Dextran: Sources, Structures, and Properties
Abstract
:1. Introduction
2. Synthesis of Dextran
3. Characteristics of Dextran
LAB | Substrates | Dextran | Reference | |||
---|---|---|---|---|---|---|
Genus | Subspecies | Source | Molecular Weight | Linkages | ||
Leuconostoc mesenteroides | SD1 | Agave salmiana | Sucrose 10% | α-(1→6) 93% α-(1→3) 7% | [12] | |
SD23 | Agave salmiana | Sucrose 10% | α-(1→6) 95% α-(1→3) 5% | |||
SF2 | Agave salmiana | Sucrose 10% | α-(1→6) 94% α-(1→3) 6% | |||
SF3 | Agave salmiana | Sucrose 10% | α-(1→6) 74% α-(1→3) 26% | |||
NRRL B512 | Milk permeate 5% | <10 kDa | [31] | |||
NRRL B512 | Sucrose 3% | <40 kDa | ||||
NRRL B512 | Molasses | [40] | ||||
NRRL B512 | Cheese whey 6% | |||||
NRRL B512 | Molasses + Cheese whey 2–10% | |||||
CM9 | Camel milk | Sucrose 2% | 230 MDa | [29] | ||
CM30 | Camel milk | Sucrose 2% | 390 MDa | |||
SM34 | Sheep milk | Sucrose 2% | 210 MDa | |||
RTF10 | Meat products | Sucrose 2% | 440 MDa | |||
BA08 | Fermented rice batter | Whey + Sucrose 5% | α-(1→6) 93% α-(1→3) 7% | [14] | ||
KIBGE-IB22 | Indigenous source | Sucrose 10% | 15–20 MDa | α-(1→6) α-(1→3) β-(2→6) | [35] | |
KIBGE-IB22M20 | Mutant | Sucrose 10% | 25–40 MDa | α-(1→6) α-(1→3) | ||
BD1710 | Tomato juice + Sucrose 15% | 635 kDa | α-(1→6) 94% α-(1→3) 6% | [41] | ||
ATCC 10830 | Residual pineapple juice + Sucrose 15% | 960 kDa | [42] | |||
AA1 | Fermented cabbage | Sucrose 10% | 10–40 MDa | [15] | ||
NRRL B-1149 | Sucrose 10% + Maltose 5% | α-(1→6) 52% α-(1→3) 48% | [43] | |||
UICT/L18 | Fermented idli batter | Sucrose 22% | 970 kDa | α-(1→6) α-(1→4) | [16] | |
Leuconostoc carnosum | CUPV411 | Apple must | Sucrose 2% | 358 MDa | α-(1→6) α-(1→3) | [44] |
Leuconostoc citreum | SK24.002 | Fermented pickles | Sucrose 10% | 46 MDa | α-(1→6) 56% α-(1→3) 44% | [17] |
Leuconostoc sp. | LS1 | Sauerkraut | Sucrose 15% | [45] | ||
LI1 | Idli batter | Sucrose 15% | ||||
Lactobacillus mali | CUPV271 | Ropy slime of cooked ham | Sucrose 2% | 123 MDa | α-(1→6) α-(1→3) | [44] |
Lactobacillus sakei | MN1 | Meat products | Sucrose 2% | 170 MDa | [29] | |
Lactobacillus plantarum | DM5 | Ethnic fermented beverage | Sucrose 5% | α-(1→6) 87% α-(1→3) 13% | [46] | |
LS3 | Stool samples | Sucrose 15% | [47] | |||
Lactobacillus gasseri | LV1 | Vaginal swabs | Sucrose 15% | |||
LV2 | Vaginal swabs | Sucrose 15% | ||||
LS1 | Stool samples | Sucrose 15% | ||||
Lactobacillus acidophilus | LV3 | Vaginal swabs | Sucrose 15% | |||
LV4 | Vaginal swabs | Sucrose 15% | ||||
LV5 | Vaginal swabs | Sucrose 15% | ||||
Lactobacillus fermentum | LS2 | Stool samples | Sucrose 15% | |||
Lactobacillus satsumensis | NRRL B-59839 | Water kefir grains | Sucrose 20% | α-(1→6) 55% α-(1→3) 45% | [48] | |
Weissella cibaria | 27 | Kimchi | Sucrose 20% | 12 MDa | α-(1→6) | [49] |
10M | Sucrose 0.5 M | 5–40 MDa | [50] | |||
YB-1 | Pickle cabbage | Sucrose 5% | 390 kDa | α-(1→6) 96% α-(1→3) 4% | [51] | |
RBA12 | Pummelo | Sucrose 2% | α-(1→6) 97% α-(1→3) 3% | [13] | ||
11GM-2 | Sour milk | Sucrose 20% | >20 MDa | α-(1→6) 95% α-(1→3) 5% | [52] | |
JAG8 | Apple peel | Sucrose 10% | 800 kDa | [53] | ||
JAG8 | Apple peel | Sucrose 2% | 177 kDa | α-(1→6) 93% α-(1→3) 7% | [54] | |
MG1 | Sucrose 10% | α-(1→6) | [55] | |||
CMGDEX3 | Cabbage | Sucrose 15% | >2 MDa | α-(1→6) 97% α-(1→3) 3% | [56] | |
Weissella confusa | PP29 | Romanian yoghurt | Sucrose 8% | 120–870 kDa | α-(1→6) 96% α-(1→3) 4% | [57] |
PP29 | Romanian yoghurt | Milk + Sucrose 8% | 120–250 kDa | α-(1→6) 96% α-(1→3) 4% | ||
R003 | Sugar cane juice | Sucrose 10% | 10 MDa | α-(1→6) 97%α-(1→3) 3% | [58] | |
QS813 | Sourdough starters | Sucrose 5% | 160 MDa | α-(1→6) 97% α-(1→3) 3% | [59] | |
A3/2-1 | Fermented cassava | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | [52] | |
A4/2-1 | Fermented cassava | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
F3/2-2 | Fermented cassava | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
E5/2-1 | Fermented cassava | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
G3/2-2 | Fermented cassava | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
8CS-2 | Sour milk | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
11GU-1 | Sour milk | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
11GT-2 | Sour milk | Sucrose 10% | >20 MDa | α-(1→6) 97% α-(1→3) 3% | ||
K1-Lb5 | Kimchi | Sucrose 20% | 1158 kDa | α-(1→6) α-(1→3) | [60] | |
Cab3 | Fermented cabbage | Sucrose 5% | [61] | |||
Weissella sp. | TN610 | Pear | Sucrose 4% | 180 kDa | α-(1→6) 96% α-(1→3) 4% | [62] |
4. Properties of Dextran
5. Concluding Remarks and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Voidarou, C.; Antoniadou, M.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2021, 10, 1–27. [Google Scholar]
- Mozzi, F. Lactic acid bacteria. In Encyclopedia of Food Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 501–508. ISBN 9780123849533. [Google Scholar]
- Bintsis, T. Lactic acid bacteria: Their applications in foods. J. Bacteriol. Mycol. Open Access 2018, 6, 89–94. [Google Scholar]
- Narvhus, J.A.; Axelsson, L. Lactic acid bacteria. In Encyclopedia of Food Sciences and Nutrition; Academic Press: San Diego, CA, USA, 2003; pp. 3465–3472. ISBN 012227055X. [Google Scholar]
- Welman, A.D.; Maddox, I.S. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 2003, 21, 269–274. [Google Scholar] [CrossRef]
- Laws, A.; Gu, Y.; Marshall, V. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol. Adv. 2001, 19, 597–625. [Google Scholar] [CrossRef]
- Yadav, H.; Karthikeyan, C. Natural polysaccharides: Structural features and properties. In Polysaccharide Carriers for Drug Delivery; Maiti, S., Jana, S., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 1–17. ISBN 9780081025536. [Google Scholar]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional polymers based on dextran. In Polysaccharides II; Klemm, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 199–291. ISBN 9783540371021. [Google Scholar]
- Prechtl, R.M.; Janßen, D.; Behr, J.; Ludwig, C.; Küster, B.; Vogel, R.F.; Jakob, F. Sucrose-induced proteomic response and carbohydrate utilization of lactobacillus sakei TMW 1.411 during dextran formation. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kothari, D.; Das, D.; Patel, S.; Goyal, A. Dextran and food application. In Polysaccharides; Gopal Ramawat, K., Mérillon, J.-M., Eds.; Springer International Publishing: Gewerbestrasse, AG, Switzerland, 2014; pp. 735–752. ISBN 9783319162973. [Google Scholar]
- Besrour-Aouam, N.; Fhoula, I.; Hernández-Alcántara, A.M.; Mohedano, M.L.; Najjari, A.; Prieto, A.; Ruas-Madiedo, P.; López, P.; Ouzari, H.-I. The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydr. Polym. 2020, 253, 117254. [Google Scholar] [CrossRef]
- Castro-Rodríguez, D.; Hernández-Sánchez, H.; Yáñez-Fernández, J. Structural characterization and rheological properties of dextran produced by native strains isolated of Agave salmiana. Food Hydrocoll. 2019, 90, 1–8. [Google Scholar]
- Baruah, R.; Maina, N.H.; Katina, K.; Juvonen, R.; Goyal, A. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int. J. Food Microbiol. 2016, 242, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Lule, V.K.; Singh, R.; Pophaly, S.D.; Poonam Tomar, S.K. Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in whey. Int. J. Dairy Technol. 2016, 69, 520–531. [Google Scholar] [CrossRef]
- Aman, A.; Siddiqui, N.N.; Qader, S.A.U. Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr. Polym. 2012, 87, 910–915. [Google Scholar] [CrossRef]
- Sawale, S.D.; Lele, S.S. Statistical optimization of media for dextran production by Leuconostoc sp., isolated from fermented Idli batter. Food Sci. Biotechnol. 2010, 19, 471–478. [Google Scholar] [CrossRef]
- Miao, M.; Huang, C.; Jia, X.; Cui, S.W.; Jiang, B.; Zhang, T. Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocoll. 2015, 50, 37–43. [Google Scholar] [CrossRef]
- Alcalde, M.; Plou, F.J.; Martín, M.T.; Remaud, M.; Monsan, P.; Ballesteros, A. Stability in the presence of organic solvents of dextransucrase from Leuconostoc mesenteroides NRRL B-512F immobilized in calcium-alginate beads. Prog. Biotechnol. 1998, 15, 535–540. [Google Scholar]
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Ajdić, D.; McShan, W.M.; McLaughlin, R.E.; Savić, G.; Chang, J.; Carson, M.B.; Primeaux, C.; Tian, R.; Kenton, S.; Jia, H.; et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 2002, 99, 14434–14439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BeMiller, J.N. Dextran. In Encyclopedia of Food Sciences and Nutrition; Academic Press: San Diego, CA, USA, 2003; pp. 1772–1773. ISBN 012227055X. [Google Scholar]
- DeBelder, A.N. Dextran. In Industrial gums-Polysaccharides and their derivates; Whistler, R.L., BeMiller, J.N., Eds.; Academic Press, Inc.: London, UK, 1993; pp. 399–425. ISBN 0127462538. [Google Scholar]
- Jeanes, A. Dextrans and pullulans: Industrially significant α-D-Ggucans. In Extracellular Microbial Polysaccharides; Sandford, P.A., Allen, L., Eds.; American Chemical Society: Washington, DC, USA, 1977; pp. 284–298. ISBN 9780841203723. [Google Scholar]
- Koepsell, H.J.; Tsuchiya, H.M. Enzymatic synthesis of dextran. J. Bacteriol. 1952, 63, 293–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, H.M.; Koepsell, H.J.; Corman, J.; Bryant, G.; Bogard, M.O.; Feger, V.H.; Jackson, R.W. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J. Bacteriol. 1952, 64, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Wolff, I.A.; Mehltretter, C.L.; Mellies, R.L.; Watson, P.R.; Hofreiter, B.T.; Patrick, P.L.; Rist, C.E. Production of clinical-type dextran-Partial hydrolytic depolymerization and fractionation of the dextran from Leuconostoc mesenteroides strain NRRL B-512. Ind. Eng. Chem. 1954, 46, 370–377. [Google Scholar] [CrossRef]
- Zief, M.; Brunner, G.; Metzendorf, J. Fractionation of partially hydrolyzed dextran. J. Am. Pharm. Assoc. Am. 1956, 48, 119–121. [Google Scholar] [CrossRef]
- Bhavani, A.L.; Nisha, J. Dextran-The polysaccharide with versatile uses. Int. J. Pharma Bio Sci. 2010, 1, 569–573. [Google Scholar]
- Zarour, K.; Llamas, M.G.; Prieto, A.; Rúas-Madiedo, P.; Dueñas, M.T.; de Palencia, P.F.; Aznar, R.; Kihal, M.; López, P. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydr. Polym. 2017, 174, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.H.; Killen, D.A.; Jolly, P.C.; Kirtley, J.H. Low molecular weight dextran in vascular surgery: Prevention of early thrombosis following arterial recosntruction in 85 cases. Ann. Surg. 1966, 163, 764–770. [Google Scholar] [CrossRef]
- Esmaeilnejad-Moghadam, B.; Mokarram, R.R.; Hejazi, M.A.; Khiabani, M.S.; Keivaninahr, F. Low molecular weight dextran production by Leuconostoc mesenteroides strains: Optimization of a new culture medium and the rheological assessments. Bioact. Carbohydr. Diet. Fibre 2019, 18, 100181. [Google Scholar] [CrossRef]
- Sarwat, F.; Qader, S.A.U.; Aman, A.; Ahmed, N. Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int. J. Biol. Sci. 2008, 4, 379–386. [Google Scholar]
- Martinez-Espindola, J.P.; Lopez-Munguia, C.A. On the kinetics of dextransucrase and dextran synthesis in batch reactors. Biotechnol. Lett. 1985, 7, 483–486. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Lazado, C.C. Nutritional impacts on fish mucosa: Immunostimulants, pre- and probiotics. In Mucosal Health in Aquaculture; Beck, B.H., Peatman, E., Eds.; Academic Press: London, UK, 2015; pp. 211–272. ISBN 9780124171862. [Google Scholar]
- Siddiqui, N.N.; Aman, A.; Silipo, A.; Qader, S.A.U.; Molinaro, A. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr. Polym. 2014, 99, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Sabatie, J.; Choplin, L.; Moan, M.; Doublier, J.L.; Paul, F.; Monsan, P. The effect of synthesis temperature on the structure of dextran NRRL B 512F. Carbohydr. Polym. 1988, 9, 87–101. [Google Scholar] [CrossRef]
- Braswell, E.; Goodmatu, A.; Kurt, G. Studies on the enzymatic synthesis of dextran. Part II. J. Polym. Sci. 1962, 61, 143–154. [Google Scholar] [CrossRef]
- Hamdy, M.; Gardner, E.; Stahly, G.; Weiser, H. Factors affecting production and clarification of dextran. Ohio J. Sci. 1954, 54, 317–328. [Google Scholar]
- Hellman, N.N.; Tsuchiya, H.M.; Rogovin, S.P.; Lamberts, B.L.; Tobin, R.; Glass, C.A.; Stringer, C.S.; Jackson, R.W.; Senti, F.R. Controlled enzymatic synthesis of dextran-Conditions for producing clinically suitable molecular weight. Ind. Eng. Chem. 1955, 47, 1593–1598. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Gavahian, M.; Yousefi, A.R.; Askari, H. Fermentative production of dextran using food industry wastes. Int. J. Nutr. Food Eng. 2010, 4, 1921–1923. [Google Scholar]
- Han, J.; Hang, F.; Guo, B.; Liu, Z.; You, C.; Wu, Z. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohydr. Polym. 2014, 112, 556–562. [Google Scholar] [CrossRef]
- Vega, J.; Sibaja, M.; Lopretti, M. Biosíntesis de dextranos de alto peso molecular mediante la inoculación con Leuconostoc síntesis y caracterización de hierro-dextranos. Innotec 2012, 7, 55–58. [Google Scholar]
- Shukla, R.; Shukla, S.; Bivolarski, V.; Iliev, I.; Ivanova, I.; Goyal, A. Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food Technol. Biotechnol. 2011, 49, 291–296. [Google Scholar]
- Llamas-Arriba, M.G.; Puertas, A.I.; Prieto, A.; López, P.; Cobos, M.; Miranda, J.I.; Marieta, C.; Ruas-Madiedo, P.; Dueñas, M.T. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll. 2019, 89, 613–622. [Google Scholar] [CrossRef]
- Subathra Devi, C.; Reddy, S.; Mohanasrinivasan, V. Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products. Front. Biol. 2014, 9, 244–253. [Google Scholar] [CrossRef]
- Das, D.; Goyal, A. Characterization and biocompatibility of glucan: A safe food additive from probiotic Lactobacillus plantarum DM5. J. Sci. Food Agric. 2014, 94, 683–690. [Google Scholar] [CrossRef]
- Kareem, A.J.; Salman, J.A.S. Production of dextran from locally lactobacillus spp. isolates. Rep. Biochem. Mol. Biol. 2019, 8, 278–286. [Google Scholar]
- Côté, G.L.; Skory, C.D.; Unser, S.M.; Rich, J.O. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl. Microbiol. Biotechnol. 2013, 97, 7265–7273. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Chen, Z.; Chen, P.T.; Ng, I.S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J. Biosci. Bioeng. 2018, 126, 769–777. [Google Scholar] [CrossRef]
- Hu, Y.; Gänzle, M.G. Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int. J. Food Microbiol. 2018, 280, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Chen, Y.; Wang, C.; Yang, R.; Bin, X. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int. J. Biol. Macromol. 2018, 120, 1315–1321. [Google Scholar] [CrossRef]
- Malang, S.K.; Maina, N.H.; Schwab, C.; Tenkanen, M.; Lacroix, C. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol. 2015, 46, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Tingirikari, J.M.R.; Kothari, D.; Shukla, R.; Goyal, A. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive. Int. J. Food Sci. Nutr. 2014, 65, 686–691. [Google Scholar] [CrossRef]
- Rao, T.J.M.; Goyal, A. A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. Int. J. Food Sci. Nutr. 2013, 64, 346–354. [Google Scholar] [CrossRef]
- Galle, S.; Schwab, C.; Dal Bello, F.; Coffey, A.; Gänzle, M.G.; Arendt, E.K. Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int. J. Food Microbiol. 2012, 155, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.Z.; Siddiqui, K.; Arman, M.; Ahmed, N. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr. Polym. 2012, 90, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Rosca, I.; Petrovici, A.R.; Peptanariu, D.; Nicolescu, A.; Dodi, G.; Avadanei, M.; Ivanov, I.C.; Bostanaru, A.C.; Mares, M.; Ciolacu, D. Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics. Int. J. Biol. Macromol. 2018, 107, 1765–1772. [Google Scholar] [CrossRef]
- Netsopa, S.; Niamsanit, S.; Sakloetsakun, D.; Milintawisamai, N. Characterization and rheological behavior of dextran from Weissella confusa R003. Int. J. Polym. Sci. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, N.; Huang, W.; Cheng, X.; Wang, F.; Zhang, B.; Chen, J.; Jiang, H.; Omedi, J.O.; Li, Z. Syneresis rate, water distribution, and microstructure of wheat starch gel during freeze-thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813 from traditional sourdough. Cereal Chem. 2018, 95, 117–129. [Google Scholar]
- Park, J.H.; Ahn, H.J.; Kim, S.G.; Chung, C.H. Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from kimchi and its ingredients. Food Sci. Biotechnol. 2013, 22, 1047–1053. [Google Scholar] [CrossRef]
- Shukla, S.; Goyal, A. 16S rRNA-based identification of a glucan-hyperproducing weissella confusa. Enzyme Res. 2011, 2011, 250842. [Google Scholar] [CrossRef] [Green Version]
- Bejar, W.; Gabriel, V.; Amari, M.; Morel, S.; Mezghani, M.; Maguin, E.; Fontagné-Faucher, C.; Bejar, S.; Chouayekh, H. Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int. J. Biol. Macromol. 2013, 52, 125–132. [Google Scholar] [CrossRef]
- Hara, K.Y.; Araki, M.; Okai, N.; Wakai, S.; Hasunuma, T.; Kondo, A. Development of bio-based fine chemical production through synthetic bioengineering. Microb. Cell Fact. 2014, 13, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, S.; Parameswaran, B.; Ummalyma, S.B.; Abraham, A.; Mathew, A.K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 2018, 56, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Dobruchowska, J.M.; Pijning, T.; López, C.A.; Kamerling, J.P.; Dijkhuizen, L. Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium lactobacillus reuteri 180. J. Biol. Chem. 2014, 289, 32773–32782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, W.; Zhang, H.; Zhang, Y.; Hu, X. Biosynthesis of oligodextrans with different Mw by synergistic catalysis of dextransucrase and dextranase. Carbohydr. Polym. 2014, 112, 387–395. [Google Scholar] [CrossRef]
- Falconer, D.J.; Mukerjea, R.; Robyt, J.F. Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr. Res. 2011, 346, 280–284. [Google Scholar] [CrossRef]
- Vettori, M.H.P.B.; Franchetti, S.M.M.; Contiero, J. Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydr. Polym. 2012, 88, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Shi, Q.; Maina, N.H.; Juvonen, M.; Tenkanen, M.; Goyal, A. Weissella confusa Cab3 dextransucrase: Properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohydr. Polym. 2014, 101, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Luo, J.; Pinelo, M.; Wan, Y. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor. J. Memb. Sci. 2018, 555, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.W.; Gibson, G.R.; Rastall, R.A. The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J. Funct. Foods 2013, 5, 1938–1946. [Google Scholar] [CrossRef]
- Brison, Y.; Fabre, E.; Moulis, C.; Portais, J.C.; Monsan, P.; Remaud-Siméon, M. Synthesis of dextrans with controlled amounts of α-1,2 linkages using the transglucosidase GBD-CD2. Appl. Microbiol. Biotechnol. 2010, 86, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, thermal, and mechanical properties of polymers. In Biosurfaces: A Materials Science and Engineering Perspective; Balani, K., Verma, V., Agarwal, A., Narayan, R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 329–344. ISBN 9781118299975. [Google Scholar]
- Monnerie, L. Mechanical properties of polymeric materials. In Statistical Models for the Fracture of Disordered Media; Herrmann, H.J., Roux, S., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 1990; pp. 66–76. ISBN 9781483296128. [Google Scholar]
- Whistler, R.L. Solubility of polysaccharides and their behavior in solution. In Carbohydrates in Solution; Horace, S.I., Ed.; American Chemical Society: Washington, DC, USA, 1973; pp. 242–255. ISBN 9780841201781. [Google Scholar]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Polysaccharides: Structure and solubility. In Solubility of Polysaccharides; Xu, Z., Ed.; Intech Open: London, UK, 2017; pp. 7–21. ISBN 9789535136507. [Google Scholar]
- Antoniou, E.; Tsianou, M. Solution properties of dextran in water and in formamide. J. Appl. Polym. Sci. 2012, 125, 1681–1692. [Google Scholar] [CrossRef]
- Suner, S.S.; Sahiner, M.; Sengel, S.B.; Rees, D.J.; Reed, W.F.; Sahiner, N. Responsive biopolymer-based microgels/nanogels for drug delivery applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers; Hamdy Makhlouf, A.S., Abul-Thabit, N.Y., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp. 453–500. ISBN 9780081019979. [Google Scholar]
- Gil, E.C.; Colarte, A.I.; El Ghzaoui, A.; Durand, D.; Delarbre, J.L.; Bataille, B. A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. Eur. J. Pharm. Biopharm. 2008, 68, 319–329. [Google Scholar] [CrossRef]
- Campos, F.D.S.; Ferrari, L.Z.; Cassimiro, D.L.; Ribeiro, C.A.; De Almeida, A.E.; Gremião, M.P.D. Effect of 70-kDa and 148-kDa dextran hydrogels on praziquantel solubility. J. Therm. Anal. Calorim. 2016, 123, 2157–2164. [Google Scholar] [CrossRef] [Green Version]
- Morris, B.A. Rheology of polymer melts. In The Science and Technology of Flexible Packaging; Morris, B.A., Ed.; William Andrew Publishing: Oxford, UK, 2017; pp. 121–147. ISBN 9780323242738. [Google Scholar]
- Masuelli, M.A. Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect. J. Polym. Biopolym. Phys. Chem. 2013, 1, 13–21. [Google Scholar]
- Seymour, R.B.; Carraher, C.E. Thermal properties of polymers. In Structure—Property Relationships in Polymers; Seymour, R.B., Carraher, C.E., Eds.; Springer: Boston, MA, USA, 1984; pp. 83–93. ISBN 978-1-4684-4748-4. [Google Scholar]
- Van De Velde, K.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.; Zannini, E.; Czerny, M.; Arendt, E.K. Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. Int. J. Food Microbiol. 2014, 172, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Moncayo-Martínez, D.C.; Buitrago-Hurtado, G.; Néstor, Y.; Algecira-Enciso, A. Películas comestibles a base de un biopolímero tipo dextrana Edible films based of dextran biopolymer. Agron. Colomb. 2016, 34, 107–109. [Google Scholar]
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021. [Google Scholar] [CrossRef]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.; Brison, Y.; Remaud-Simeon, M.; Monsan, P.; Gibson, G.R.; Rastall, R.A. In vitro fermentation of linear and α-1,2-branched Dextrans by the human Fecal microbiota. Appl. Environ. Microbiol. 2011, 77, 5307–5315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enzyme | Microorganisms | Substrates | Dextran | Reference | |||
---|---|---|---|---|---|---|---|
Type | Obtaining | Genus | Subspecies | Molecular Weight | Linkages | ||
Glucansucrase GTF180 | Isolated | Leuconostoc reuteri | 180 | Maltose 100 mM + Sucrose 100 mM | ~23 MDa | α-(1→6) 78% α-(1→3) 22% | [65] |
Glucansucrase L940G | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~17 MDa | α-(1→6) 85% α-(1→3) 15% | [65] | |
Glucansucrase L940C | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~17 MDa | α-(1→6) 74% α-(1→3) 26% | [65] | |
Glucansucrase L940A | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~19 MDa | α-(1→6) 84% α-(1→3) 16% | [65] | |
Glucansucrase L940S | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~20 MDa | α-(1→6) 84% α-(1→3) 16% | [65] | |
Glucansucrase L940M | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~19 MDa | α-(1→6) 72% α-(1→3) 28% | [65] | |
Glucansucrase L940E | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~19 MDa | α-(1→6) 73% α-(1→3) 27% | [65] | |
Glucansucrase L940F | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~20 MDa | α-(1→6) 93% α-(1→3) 7% | [65] | |
Glucansucrase L940W | Mutated | 180 | Maltose 100 mM + Sucrose 100 mM | ~6 MDa | α-(1→6) 100% | [65] | |
Dextransucrase B-512FMC | Mutated | Leuconostoc mesenteroides | B-512FMC | Sucrose 20 mM | 20–341 kDa | - | [67] |
Dextransucrase B-512FMC | Mutated | B-512FMC | Sucrose 50 mM | 49–431 kDa | - | [67] | |
Dextransucrase B-512FMC | Mutated | B-512FMC | Sucrose 100 mM | 63–514 kDa | - | [67] | |
Dextransucrase B-512FMC | Mutated | B-512FMC | Sucrose 200 mM | 126–787 kDa | - | [67] | |
Dextransucrase B-512FMC | Mutated | B-512FMC | Sucrose 1000 mM | 1645 kDa | - | [67] | |
Dextransucrase FT045B-Dextranase | Isolated | Leuconostoc mesenteroidesPenicillium | FT045Bsp. | Sucrose 400 mM | ~92 kDa | α-(1→6) 98% α-(1→2) 2% | [68] |
Dextransucrase (DE3)/pET28-dexYG | Engineered | Escherichia coli | BL21 | Sucrose 10% | 5 kDa | - | [66] |
Dextransucrase (DE3)/pET28-dexYG-Dextranase | Engineered | Escherichia coliPenicillium aculeatum | BL21- | Sucrose 10% | 10–20 kDa | - | [66] |
Dextransucrase WcCab3 | Isolated | Weissella confusa | Cab3 | Sucrose 5% | 178 kDa | α-(1→6) 97% α-(1→3) 3% | [69] |
Enzyme | Microorganisms | Substrates | Dextran | Reference | |||
---|---|---|---|---|---|---|---|
Type | Obtaining | Genus | Subspecies | Molecular Weight | Linkages | ||
Dextranase | Isolated | Penicillium | Sp. | Dextran 40 kDa | 5–8 kDa | - | [70] |
α-1,2 transglucosidase | Engineered | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa | 0.5 kDa | α-(1→6) 75% α-(1→2) 25% | [71] |
α-1,2 transglucosidase | Engineered | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa | 1 kDa | α-(1→6) 68% α-(1→2) 32% | [71] |
Transglucosidase GBD–CD2 | Cloned | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa + Sucrose 292 mM | 10 kDa | α-(1→6) 62% α-(1→2) 38% | [72] |
Transglucosidase GBD–CD2 | Cloned | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa + Sucrose 292 mM | 40 kDa | α-(1→6) 63% α-(1→2) 37% | [72] |
Transglucosidase GBD–CD2 | Cloned | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa + Sucrose 292 mM | 70 kDa | α-(1→6) 62–67% α-(1→2) 33–38% | [72] |
Transglucosidase GBD–CD2 | Cloned | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa + Sucrose 292 mM | 70 kDa | α-(1→6) 81–88% α-(1→2) 12–19% | [72] |
Transglucosidase GBD–CD2 | Cloned | Leuconostoc mesenteroides | NRRL B-1299 | Dextran 70 kDa + Sucrose 292 mM | 2000 kDa | α-(1→6) 64% α-(1→2) 36% | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Montes, E. Dextran: Sources, Structures, and Properties. Polysaccharides 2021, 2, 554-565. https://doi.org/10.3390/polysaccharides2030033
Díaz-Montes E. Dextran: Sources, Structures, and Properties. Polysaccharides. 2021; 2(3):554-565. https://doi.org/10.3390/polysaccharides2030033
Chicago/Turabian StyleDíaz-Montes, Elsa. 2021. "Dextran: Sources, Structures, and Properties" Polysaccharides 2, no. 3: 554-565. https://doi.org/10.3390/polysaccharides2030033
APA StyleDíaz-Montes, E. (2021). Dextran: Sources, Structures, and Properties. Polysaccharides, 2(3), 554-565. https://doi.org/10.3390/polysaccharides2030033