Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material, Media Preparation and In Vitro Growth Conditions
2.3. Photosynthetic Pigments
2.4. Hydrogen Peroxide (H2O2) Content
2.5. Superoxide Dismutase (SOD) and Catalase (CAT) Activities, and Total Soluble Protein
2.6. Determination of Lipid Peroxidation
2.7. Statistical Analysis
2.8. Rheological Measures
2.9. Scanning Electron Microscopy (SEM)
2.10. Brunauer-Emmett-Teller (BET) Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aazza, S.; El-Guendouz, S.; Miguel, M.G.; Antunes, M.D.; Faleiro, M.L.; Correia, A.I.; Figueiredo, A.C. Antioxidant, anti-inflammatory and anti-hyperglycaemic activities of essential oils from Thymbra capitata, Thymus albicans, Thymus caespititius, Thymus carnosus, Thymus lotocephalus and Thymus mastichina from Portugal. Nat. Prod. Commun. 2016, 11, 1029–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.; Gonçalves, S.; Grosso, C.; Andrade, P.B.; Valentão, P.; Bernardo-Gil, M.G.; Romano, A. Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Ind. Crops Prod. 2012, 36, 246–256. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Grosso, C.; Valentão, P.; Andrade, P.B.; Coelho, N.; Romano, A. Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- ICN (Instituto da Conservacão da Natureza). Plano Sectorial da Rede Natura. Flora: Thymus lotocephalus G. López & R. Morales. 2006. Available online: http://www2.icnf.pt/portal/pn/biodiversidade/rn2000/resource/doc/rn-plan-set/flora/thy-loto (accessed on 6 April 2021).
- Caldas, F.B. Thymus lotocephalus. The IUCN Red List of Threatened Species 2011: e.T161974A5522381. 2011. Available online: https://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T161974A5522381.en (accessed on 6 April 2021).
- Coelho, N.; Gonçalves, S.; González-Benito, M.E.; Romano, A. Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regul. 2012, 66, 69–74. [Google Scholar] [CrossRef]
- Gonçalves, S.; Mansinhos, I.; Rodríguez-Solana, R.; Pérez-Santín, E.; Coelho, N.; Romano, A. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind. Crops Prod. 2019, 137, 214–220. [Google Scholar] [CrossRef]
- Hussain, A.; Qarshi, I.A.; Nazir, H.; Ullah, I. Plant Tissue Culture: Current Status and Opportunities. In Recent Advances in Plant in vitro Culture; Leva, A., Rinaldi, L.M.R., Eds.; Intech: London, UK, 2012. [Google Scholar] [CrossRef]
- Murthy, H.N.; Lee, E.J.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult. 2014, 118, 1–16. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. In Vitro Cell. Dev. Biol. Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Isah, T.; Umar, S.; Mujib, A.; Sharma, M.P.; Rajasekharan, P.E.; Zafar, N.; Frukh, A. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult. 2018, 132, 239–265. [Google Scholar] [CrossRef]
- Raj, S.N.; Lavanya, S.N.; Sudisha, J.; Shetty, H.S. Applications of Biopolymers in Agriculture with Special Reference to Role of Plant Derived Biopolymers in Crop Protection. In Biopolymers: Biomedical and Environmental Applications; Kalia, S., Avérous, L., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 461–481. [Google Scholar] [CrossRef]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef]
- Elbarbary, A.M.; Abd El-Rehim, H.A.; El-Sawy, N.M.; Hegazy, E.-S.A.; Soliman, E.-S.A. Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural applications. Carbohydr. Polym. 2017, 176, 19–28. [Google Scholar] [CrossRef]
- Kabir, S.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malerba, M.; Cerana, R. Recent Advances of Chitosan Applications in Plants. Polymers 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem. 2018, 20, 2428. [Google Scholar] [CrossRef] [Green Version]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Fundamentals and Applications of Chitosan. In Sustainable Agriculture Reviews 35, Chitin and Chitosan: History, Fundamentals and Innovations; Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 49–123. [Google Scholar] [CrossRef]
- Avestan, S.; Naseri, L.; Barker, A.V. Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agar-induced osmotic stress. J. Plant Nutr. 2017, 40, 2797–2807. [Google Scholar] [CrossRef]
- Paris, L.; García-Caparrós, P.; Llanderal, A.; Silva, J.T.; Reca, J.; Lao, M. Plant regeneration from nodal segments and protocorm-like bodies (PLBs) derived from Cattleya maxima J. Lindley in response to chitosan and coconut water. Propag. Ornam. Plants. 2019, 19, 18–23. [Google Scholar]
- Acemi, A. Chitosan versus plant growth regulators: A comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq. Plant Cell Tissue Organ Cult. 2020, 141, 327–338. [Google Scholar] [CrossRef]
- Acemi, A.; Bayrak, B.; Çakır, M.; Demiryürek, E.; Gün, E.; Gueddari, N.E.E.; Özen, F. Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cell Dev. Biol. Plant 2018, 54, 537–544. [Google Scholar] [CrossRef]
- Kananont, N.; Pichyangkura, R.; Chanprame, S.; Chadchawan, S.; Limpanavech, P. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic. 2010, 124, 239–247. [Google Scholar] [CrossRef]
- Khateeb, W.A.; Alu’datt, M.; Zghoul, H.A.; Kanaan, R.; El-Oqlah, A.; Lahham, J. Enhancement of phenolic compounds production in in vitro grown Rumex cyprius Murb. Acta Physiol. Plant. 2017, 39, 14. [Google Scholar] [CrossRef]
- Krishnan, J.J.; Gangaprasad, A.; Satheeshkumar, K. Exogenous methyl jasmonate acts as a signal transducer in the enhancement of camptothecin (CPT) production from in vitro cultures of Ophiorrhiza mungos L. var. angustifolia (Thw.) Hook. Ind. Crops Prod. 2018, 119, 93–101. [Google Scholar] [CrossRef]
- Largia, M.J.V.; Satish, L.; Johnsi, R.; Shilpha, J.; Ramesh, M. Analysis of propagation of Bacopa monnieri (L.) from hairy roots, elicitation and Bacoside A contents of Ri transformed plants. World J. Microbiol. Biotechnol. 2016, 32, 131. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, N.; Hegde, M.N. Use of Chitosan as Low Cost Source to Overcome Endophytic Contaminations under In vitro Conditions. Plant Tissue Cult. Biotech. 2019, 29, 121–126. [Google Scholar] [CrossRef]
- Dobránszki, J.; Magyar-Tábori, K.; Tombácz, E. Comparison of the rheological and diffusion properties of some gelling agents and blends and their effects on shoot multiplication. Plant Biotechnol. Rep. 2011, 5, 345–352. [Google Scholar] [CrossRef]
- Babbar, S.B.; Jain, R.; Walia, N. Guar gum as a gelling agent for plant tissue culture media. In Vitro Cell Dev. Biol. Plant 2005, 41, 258–261. [Google Scholar] [CrossRef]
- Das, T.; Sengupta, S.; Pal, A.; Sardar, S.; Sahu, N.; Lenka, N.; Panigrahi, K.C.S.; Goswami, L.; Bandyopadhyay, A. Aquasorbent guargum grafted hyperbranched poly (acrylic acid): A potential culture medium for microbes and plant tissues. Carbohydr. Polym. 2019, 222, 114983. [Google Scholar] [CrossRef]
- Daud, N.; Taha, R.; Noor, N.; Alimon, H. Potential of Alternative Gelling Agents in Media for the in vitro Micro-propagation of Celosia sp. Int. J. Bot. 2011, 7, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.; Romano, A. Locust bean gum (LBG) as a gelling agent for plant tissue culture media. Sci. Hortic. 2005, 106, 129–134. [Google Scholar] [CrossRef]
- Lucyszyn, N.; Quoirin, M.; Ribas, L.L.F.; Koehler, H.S.; Sierakowski, M.R. Micropropagation of ‘Durondeau’ pear in modified-gelled medium. In Vitro Cell Dev. Biol. Plant 2006, 42, 287–290. [Google Scholar] [CrossRef]
- Madege, R.; Mneney, E.; Misangu, R.; Maerere, A. Characterisation of botanical starches as potential substitutes of agar in tissue culture media. Afr. J. Biotechnol. 2015, 14, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Jain-Raina, R.; Babbar, S.B. Evaluation of Blends of Alternative Gelling Agents with Agar and Development of Xanthagar, A Gelling Mix, Suitable for Plant Tissue Culture Media. Asian J. Biotechnol. 2011, 3, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Montesano, F.F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F. Biodegradable Superabsorbent Hydrogel Increases Water Retention Properties of Growing Media and Plant Growth. Agric. Agric. Sci. Proc. 2015, 4, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Raafat, A.I.; Eid, M.; El-Arnaouty, M.B. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 283, 71–76. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Applications of Natural Polymer Gum Arabic: A Review. Int. J. Food Prop. 2014, 18, 986–998. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Campos, E.V.R.; Pereira, A.E.S.; Nunes, L.E.S.; Silva, C.C.L.; Lima, T.P.R.; Smaniotto, G.; Polanczyk, R.A.; Fraceto, F.L. Geraniol Encapsulated in Chitosan/Gum Arabic Nanoparticles: A Promising System for Pest Management in Sustainable Agriculture. J. Agric. Food Chem. 2018, 66, 5325–5334. [Google Scholar] [CrossRef]
- Abraham, J.; Sharika, T.; Mishra, R.K.; Thomas, S. Rheological characteristics of nanomaterials and nanocomposites. In Woodhead Publishing Series in Composites Science and Engineering, Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends; Mishra, R.K., Thomas, S., Kalarikkal, N., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 327–350. [Google Scholar] [CrossRef]
- Argenta, D.F.; Santos, T.C.; Campos, A.M.; Caon, T. Hydrogel Nanocomposite Systems: Physico-Chemical Characterization and Application for Drug-Delivery Systems. In Nanocarriers for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–131. [Google Scholar] [CrossRef]
- Sanyal, M.; Datta, A.; Hazra, S. Morphology of nanostructured materials. Pure Appl. Chem. 2002, 74, 1553–1570. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 781–787. [Google Scholar] [CrossRef]
- Beauchamp, C.O.; Fridovich, I. Superoxide dismutase: Improved assays and assays applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Aebi, H.E. Catalase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinhern, Germany, 1983; pp. 273–286. [Google Scholar]
- Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hodges, D.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Coelho, N.; González-Benito, M.E.; Martín, C.; Romano, A. Cryopreservation of Thymus lotocephalus shoot tips and assessment of genetic stability. CryoLetters 2014, 35, 119–128. [Google Scholar] [PubMed]
- Brassard, N.; Brissette, L.; Lord, D.; Lalibert, S. Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch. Plant Cell Tissue Organ Cult. 1996, 44, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Clemente, R.M.; Gómez-Cadenas, A. In vitro Tissue Culture, a Tool for the Studyband Breeding of Plants Subjected to Abiotic Stress Conditions. In Recent Advances in Plant In Vitro Culture; Leva, A., Rinaldi, L.M.R., Eds.; Intech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Cioć, M.; Pawłowska, B. Leaf Response to Different Light Spectrum Compositions during Micropropagation of Gerbera Axillary Shoots. Agronomy 2020, 10, 1832. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Sidhu, G.P.S.; Bali, A.S.; Zheng, B. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Bowyer, J.B.; Leegood, R.C. Photosynthesis. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 49–110. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Malik, B.; Pirzadah, T.B.; Tahir, I.; Rehman, R.U.I. Growth and physiological responses in chicory towards mercury induced in vitro oxidative stress. Plant Physiol. Rep. 2019, 24, 236–248. [Google Scholar] [CrossRef]
- Sewelam, N.; Kazan, K.; Schenk, P.M. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. Front. Plant Sci. 2016, 23, 187. [Google Scholar] [CrossRef] [Green Version]
- Şen, A. Oxidative Stress Studies in Plant Tissue Culture. In Antioxidant Enzyme; El-Missiry, M.A., Ed.; Intech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Alché, J.D. A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol. 2019, 23, 101136. [Google Scholar] [CrossRef] [PubMed]
- Shulaev, V.; Oliver, D.J. Metabolic and Proteomic Markers for Oxidative Stress. New Tools for Reactive Oxygen Species Research. Plant Physiol. 2006, 141, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Ericson, M.C.; Alfinito, S.H. Proteins produced during salt stress in tobacco cell culture. Plant Physiol. 1984, 74, 506–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, E.M.; Kolahi, M.; Yazdi, M.; Goldson-Barnaby, A. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea (Cicer arietinum) seedlings under cadmium induction and identification of PCS and FC genes. Physiol. Mol. Biol. Plants 2020, 26, 1551–1568. [Google Scholar] [CrossRef] [PubMed]
- Bohidar, H.B. Dynamics in thermoreversible polymer gels. Curr. Sci. 2001, 80, 1008–1017. [Google Scholar]
- Abdollahi, M.; Damirchi, S.; Shafafi, M.; Rezaei, M.; Ariaii, P. Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int. J. Biol. Macromol. 2019, 126, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Esposti, L.D.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot, E. Influence of Hydroxyapatite Nanoparticles on Germination and Plant Metabolism of Tomato (Solanum lycopersicum L.): Preliminary Evidence. Agronomy 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
Medium | No. Shoots | Shoot Length (cm) | Fresh Weight (g) | Dry Weight (g) | Total Chlorophyll (mg g−1 FW) | Carotenoids (mg g−1 FW) |
---|---|---|---|---|---|---|
Control | 45.09 ± 4.28 | 4.74 ± 0.26 | 4.64 ± 0.47 | 0.50 ± 0.04 | 1.18 ± 0.07 | 0.25 ± 0.01 |
HEC | ||||||
100 | 38.07 ± 3.70 | 4.62 ± 0.18 | 3.20 ± 0.32 | 0.46 ± 0.04 | 1.40 ± 0.05 | 0.30 ± 0.01 * |
1000 | 27.01 ± 3.70 * | 3.64 ± 0.12 * | 2.03 ± 0.28 * | 0.32 ± 0.03 * | 1.42 ± 0.05 | 0.31 ± 0.01 * |
CMC | ||||||
100 | 39.16 ± 3.20 | 6.45 ± 0.15 * | 3.49 ± 0.34 | 0.47 ± 0.09 | 1.19 ± 0.09 | 0.26 ± 0.02 |
1000 | 40.09 ± 4.56 | 3.44 ± 0.09 * | 3.32 ± 0.50 | 0.41 ± 0.04 | 1.39 ± 0.07 | 0.31 ± 0.01 * |
Chit | ||||||
100 | 43.04 ± 4.25 | 5.21 ± 0.16 | 3.37 ± 0.53 | 0.35 ± 0.04 | 1.09 ± 0.09 | 0.24 ± 0.02 |
1000 | 4.73 ± 0.35 * | 2.33 ± 0.11 * | 0.54 ± 0.11 * | 0.10 ± 0.01 * | 0.86 ± 0.10 * | 0.20 ± 0.02 |
GA | ||||||
100 | 52.89 ± 5.99 | 3.79 ± 0.16 * | 4.63 ± 0.60 | 0.49 ± 0.04 | 1.13 ± 0.08 | 0.26 ± 0.02 |
1000 | 48.59 ± 5.92 | 3.42 ± 0.11 * | 4.19 ± 0.55 | 0.43 ± 0.04 | 1.09 ± 0.03 | 0.25 ± 0.01 |
Medium | H2O2 (µmol g−1 FW) | SOD (Units mg−1 Protein) | CAT (Units mg−1 Protein) | MDA (nmol g−1 FW) | Protein (mg g−1 FW) |
---|---|---|---|---|---|
Control | 0.35 ± 0.04 | 44.41 ± 3.85 | 0.0186 ± 0.0017 | 27.53 ± 0.94 | 15.07 ± 1.38 |
HEC | |||||
100 | 0.34 ± 0.09 | 38.04 ± 4.28 | 0.0113 ± 0.0005 * | 18.01 ± 0.74 * | 13.93 ± 1.92 |
1000 | 0.23 ± 0.02 | 29.10 ± 2.72 * | 0.0157 ± 0.0013 | 26.14 ± 1.43 | 18.75 ± 1.87 |
CMC | |||||
100 | 0.26 ± 0.04 | 36.88 ± 4.18 | 0.0091 ± 0.0006 * | 26.47 ± 0.97 | 13.63 ± 2.19 |
1000 | 0.29 ± 0.08 | 46.28 ± 3.89 | 0.0093 ± 0.0015 * | 14.47 ± 0.42 * | 12.31 ± 0.41 |
Chit | |||||
100 | 0.29 ± 0.03 | 19.33 ± 1.28 * | 0.0156 ± 0.0010 | 15.98 ± 1.32 * | 18.35 ± 1.57 |
1000 | 0.37 ± 0.03 | 41.83 ± 4.04 | 0.0109 ± 0.0009 * | 24.10 ± 2.08 | 16.48 ± 1.97 |
GA | |||||
100 | 0.34 ± 0.06 | 23.37 ± 3.91 * | 0.0089 ± 0.0009 * | 28.05 ± 2.63 | 22.50 ± 1.82 * |
1000 | 0.21 ± 0.02 | 19.95 ± 4.28 * | 0.0176 ± 0.0012 | 24.10 ± 1.16 | 15.23 ± 1.36 |
Medium | BET Surface Area (m2 g−1) | Average Pore Diameter, øav (nm) |
---|---|---|
Control | 11.0716 | 3.5176 |
CMC100 | 21.4237 | 1.8758 |
Chit1000 | 20.6064 | 3.3416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, N.; Filipe, A.; Medronho, B.; Magalhães, S.; Vitorino, C.; Alves, L.; Gonçalves, S.; Romano, A. Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus. Polysaccharides 2021, 2, 538-553. https://doi.org/10.3390/polysaccharides2020032
Coelho N, Filipe A, Medronho B, Magalhães S, Vitorino C, Alves L, Gonçalves S, Romano A. Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus. Polysaccharides. 2021; 2(2):538-553. https://doi.org/10.3390/polysaccharides2020032
Chicago/Turabian StyleCoelho, Natacha, Alexandra Filipe, Bruno Medronho, Solange Magalhães, Carla Vitorino, Luís Alves, Sandra Gonçalves, and Anabela Romano. 2021. "Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus" Polysaccharides 2, no. 2: 538-553. https://doi.org/10.3390/polysaccharides2020032
APA StyleCoelho, N., Filipe, A., Medronho, B., Magalhães, S., Vitorino, C., Alves, L., Gonçalves, S., & Romano, A. (2021). Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus. Polysaccharides, 2(2), 538-553. https://doi.org/10.3390/polysaccharides2020032