Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives
Abstract
:1. Introduction
2. Overview of Adhesives and Adhesion Mechanism
3. Overview of Heterogeneous Polymerization
4. Nanocellulose-Based Adhesives through Heterogenous Polymerization
4.1. Polyvinyl Acetate (PVA)
4.2. Polymeric Isocyanate Adhesives
4.3. Waterborne Polyurethane (WBPU) Systems
4.4. Other Waterborne Polymer Latexes
5. Challenges and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Government of Canada. Green Construction through Wood (GCWood) Program. Available online: https://www.nrcan.gc.ca/science-and-data/funding-partnerships/funding-opportunities/forest-sector-funding-programs/green-construction-through-wood-gcwood-program/20046 (accessed on 11 November 2021).
- Lengowski, E.C.; Júnior, E.A.B.; Kumode, M.M.N.; Carneiro, M.E.; Satyanarayana, K.G. Nanocellulose-Reinforced Adhesives for Wood-Based Panels. In Sustainable Polymer Composites and Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1001–1025. [Google Scholar]
- Popović, M.; Điporovic-Momčilović, M.; Gavrilović-Grmuša, I. New standards and regulations on formaldehyde emission from wood-based composite panels. Zast. Mater. 2020, 61, 152–160. [Google Scholar] [CrossRef]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef]
- El Mansouri, N.-E.; Pizzi, A.; Salvado, J. Lignin-based polycondensation resins for wood adhesives. J. Appl. Polym. Sci. 2006, 103, 1690–1699. [Google Scholar] [CrossRef]
- El Mansouri, N.-E.; Pizzi, A.; Salvadó, J. Lignin-based wood panel adhesives without formaldehyde. Holz Als Roh-Und Werkst. 2007, 65, 65–70. [Google Scholar] [CrossRef]
- Sain, S.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Öman, T.; Skrifvars, M. Spruce Bark-Extracted Lignin and Tannin-Based Bioresin-Adhesives: Effect of Curing Temperatures on the Thermal Properties of the Resins. Molecules 2021, 26, 3523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Du, G. Applications of Tannin Resin Adhesives in the Wood Industry. In Tannins-Structural Properties, Biological Properties and Current Knowledge; Arias, A., Ed.; IntechOpen: London, UK, 2019; pp. 97–103. [Google Scholar]
- Arias, A.; Feijoo, G.; Moreira, M. Evaluation of Starch as an Environmental-Friendly Bioresource for the Development of Wood Bioadhesives. Molecules 2021, 26, 4526. [Google Scholar] [CrossRef] [PubMed]
- Din, Z.-U.; Chen, L.; Xiong, H.; Wang, Z.; Ullah, I.; Lei, W.; Shi, D.; Alam, M.; Ullah, H.; Khan, S.A. Starch: An Undisputed Potential Candidate and Sustainable Resource for the Development of Wood Adhesive. Starch-Stärke 2020, 72, 1900276. [Google Scholar] [CrossRef]
- Mousavi, S.Y.; Huang, J.; Li, K. A cold-set wood adhesive based on soy protein. Int. J. Adhes. Adhes. 2020, 106, 102801. [Google Scholar] [CrossRef]
- Xi, X.; Pizzi, A.; Gerardin, C.; Chen, X.; Amirou, S. Soy protein isolate-based polyamides as wood adhesives. Wood Sci. Technol. 2019, 54, 89–102. [Google Scholar] [CrossRef]
- Einchhorn, S.J.; Dufresne, A.; Aranguren, M.M.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Veigel, S. Review: Current International Research into Cellulose Nanofibres and Composites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Mondragon, G.; Peña-Rodriguez, C.; González, A.; Eceiza, A.; Arbelaiz, A. Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J. 2014, 62, 1–9. [Google Scholar] [CrossRef]
- Roman, M. Toxicity of Cellulose Nanocrystals: A Review. Ind. Biotechnol. 2015, 11, 25–33. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.I.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 2107–2131. [Google Scholar] [CrossRef] [Green Version]
- Veigel, S.; Müller, U.; Keckes, J.; Obersriebnig, M.; Gindl-Altmutter, W. Cellulose nanofibrils as filler for adhesives: Effect on specific fracture energy of solid wood-adhesive bonds. Cellulose 2011, 18, 1227–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, E.; Tajvidi, M.; Gardner, D.J.; Bousfield, D.W. Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources 2017, 12, 4093–4110. [Google Scholar] [CrossRef] [Green Version]
- Veigel, S.; Rathke, J.; Weigl, M.; Gindl-Altmutter, W. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. J. Nanomater. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Song, S.; Wu, G.; Pu, J. Modified Nanocrystalline Cellulose from Two Kinds of Modifiers Used for Improving Formaldehyde Emission and Bonding Strength of Urea-Formaldehyde Resin Adhesive. BioResources 2011, 6, 4430–4438. [Google Scholar]
- Ayrilmis, N.; Lee, Y.-K.; Kwon, J.H.; Han, T.-H.; Kim, H.-J. Formaldehyde emission and VOCs from LVLs produced with three grades of urea-formaldehyde resin modified with nanocellulose. Build. Environ. 2016, 97, 82–87. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Szentner, K. Properties of Plywood Produced with Urea-Formaldehyde Adhesive Modified with Nanocellulose and Microcellulose. Drv. Ind. 2020, 71, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Vineeth, S.K.; Gadhave, R.V.; Gadekar, P.T. Nanocellulose Applications in Wood Adhesives—Review. Open J. Polym. Chem. 2019, 09, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Rigg-Aguilar, P.; Moya, R.; Oporto-Velásquez, G.S.; Vega-Baudrit, J.; Starbird, R.; Puente-Urbina, A.; Méndez, D.; Potosme, L.D.; Esquivel, M. Micro- and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives. J. Nanomater. 2020, 2020, 1393160. [Google Scholar] [CrossRef]
- Jiang, W.; Tomppo, L.; Pakarinen, T.; Sirviö, J.A.; Liimatainen, H.; Haapala, A.T. Effect of Cellulose Nanofibrils on the Bond Strength of Polyvinyl Acetate and Starch Adhesives for Wood. BioResources 2018, 13, 2283–2292. [Google Scholar] [CrossRef] [Green Version]
- Chaabouni, O.; Boufi, S. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydr. Polym. 2017, 156, 64–70. [Google Scholar] [CrossRef] [PubMed]
- López-Suevos, F.; Eyholzer, C.; Bordeanu, N.; Richter, K. DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 2010, 17, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Kaboorani, A.; Riedl, B.; Blanchet, P.; Fellin, M.; Hosseinaei, O.; Wang, S. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. Eur. Polym. J. 2012, 48, 1829–1837. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Kaddami, H.; Magnin, A.; Belgacem, M.N.; Dufresne, A.; Boufi, S. Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polym. Eng. Sci. 2010, 51, 62–70. [Google Scholar] [CrossRef]
- Damásio, R.A.P.; Carvalho, A.G.; Gomes, F.J.B.; Carneiro, A.; Ferreira, J.C.; Colodette, J.L. Effect of CNC Interaction with Urea-Formaldehyde Adhesive in Bonded Joints of Eucalyptus Sp. Sci. For. 2017, 45, 169–176. [Google Scholar]
- Mahrdt, E.; Pinkl, S.; Schmidberger, C.; van Herwijnen, H.; Veigel, S.; Gindl-Altmutter, W. Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 2015, 23, 571–580. [Google Scholar] [CrossRef]
- Gindl-Altmutter, W.; Veigel, S. Nanocellulose-Modified Wood Adhesives. In Handbook of Green Materials: Processing Technologies, Properties and Applications; Oksman, K., Mathew, A.P., Bismarck, A., Rojas, O., Sain, M., Eds.; World Scientific and Engineering Academy and Society: Singapore, 2014; pp. 253–264. [Google Scholar]
- Kedzior, S.A.; Gabriel, V.A.; Dubé, M.A.; Cranston, E.D. Nanocellulose in Emulsions and Heterogeneous Water-Based Polymer Systems: A Review. Adv. Mater. 2020, 33, 202002404. [Google Scholar] [CrossRef]
- Arshady, R. Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid Polym. Sci. 1992, 270, 717–732. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 2012, 9, 952–959. [Google Scholar] [CrossRef]
- Patricio, P.S.D.O.; Pereira, I.M.; da Silva, N.C.F.; Ayres, E.; Pereira, F.V.; Oréfice, R.L. Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation. Eur. Polym. J. 2013, 49, 3761–3769. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A. Green Emulsion Polymerization Technology. In Polymer Reaction Engineering of Dispersed Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 65–100. [Google Scholar]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Forest Product Laboratory. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021. [Google Scholar]
- Thoemen, H. Wood-Based Panels: An Introduction for Specialists; Thoemen, H., Irle, M., Sernek, M., Eds.; Brunel University Press: London, UK, 2010. [Google Scholar]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a sustainable raw material for green chemistry: A review. Ind. Crop. Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Kumar, R.N.; Pizzi, A. Fundamentals of Adhesion. In Adhesives for Wood and Lignocellulosic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 31–60. [Google Scholar]
- Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Development of Sustainable Bio-Adhesives for Engineered Wood Panels–A Review. Rsc Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef]
- ASTM International. Standard Terminology of Adhesives, ASTM D907-15; American Society for Testing and Materials: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Wu, S. Polymer Interface and Adhesion, 1st ed.; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
- Frihart, C.R.; Hunt, C.G. Adhesives with Wood Materials: Bond Formation and Performance. In Wood Handbook: Wood as an Engineering Material; General Technical Report 190; Forest Products Laboratory: Madison, WI, USA, 2010; pp. 1–24. [Google Scholar]
- lker, O. Wood Adhesives and Bonding Theory. In Adhesives–Application and Properties; Rudawska, A., Ed.; IntechOpen: London, UK, 2016; pp. 271–288. [Google Scholar]
- Horenstein, M.N. Electrostatics and Nanoparticles: What’s the Same, What’s Different? J. Electrost. 2009, 67, 384–393. [Google Scholar] [CrossRef]
- Bailey, A.G. The science and technology of electrostatic powder spraying, transport and coating. J. Electrost. 1998, 45, 85–120. [Google Scholar] [CrossRef]
- Derjaguin, B.; Aleinikova, I.; Toporov, Y. On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technol. 1969, 2, 154–158. [Google Scholar] [CrossRef]
- Inculet, I.I. Electrostatics in industry. J. Electrost. 1978, 4, 175–192. [Google Scholar] [CrossRef]
- Rimai, D.S.; Brown, K.; Zaretsky, M.C.; Lofftus, K.; Aslam, M.; Fowlkes, W.Y.; Weiss, D.S. The Role of Adhesion in Electrophotographic Digital Printing. J. Adhes. Sci. Technol. 2010, 24, 583–617. [Google Scholar] [CrossRef]
- Di Risio, S.; Yan, N. Bioactive Paper Through Inkjet Printing. J. Adhes. Sci. Technol. 2010, 24, 661–684. [Google Scholar] [CrossRef]
- Hubbe, M.A. Bonding between Cellulosic Fibers in the Absence and Presence of Dry-Strength Agents–A Review. BioResources 2006, 1, 281–318. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Landrock, A. Introduction and Adhesion Theories. In Adhesives Technology Handbook; Ebnesajjad, S., Landrock, A., Eds.; Elsevier Inc.: London, UK, 2015; pp. 1–18. [Google Scholar]
- Pizzi, A. A Brief, Non-Mathematical Review of Adhesion Theories as Regards Their Applicability to Wood. Holzforsch Holzververt 1992, 44, 6–11. [Google Scholar]
- Hiziroglu, S.; Zhong, Z.; Ong, W. Evaluating of bonding strength of pine, oak and nyatoh wood species related to their surface roughness. Measurement 2014, 49, 397–400. [Google Scholar] [CrossRef]
- Gardner, D.J. Adhesion Mechanisms of Durable Wood Adhesive Bonds. In Characterization of the Cellulosic Cell Wall; Stokke, D., Groom, L., Eds.; Blackwell Publishing Ltd: Iowa, USA, 2006; pp. 254–265. [Google Scholar]
- Johns, W.E. The Chemical Bonding of Wood. In Wood Adhesives; CRC Press: Boca Ratón, FL, USA, 2018; pp. 75–96. [Google Scholar]
- Zhou, X.; Frazier, C.E. Double labeled isocyanate resins for the solid-state NMR detection of urethane linkages to wood. Int. J. Adhes. Adhes. 2001, 21, 259–264. [Google Scholar] [CrossRef]
- Das, S.; Malmberg, M.J.; Frazier, C.E. Cure chemistry of wood/polymeric isocyanate (PMDI) bonds: Effect of wood species. Int. J. Adhes. Adhes. 2007, 27, 250–257. [Google Scholar] [CrossRef]
- Gardner, D.J.; Blumentritt, M.; Wang, L.; Yildirim, N. Adhesion Theories in Wood Adhesive Bonding. Rev. Adhes. Adhes. 2014, 2, 127–172. [Google Scholar] [CrossRef]
- Pizzi, A.; Mtsweni, B.; Parsons, W. Wood-induced Catalytic Activation of PF Adhesives Autopolymerization vs. PF/Wood Covalent Bonding. J. Appl. Polym. Sci. 1994, 52, 1847–1856. [Google Scholar] [CrossRef]
- Riedl, B.; He, G. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Sci. Technol. 2004, 38, 69–81. [Google Scholar] [CrossRef]
- Pizzi, A.; Panamgama, L.A. Diffusion Hindrance vs. Wood-induced Catalytic Activation of MUF Adhesive Polycondensation. J. Appl. Polym. Sci. 1995, 58, 109–115. [Google Scholar] [CrossRef]
- Wålinder, M.E.P.; Gardner, D.J. Acid–base characterization of wood and selected thermoplastics. J. Adhes. Sci. Technol. 2002, 16, 1625–1649. [Google Scholar] [CrossRef]
- Bikerman, J.J. Causes of Poor Adhesion: Weak Boundary Layers. Ind. Eng. Chem. 1967, 59, 40–44. [Google Scholar] [CrossRef]
- Asua, J.M. Introduction to Polymerization Processes. In Polymer Reaction Engineering; Asua, J., Ed.; Blackwell Publishing Ltda: Oxforda, MS, USA, 2007; pp. 1–28. [Google Scholar]
- Zhang, J.; Li, X.; Shi, X.; Hua, M.; Zhou, X.; Wang, X. Synthesis of core–shell acrylic–polyurethane hybrid latex as binder of aqueous pigment inks for digital inkjet printing. Prog. Nat. Sci. 2012, 22, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Butler, L.N.; Fellows, C.M.; Gilbert, R.G. Effect of surfactants used for binder synthesis on the properties of latex paints. Prog. Org. Coat. 2005, 53, 112–118. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Ferguson, C.J.; Franich, R.A.; Russell, G.T. Evaluation of latex adhesives containing hydrophobic cores and poly(vinyl acetate) shells: Potential to improve poly(vinyl acetate) performance. Int. J. Adhes. Adhes. 2005, 25, 127–137. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci. Technol. 2003, 37, 94A–101A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Kawaguchi, S.; Ito, K. Dispersion Polymerization. In Polymer Particles. Advances in Polymer Science; Okubo, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 299–328. [Google Scholar]
- Barandiaran, M.J.; De La Cal, J.C.; Asua, J.M. Emulsion Polymerization. In Polymer Reaction Engineering; Asua, J., Ed.; Blackwell Publishing Ltda: Oxford, MS, USA, 2007; pp. 233–272. [Google Scholar]
- Kiparissides, C. Polymerization reactor modeling: A review of recent developments and future directions. Chem. Eng. Sci. 1996, 51, 1637–1659. [Google Scholar] [CrossRef]
- Harkins, W.D. A General Theory of the Mechanism of Emulsion Polymerization1. J. Am. Chem. Soc. 1947, 69, 1428–1444. [Google Scholar] [CrossRef]
- Ugelstad, J.; El-Aasser, M.S.; Vanderhoff, J.W. Emulsion polymerization: Initiation of polymerization in monomer droplets. J. Polym. Sci. Part C: Polym. Lett. 1973, 11, 503–513. [Google Scholar] [CrossRef]
- Yildiz, U.; Hazer, B.; Tauer, K. Tailoring polymer architectures with macromonomer azoinitiators. Polym. Chem. 2012, 3, 1107–1118. [Google Scholar] [CrossRef]
- Save, M.; Manguian, M.; Chassenieux, C.; Charleux, B. Synthesis by RAFT of Amphiphilic Block and Comblike Cationic Copolymers and Their Use in Emulsion Polymerization for the Electrosteric Stabilization of Latexes. Macromolecules 2005, 38, 280–289. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Madivala, B.; Vandebril, S.; Fransaer, J.; Vermant, J. Exploiting particle shape in solid stabilized emulsions. Soft Matter 2009, 5, 1717–1727. [Google Scholar] [CrossRef]
- Capron, I.; Rojas, O.; Bordes, R. Behavior of nanocelluloses at interfaces. Curr. Opin. Colloid Interface Sci. 2017, 29, 83–95. [Google Scholar] [CrossRef]
- Dastjerdi, Z.; Cranston, E.D.; Dubé, M.A. Pressure sensitive adhesive property modification using cellulose nanocrystals. Int. J. Adhes. Adhes. 2018, 81, 36–42. [Google Scholar] [CrossRef]
- Cherhal, F.; Cousin, F.; Capron, I. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2016, 17, 496–502. [Google Scholar] [CrossRef]
- Saelices, C.J.; Save, M.; Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: The effect of monomers on particle size. Polym. Chem. 2019, 10, 727–737. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Dastjerdi, Z.; Cranston, E.D.; Berry, R.; Fraschini, C.; Dubé, M.A. Polymer Nanocomposites for Emulsion-Based Coatings and Adhesives. Macromol. React. Eng. 2018, 13. [Google Scholar] [CrossRef]
- Dastjerdi, Z.; Cranston, E.D.; Dubé, M.A. Synthesis of Poly (N-butyl Acrylate/Methyl Methacrylate)/CNC Latex Nanocomposites via In Situ Emulsion Polymerization. Macromol. React. Eng. 2017, 11, 1700013. [Google Scholar] [CrossRef]
- Ouzas, A.; Niinivaara, E.; Cranston, E.D.; Dubé, M.A. Synthesis of Poly (Isobutyl Acrylate/N-butyl Acrylate/Methyl Methacrylate)/CNC Nanocomposites for Adhesive Applications via in Situ Semi-batch Emulsion Polymerization. Polym. Compos. 2019, 40, 1365–1377. [Google Scholar] [CrossRef]
- Yu, Q.; Yang, W.; Wang, Q.; Dong, W.; Du, M.; Ma, P. Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr. Polym. 2019, 217, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ben Mabrouk, A.; Dufresne, A.; Boufi, S. Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohydr. Polym. 2019, 229, 115504. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A. Synthetic Adhesives for Wood Fibers and Composites: Chemistry and Technology. In Lignocellulosic Fibers and Wood Handbook: Renewable Materials for Today’s Environment; Belgacem, M.N., Pizzi, A., Eds.; John Wiley & Sons: Chichester, UK, 2016; pp. 245–276. [Google Scholar]
- Gaul, J.M.; Nguyen, T.; Babiec, J.S., Jr. Novel Isocyanate Binder Systems for Composite Wood Panels. J. Elastomers Plast. 1984, 16, 206–228. [Google Scholar] [CrossRef]
- Yelle, D.J.; Ralph, J.; Frihart, C.R. Delineating PMDI Model Reactions with Loblolly Pine via Solution-State NMR Spectroscopy. Part 1. Catalyzed Reactions with Wood Models and Wood Polymers. Holzforschung 2011, 65, 131–143. [Google Scholar] [CrossRef]
- Chen, H.; Gnanasekar, P.; Nair, S.S.; Xu, W.; Chauhan, P.; Yan, N. Lignin as a Key Component in Lignin-Containing Cellulose Nanofibrils for Enhancing the Performance of Polymeric Diphenylmethane Diisocyanate Wood Adhesives. ACS Sustain. Chem. Eng. 2020, 8, 17165–17176. [Google Scholar] [CrossRef]
- Aristri, M.; Lubis, M.; Yadav, S.; Antov, P.; Papadopoulos, A.; Pizzi, A.; Fatriasari, W.; Ismayati, M.; Iswanto, A. Recent Developments in Lignin- and Tannin-Based Non-Isocyanate Polyurethane Resins for Wood Adhesives—A Review. Appl. Sci. 2021, 11, 4242. [Google Scholar] [CrossRef]
- García, J.L.; Pans, G.; Phanopoulos, C. Use of lignin in polyurethane-based structural wood adhesives. J. Adhes. 2018, 94, 814–828. [Google Scholar] [CrossRef]
- Arias, A.; Entrena-Barbero, E.; Feijoo, G.; Moreira, M.T. Sustainable non-isocyanate polyurethanes bio-adhesives for engineered wood panels are revealed as promising candidates to move from formaldehyde-based alternatives. J. Environ. Chem. Eng. 2021, 10, 107053. [Google Scholar] [CrossRef]
- Ghahri, S.; Pizzi, A.; Mohebby, B.; Mirshokraie, A.; Mansouri, H.R. Soy-based, tannin-modified plywood adhesives. J. Adhes. 2018, 94, 218–237. [Google Scholar] [CrossRef]
- Cao, X.; Habibi, Y.; Lucia, L.A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 2009, 19, 7137–7145. [Google Scholar] [CrossRef]
- Kuan, H.; Ma, C.-C.M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos. Sci. Technol. 2005, 65, 1703–1710. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, M.W.; Shin, E.J. One-Pot Processing of Regenerated Cellulose Nanoparticles/Waterborne Polyurethane Nanocomposite for Eco-friendly Polyurethane Matrix. Polymers 2019, 11, 356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lu, Y.; Fan, M.; Jiang, P.; Bao, Y.; Gao, X.; Xia, J. Role of cellulose-based composite materials in synergistic reinforcement of environmentally friendly waterborne polyurethane. Prog. Org. Coat. 2020, 147, 105811. [Google Scholar] [CrossRef]
- Khadivi, P.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Sofla, R.L.M. Polydimethylsiloxane-based Polyurethane/cellulose Nanocrystal Nanocomposites: From Structural Properties Toward Cytotoxicity. Silicon 2021, 9p. [Google Scholar] [CrossRef]
- Kedzior, S.A.; Kiriakou, M.; Niinivaara, E.; Dubé, M.A.; Fraschini, C.; Berry, R.M.; Cranston, E.D. Incorporating Cellulose Nanocrystals into the Core of Polymer Latex Particles via Polymer Grafting. ACS Macro Lett. 2018, 7, 990–996. [Google Scholar] [CrossRef]
- ReportLinker. Wood Adhesives Market by Resin Type, Technology, Application—Global Forecast to 2026; Available online: https://www.reportlinker.com/p04507365/Wood-Adhesives-Market-by-Resin-Type-Technology-Application-Global-Forecast-to.html (accessed on 11 November 2021).
- Errezma, M.; Ben Mabrouk, A.; Boufi, S. Waterborne acrylic–cellulose nanofibrils nanocomposite latexes via miniemulsion polymerization. Prog. Org. Coat. 2017, 109, 30–37. [Google Scholar] [CrossRef]
- Errezma, M.; Ben Mabrouk, A.; Magnin, A.; Dufresne, A.; Boufi, S. Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohydr. Polym. 2018, 202, 621–630. [Google Scholar] [CrossRef]
- Pizzi, A. Bioadhesives for Wood and Fibres. Rev. Adhes. Adhes. 2013, 1, 88–113. [Google Scholar] [CrossRef]
- Bwatanglang, I.B.; Musa, Y.; Yusof, N.A. Market Analysis and Commercially Available Cellulose and Hydrogel-Based Composites for Sustainability, Clean Environment, and Human Health. In Sustainable Nanocellulose and Nanohydrogels from Natural Sources; Mohammad, F., Al-Lohedan, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 65–79. [Google Scholar]
Type of Adhesive | Adhesive | Application Area/Typical Uses |
---|---|---|
Thermoplastic | Cross-linked poly(vinyl acetate) emulsion | Nonstructural Interior and exterior doors; molding and architectural woodwork; cellulosic overlays |
Polyvinyl/acrylate | ||
Polyethylene | ||
Polystyrene | ||
Synthetic rubber | ||
Thermoset | Urea–formaldehyde | Structural Hardwood plywood; furniture; medium density fiberboard; particleboard; underlayment; flush doors; furniture cores |
Melamine and melamine–urea–formaldehyde | Structural Melamine–urea–formaldehyde primary adhesive for durable bonds in hardwood plywood; end-jointing and edge-gluing of lumber; and scarf joining softwood plywood, ultra-low emitting formaldehyde adhesive for particleboard and fiberboard | |
Phenol–formaldehyde | Structural Primary adhesive for exterior softwood plywood, flakeboard, hardboard, pressed laminated wood, glued laminated wood, waferboard and OSB and low emission particleboard | |
Tannin–formaldehyde Tannin–phenol–formaldehyde Tannin–urea–formaldehyde | Nonstructural Plywood (interior and exterior) | |
Resorcinol– and phenol–resorcinol–formaldehyde | Structural/ Primary adhesives for laminated timbers and assembly joints that must withstand severe service conditions | |
Isocyanate-based adhesives | Structural Laminated strand lumber, OSB, I-beams |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritz, C.; Olivera, J.F. Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives. Polysaccharides 2022, 3, 219-235. https://doi.org/10.3390/polysaccharides3010012
Fritz C, Olivera JF. Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives. Polysaccharides. 2022; 3(1):219-235. https://doi.org/10.3390/polysaccharides3010012
Chicago/Turabian StyleFritz, Consuelo, and Juan Francisco Olivera. 2022. "Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives" Polysaccharides 3, no. 1: 219-235. https://doi.org/10.3390/polysaccharides3010012
APA StyleFritz, C., & Olivera, J. F. (2022). Nanocellulose in Heterogeneous Water-Based Polymerization for Wood Adhesives. Polysaccharides, 3(1), 219-235. https://doi.org/10.3390/polysaccharides3010012