydrophobic/Ionic Interactions: Bead Formation, Structure, and Stability. J. Colloid Interface Sci. 2004, 273, 131–139. [Google Scholar] [CrossRef]
- Manzocco, L.; Romano, G.; Calligaris, S.; Nicoli, M.C. Modeling the Effect of the Oxidation Status of the Ingredient Oil on Stability and Shelf Life of Low-Moisture Bakery Products: The Case Study of Crackers. Foods 2020, 9, 749. [Google Scholar] [CrossRef] [PubMed]
- Heiniö, R.-L. Sensory Attributes of Bakery Products. In Bakery Products Science and Technology; Zhou, W., Hui, Y.H., De Leyn, I., Pagani, M.A., Rosell, C.M., Selman, J.D., Therdthai, N., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2014; pp. 391–407. ISBN 9781118792001. [Google Scholar]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings-A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- FDA. Food Ingredients & Packaging. Available online: https://www.fda.gov/food/food-ingredients-packaging (accessed on 12 November 2022).
- MINCETUR. Guía Para Reconocimiento de Una Sustancia GRAS En Estados Unidos, 1st ed.; Ministerio de Comercio Exterior y Turismo: San Isidro, Lima, Perú, 2018.
- Alamri, M.S.; Qasem, A.A.A.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Shamlan, G.; Alqah, H.A.; Qasha, A.S. Food Packaging’s Materials: A Food Safety Perspective. Saudi J. Biol. Sci. 2021, 28, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Pavli, F.; Tassou, C.; Nychas, G.J.E.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19, 150. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Yoshida, C.M.P.; Franco, T.T. Development of a Prototype of a Colourimetric Temperature Indicator for Monitoring Food Quality. J. Food Eng. 2012, 111, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Veiga-Santos, P.; Ditchfield, C.; Tadini, C.C. Development and Evaluation of a Novel PH Indicator Biodegradable Film Based on Cassava Starch. J. Appl. Polym. Sci. 2010, 1120, 1069–1079. [Google Scholar] [CrossRef]
- Yoshida, C.M.P.; Maciel, V.B.V.; Mendonça, M.E.D.; Franco, T.T. Chitosan Biobased and Intelligent Films: Monitoring PH Variations. LWT-Food Sci. Technol. 2014, 55, 83–89. [Google Scholar] [CrossRef]
Food Application | Polymer(s) | Additive(s) | Main Result(s) | Reference |
---|---|---|---|---|
Vegetables, Fruits, and Derivates | ||||
Cherry tomatoes | Starch/Carrageenan | Gly | Films prolonged shelf life | [68] |
Edible mushrooms | Dextran/Chitosan | Gly/Acetic acid | Films prolonged shelf life | [69] |
Fresh-cut apples | Whey protein | Gly/Citric acid/Montmorillonite clay | Films prolonged shelf life | [70] |
Fresh-cut apples | Starch/Carnauba wax | Gly/Stearic acid | Films prolonged shelf life | [71] |
Fresh-cut apples | Soybean gum/Jojoba gum/Arabic gum | Gly/Paraffin oil | Films maintained quality | [72] |
Grapes | Starch/Pectin | Gly/Feijoa extract | Films showed strong antimicrobial activity against Escherichia coli, Salmonella, and Shigella and prolonged shelf life | [73] |
Grapes | Chitosan | ZnO NPs/Ag NPs/Citronella essential oil | Films showed strong antimicrobial activity against Candida albicans, Staphylococcus aureus, and Escherichia coli and prolonged shelf life | [74] |
Grapes | Chitosan/CAP | Gly/ZnO NPs | Films exhibited excellent UV shielding ability and antimicrobial properties and prolonged shelf life | [75] |
Orange | Bacterial cellulose | Ag NPs | Films showed strong antimicrobial and antifungal activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Trichosporone sp., and prolonged shelf life | [76] |
Powdered juice | Methylcellulose | Gly | Films serve as container material | [77] |
Spinach | Agar/K-carrageenan/Konjac | Gly | Films prolonged shelf life | [78] |
Strawberries | Chitosan | Acetic acid/Tween 60/Canola oil/Cinnamon essential oil/Roselle extract | Films incremented the antioxidant capacity and the microbial inhibition and prolonged shelf life | [79] |
Tomatoes | Bacterial cellulose | Ag NPs | Films showed strong antimicrobial and antifungal activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Trichosporone sp. and prolonged shelf life | [76] |
Cereals, Grains, Seeds, and Derivates | ||||
Powdered coffee | Methylcellulose | Gly | Films served as container material | [77] |
Rice | Methylcellulose | Gly | Films served as container material | [77] |
Rice noodles | Starch/PBAT | Benzoate/Sorbate | Films delayed antimicrobial activity against Penicillium sp., and Aspergillus niger. and extended the shelf life | [80] |
Soybean oil | Methylcellulose | Gly | Films served as container material | [77] |
Sunflower oil | Alginate | Gly/Norbixin salts | Films decreased the formation of oxidation products | [81] |
Bakery and Dairy Products | ||||
Bread | Starch/Pectin | Gly/Feijoa extract | Films showed strong antimicrobial activity against Escherichia coli, Salmonella and Shigella, and prolonged shelf life | [73] |
Cookies | Methylcellulose | Gly | Films serve as container material | [77] |
Fresh milk | Alginate | Gly/Clitoria ternatea | Films retarded spoilage and served as indicators of freshness | [82] |
Meats | ||||
Chicken thigh | Pectin | Kiwifruit peel extract | Films decreased lipid oxidation | [83] |
Chicken meat | Gum Arabic/PVA | Sorbitol/Zanthoxylum rhetsa extract | Films incremented the bioactive compounds and prolonged shelf life | [84] |
Chicken meat | Cyclodextrin/Gelatin/PVA | Gly/Mango peel extract | Films prolonged shelf life | [85] |
Ground beef | Starch/Pectin | Gly/Feijoa extract | Films showed strong antimicrobial activity against Escherichia coli, Salmonella, and Shigella and prolonged shelf life | [73] |
Lamb meat | Carrageenan | Olive leaf extract | Films delayed antimicrobial activity against Escherichia coli | [86] |
Pork | Starch/PBAT | Gly/ZnO nanofillers | Films showed high efficiency for the total viable count, lactic acid bacteria, yeast, and mold and prolonged shelf life | [87] |
Pork | Starch/PBAT | Nisin/EDTA | Films retained quality | [88] |
Pork | Alginate | Gly/Clitoria ternatea | Films retarded spoilage and served as indicators of freshness | [82] |
Pork | Cellulose/PLA/PET | -- | Films prolonged shelf life | [89] |
Sausages and Derivates | ||||
Ham slices | Starch/Chitosan | Gly/Gallic acid | Films prolonged shelf life | [90] |
Sausages | Maltodextrin/Sodium alginate/CMC | Gly/Calcium chloride/Terminalia arjuna capsular | Films delayed the oxidation, incremented the antioxidant capacity, and prolonged shelf life | [91] |
Sea Products | ||||
Carp burgers | Chitosan/Alginate/Gelatin | Salvia officinalis essential oil/Lactoperoxidase system | Films reduced spoilage changes and maintained quality | [92] |
Fish burger | Alginate/Chitosan/Gelatin | Gly/Sage essential oil | Films exhibited several positive effects, mainly on psychrotrophic, Pseudomonas and Shewanella, and preserved quality | [93] |
Fish burger | Alginate/Chitosan/Gelatin | Gly/Lactoperoxidase system | Films exhibited several positive effects, mainly on psychrotrophic, Pseudomonas and Shewanella, and preserved quality | [93] |
Salmon | Starch | Gly/Heterochlorella luteoviridis extract | Films decreased lipid oxidation rate and prolonged shelf life | [94] |
Salmon | Starch | Gly/Dunaliella tertiolecta extract | Films decreased lipid oxidation rate and prolonged shelf life | [94] |
Shrimps | Alginate | Gly/Clitoria ternatea | Films retarded spoilage and served as indicators of freshness | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Montes, E. Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. Polysaccharides 2022, 3, 761-775. https://doi.org/10.3390/polysaccharides3040044
Díaz-Montes E. Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. Polysaccharides. 2022; 3(4):761-775. https://doi.org/10.3390/polysaccharides3040044
Chicago/Turabian StyleDíaz-Montes, Elsa. 2022. "Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging" Polysaccharides 3, no. 4: 761-775. https://doi.org/10.3390/polysaccharides3040044
APA StyleDíaz-Montes, E. (2022). Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. Polysaccharides, 3(4), 761-775. https://doi.org/10.3390/polysaccharides3040044