Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes
Abstract
:1. Introduction
1.1. Lignocellulosic Materials
1.2. The High Cost of Enzymes
2. Fundamentals of Enzymatic Conversion of LCMs
3. Cellulases Recycling
3.1. The Influence of Solid-Enzyme Interactions and the Role of Substrate Composition
3.2. Recycling Free Cellulases in the Liquid Fraction
3.3. Recycling Cellulases Adsorbed to the Spent Solid
3.4. Whole Slurry Recycling
4. Cellulases Immobilization
4.1. Immobilization Fundamentals
4.2. Supports for Enzyme Immobilization
4.2.1. Chitosan
4.2.2. Magnetic Nanoparticle
4.3. Enzymatic Hydrolysis of Pretreated Lignocellulosic Materials Using Immobilized Enzymes
4.4. Recent Advances on Cellulases Immobilization
5. Consolidated Bioprocessing
5.1. Improvement of Ethanol Production in Cellulolytic Microorganisms
5.2. Engineering Ethanologenic Microorganisms for Cellulase Production
Microorganism | Modification | Substrate | Ethanol Yield (% of Theoretical) | Ethanol Titer/Time | Temperature | Reference |
---|---|---|---|---|---|---|
Cellulolytic Bacteria | ||||||
Clostridium cellulolyticum | Deletion of L-lactate dehydrogenase (ldh) and L-malate dehydrogenase (mdh) genes | 10 g/L Avicel | 48% | 2.7 g/L | 34 °C | [98] |
10 g/L acid-pretreated switchgrass | n.d. | 1.3 g/L | ||||
Clostridium cellulovorans | Expression of aldehyde/alcohol dehydrogenase gene (adhE2) from Clostridium acetobutylicum | 14 g/L Avicel | 20% | 1.6 g/L in 204 h | 37 °C | [96] |
C. cellulovorans | Expression of aldehyde/alcohol dehydrogenase gene (adhE2) from Clostridium acetobutylicum | 25 g/L cellulose | 14% | 2.0 g/L in 288 h | 37 °C | [97] |
Clostridium thermocellum | Deletion of hpt, hydG, ldh, pfl, and pta-ack to block acetate, lactate, H2 and formate production. Adaptive evolution. | 60 g/L Avicel | 66% | 22 g/L in 122 h | 55 °C | [95] |
C. thermocellum | Expression of pdc from Acetobacter pasteurianus and the adhA from Thermoanaerobacterium saccharolyticum | 60 g/L Avicel | 63% | 21 g/L in 100 h | 55 °C | [94] |
C. thermocellum | Overexpression of rnf genes. Deletion of hydG | 50 g/L Avicel | 18% | 5.1 g/L | 55 °C | [93] |
Caldicellulosiruptor bescii | Deletion of lactate dehydrogenase gene (ldh) and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase gene (adhE) | 20 g/L Avicel | 5.70% | 0.64 g/L | 65 °C | [99] |
10 g/L unpretreated switchgrass | n.d. | 0.59 g/L | ||||
C. bescii | Deletion of lactate dehydrogenase gene (ldh) and heterologous expression of acetaldehyde/alcohol dehydrogenase genes from Thermoanaerobacter pseudethanolicus (adhB and adhE) | 20 g/L Avicel | 0.92% | 0.10 g/L in 42 h | 75 °C | [100] |
20 g/L unpretreated switchgrass | n.d. | 0.073 g/L in 16 h | ||||
C. bescii | Expression of adhE from Clostridium thermocellum and rnf genes from Thermoanaerobacter sp. | 20 g/L Avicel | 31% | 3.5 g/L in 200 h | 60 °C | [101] |
Cellulolytic Fungi | ||||||
Fusarium oxysporum | Overexpression of Hxt | Alkali pretreated wheat straw | 78% | 0.32 g/g of alkali-treated straw | 30 °C | [103] |
Trichoderma reesei | Genome shuffling with Saccharomyces cerevisiae gDNA | 50 g/L unpretreated sugarcane bagasse | 17% | 3.1 g/L in 120 h | 30 °C | [102] |
Microorganism | Modification | Substrate | Ethanol Yield (% of Theoretical) | Ethanol Titer/Time | Temperature | Reference |
---|---|---|---|---|---|---|
Saccharomyces cerevisiae | ||||||
Secretion. BGL, EG and CBHI from T. reesei | Alkaline peroxide pretreated wheat straw | 70% | 24 g/L in 80 h | 30 °C | [107] | |
Cellulosome. Scaffoldin from Clostridium cellulovorans. BGL from Saccharomycopsis fibuligera and chimeric EG from Clostridium thermocellum. Produced in separate strains | 10 g/L CMC | 60% | 3.4 g/L in 16 h | 30 °C | [108] | |
Cellulosome. Scaffoldin from C. thermocellum. BGL from Aspergillus aculeatus, EG and CBHII from T. reesei, LPMO from Thermoascus aurantiacus and CDH from Humicola insolens | 10 g/L PASC | 47% | 2.7 g/L in 96 h | 30 °C | [111] | |
10 g/L Avicel | 31% | 1.8 g/L in 96 h | ||||
Cell-surface display. Delta cocktail integration. BGL from Aspergillus aculeatus, EG and CBHII from T. reesei. Expression of Artificial Zinc Finger Protein-AZFP library for thermotolerance. | 20 g/L PASC | 76% | 8.7 g/L in 48 h | 42 °C | [109] | |
200 g/L of NaOH pretreated Jerusalem artichoke stalk | 43% | 28 g/L in 60 h | ||||
Industrial-derived host | Secretion. BGL from T. reesei), EG from A. oryzae, CBHI from Talaromyces emersonii, CBHII from Chrysosporium lucknowense, XylA and Xyn from A. niger and Xyn from C. cellulovorans. Isomerase xylose consumption pathway. | 20 g/L cellobiose, 20 g/L corn cob xylan and 20 g/L CMC. | <5.9% | <2.0 g/L in 96 h | [122] | |
Non-Saccharomyces ethanologenic microorganisms | ||||||
Zymomonas mobilis | Secretion. EG from Enterobacter cloacae | CMC | n.d. | 5.5% (v/v) ~43 g/L in 72 h | 30 °C | [119] |
NaOH pretreated sugar cane bagasse | n.d. | 4% (v/v) ~32 g/L in 72 h | ||||
Z. mobilis | Secretion. EG from Z. mobilis ZM4 (ATCC 31821) and Xyn from uncultured bacterium | 1% pretreated (liquid hot water) rice straw | n.d. | 2.6 g/L in 72 h | 30 °C | [123] |
Kluyveromyces marxianus | Secretion. BGL from Neocallimastix patriciarum and EG and CBHI from T. reesei | 2% CMC | 10% | 1.2 g/L in 24 h | 37 °C | [115] |
K. marxianus | Secretion. CBHI and II and EGIII from T. reesei, EG A from Aspergillus niger, BGL from Neocallimastix patriciarum and a cellodextrin transporter from Neurospora crassa | 100 g/L Avicel | 1% | 0.6 g/L at 120 h | 40 °C | [116] |
K. marxianus | Cellulosome. Scaffoldin and the anchoring protein from Clostridium thermocellum. BGL from Neocallimastix patriciarum, EGIII and CBHI from T. reesei, LPMO from Thermoascus aurantiacus and CDH from Thermothelomyces thermophila | 10 g/L Avicel | 54% | 3.1 g/L in 120 h | 37 °C | [117] |
Pichia pastoris | Cellulosome. IM7/CL7 system as scaffolding. CBH from Yarrowia lipolytica, EG from C. thermocellum DSM1237, BGL from Thermoanaerobacterium thermosaccharolyticum DSM 571, CBM from Thermobifida fusca (recombinantly expressed and purified from E. coli) | 10 g/L CMC | 90% | 5.1 g/L | 30 °C | [118] |
10 g/L Avicel | 44% | 2.5 g/L | ||||
Escherichia coli | ΔpflB, ΔadhE, ΔfrdA, ΔxylFGH, ΔldhA, PpflB:pdcZm-adhBZm, evolved. Expressing EndoG, a multifunctional glucanase and xylanase, from bovine rumen microbiota | Dilute acid pretreated Arundo donax | n.d. | 7.6 g/L | 39 °C | [120] |
Geobacillus thermoglucosidasius | Deletion of ldh gene (encoding lactate dehydrogenase) and pfl gene (coding for pyruvate formate lyase) and upregulation of the pdh gene (encoding pyruvate dehydrogenase). BGL from Thermoanaerobacter brockii and a multidomain cellulase from Caldicellulosiruptor bescii | 1% nitric acid/ ammonia pretreated wheat straw | n.d. | 0.19 g/L in 24 h | 55 °C | [121] |
5.3. CBP Industrial Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Energy Information Administration. International Energy Outlook; DOE/EIA-0484; Office of Energy Analysis U.S. Department of Energy: Washington, DC, USA, 2016.
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Ogbonna, J.C.; Mashima, H.; Tanaka, H. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol. 2001, 76, 1–8. [Google Scholar] [CrossRef]
- Singh, A.; Pant, D.; Korres, N.E.; Nizami, A.S.; Prasad, S.; Murphy, J.D. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresour. Technol. 2010, 101, 5003–5012. [Google Scholar] [CrossRef]
- Michelin, M.; Gomes, D.G.; Romaní, A.; Polizeli, M.L.T.M.; Teixeira, J.A. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules 2020, 25, 3411. [Google Scholar] [CrossRef]
- Gomes, D.G.; Michelin, M.; Romaní, A.; Domingues, L.; Teixeira, J.A. Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel 2021, 285, 119265. [Google Scholar] [CrossRef]
- Gomes, D.; Cruz, M.; de Resende, M.; Ribeiro, E.; Teixeira, J.; Domingues, L. Very High Gravity Bioethanol Revisited: Main Challenges and Advances. Fermentation 2021, 7, 38. [Google Scholar] [CrossRef]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef][Green Version]
- Hayes, D.J.M. Second-generation biofuels: Why they are taking so long. WIREs Energy Environ. 2012, 2, 304–334. [Google Scholar] [CrossRef]
- Klein-Marcusschamer, D.; Oleskowicz-Popiel, P.; Simmons, B.A.; Blanch, W.H. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 2012, 109, 1083–1089. [Google Scholar] [CrossRef]
- Dutta, A.; Dowe, N.; Ibsen, K.N.; Schell, D.J.; Aden, A. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol. Prog. 2010, 26, 64–72. [Google Scholar]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- Aden, A.; Foust, T. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 2009, 16, 535–545. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497. [Google Scholar] [CrossRef][Green Version]
- Pribowo, A.; Arantes, V.; Saddler, J.N. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulose/xylanase components when hydrolyzing steam pretreated corn stover. Enzym. Microb. Technol. 2012, 50, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.M.; Knott, B.C.; Mayes, H.B.; Hansson, H.; Himmel, M.E.; Sandgren, M.; Ståhlberg, J.; Beckham, G.T. Fungal Cellulases. Chem. Rev. 2015, 115, 1308–1448. [Google Scholar] [CrossRef][Green Version]
- Tu, M.; Chandra, R.P.; Saddler, J.N. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol. Prog. 2007, 23, 398–406. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Deswal, D.; Sharma, S.; Bhattacharya, A.; Jain, K.K.; Kaur, A.; Pletschke, B.I.; Singh, A.; Karp, M. Revisiting cellulase production and redefining current strategies based on major challenges. Renew. Sustain. Energy Rev. 2016, 55, 249–272. [Google Scholar] [CrossRef]
- Segato, F.; Damásio, A.R.L.; de Lucas, R.C.; Squina, F.M.; Prade, R.A. Genomics Review of Holocellulose Deconstruction by Aspergilli. Microbiol. Mol. Biol. Rev. 2014, 78, 588–613. [Google Scholar] [CrossRef][Green Version]
- Kumar, D.; Murthy, G.S. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol. Biofuels 2013, 6, 63. [Google Scholar] [CrossRef][Green Version]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef]
- Suominen, P.L.; Mantyla, A.L.; Karhunen, T.; Hakola, S.; Nevalainen, K.M.H. High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol. Gen. Genet. 1993, 241, 523–530. [Google Scholar] [CrossRef]
- Seiboth, B.; Ivanova, C.; Seidl-Seiboth, V. Trichoderma reesei: A Fungal Enzyme Producer for Cellulosic Biofuels. In Biofuel Production—Recent Developments and Prospects; Bernardes, M.A.S., Ed.; InTech: London, UK, 2011; pp. 309–340. [Google Scholar]
- Gomes, D.; Domingues, L.; Gama, M. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling. Bioresour. Technol. 2016, 216, 637–644. [Google Scholar] [CrossRef][Green Version]
- Jørgensen, H.; Pinelo, M. Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod. Biorefin. 2017, 11, 150–167. [Google Scholar] [CrossRef]
- Boraston, A.; Bray, M.; Burn, E.; Creagh, A.L.; Gilkes, N.; Guarna, M.; Jervis, E.; Johnson, P.; Kormos, J.; McIntosh, L.; et al. The structure and function of cellulose binding domains. In Carbohydrate from Trichoderma Reesei and Other Microorganisms; Claeyssen, M., Nerinkx, W., Piens, K., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1998; pp. 139–146. [Google Scholar]
- Arantes, V.; Saddler, J.N. Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis. Biotechnol. Biofuels 2010, 3, 4. [Google Scholar] [CrossRef][Green Version]
- Oliveira, C.; Romani, A.; Gomes, D.; Cunha, J.T.; Gama, F.M.; Domingues, L. Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose 2018, 25, 2505–2514. [Google Scholar] [CrossRef][Green Version]
- Viikari, L.; Alapuranen, M.; Puranen, T.; Vehmaanperä, J.; Siika-Aho, M. Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 2007, 108, 121–145. [Google Scholar]
- Tu, M.; Chandra, R.P.; Saddler, J.N. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine. Biotechnol. Prog. 2007, 23, 1130–1137. [Google Scholar] [CrossRef]
- Yang, B.; Wyman, C.E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 2006, 94, 611–617. [Google Scholar] [CrossRef]
- Qi, B.; Chen, X.; Su, Y.; Wan, Y. Enzyme adsorption and recycling during hydrolysis of wheat straw lignocelluloses. Bioresour. Technol. 2011, 102, 2881–2889. [Google Scholar] [CrossRef]
- Kumar, L.; Arantes, V.; Chandra, R.; Saddler, J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour. Technol. 2012, 103, 201–208. [Google Scholar] [CrossRef]
- Barsberg, S.; Selig, M.J.; Felby, C. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification. Biotechnol. Lett. 2013, 35, 189–195. [Google Scholar] [CrossRef]
- Schmaier, A.H.; Silver, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C.; Vroman, L.; Colman, R.W. The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb. Res. 1984, 33, 51–67. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Du, J.; Yang, Y.; Jin, Y. Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour. Technol. 2015, 181, 7–12. [Google Scholar] [CrossRef]
- Luo, X.; Liu, J.; Zheng, P.; Li, M.; Zhou, Y.; Huang, L.; Chen, L.; Shuai, L. Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnol. Biofuels 2019, 12, 51. [Google Scholar] [CrossRef][Green Version]
- Arias, J.M.; Moraes, A.D.; Modesto, L.F.A.; de Castro, A.M.; Pereira, N. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse. Appl. Biochem. Biotechnol. 2017, 181, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, T.; Börjesson, J.; Tjerneld, F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 2002, 31, 353–364. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Leitão, A.F.; Moreira, S.; Felby, C.; Gama, M. Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour. Technol. 2012, 110, 526–533. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gomes, D.; Rodrigues, A.C.; Domingues, L.; Gama, M. Cellulase recycling in biorefineries–is it possible? Appl. Microbiol. Biotechnol. 2015, 99, 4131–4143. [Google Scholar] [CrossRef][Green Version]
- Tu, M.; Saddler, J.N. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl. Biochem. Biotechnol. 2010, 161, 274–287. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, B.; Zhang, M.; Zheng, Z.; Yu, H. Enzymatic hydrolysis, adsorption, and recycling during hydrolysis of bagasse sulfite pulp. Bioresour. Technol. 2013, 146, 288–293. [Google Scholar] [CrossRef]
- Eckard, A.D.; Muthukumarappan, K.; Gibbons, W. Enhanced bioethanol production from pretreated corn stover via multi-positive effect of casein micelles. Bioresour. Technol. 2013, 135, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Su, R.; Huang, R.; Yang, Y.; Qi, W.; Li, Q.; He, Z. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2014, 98, 5765–5774. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.P.; Yang, B.; Gregg, D.; Saddler, J.N.; Mansfield, S.D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol. 2002, 98, 641–654. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Zhang, X.; Yong, Q.; Yu, S. Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresour. Technol. 2010, 101, 4930–4935. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Song, W.; Qi, B.; Lu, J.; Wan, Y. Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration. Bioresour. Technol. 2013, 144, 186–193. [Google Scholar] [CrossRef]
- Emert, G.; Blotkamp, P.J. Method for Enzyme Reutilization. U.S. Patent No. US4220721, 02 September 1980. [Google Scholar]
- Tu, M.; Zhang, X.; Paice, M.; MacFarlane, P.; Saddler, J.N. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour. Technol. 2009, 100, 6407–6415. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yu, A.H.C.; Saddler, J.N. Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 1995, 45, 328–336. [Google Scholar] [CrossRef]
- Mesa, L.; González, E.; Cara, C.; Castro, E.; Mussatto, S.I. An approach to cellulase recovery from enzymatic hydrolysis of pretreated sugarcane bagasse with high lignin content. Biocatal. Biotransform. 2015, 33, 287–297. [Google Scholar] [CrossRef]
- Guo, H.; Zou, S.; Liu, B.; Su, R.; Huang, R.; Qi, W.; Zhang, M.; He, Z. Reducing β-glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion. Bioresour. Technol. 2015, 187, 362–368. [Google Scholar] [CrossRef]
- Waeonukul, R.; Kosugi, A.; Prawitwong, P.; Deng, L.; Tachaapaikoon, C.; Pason, P.; Ratanakhanokchai, K.; Saito, M.; Mori, Y. Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour. Technol. 2013, 130, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; Felby, C.; Gama, M. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Bioresour. Technol. 2014, 156, 163–169. [Google Scholar] [CrossRef][Green Version]
- Gomes, D.G.; Serna-Loaiza, S.; Cardona, C.A.; Gama, M.; Domingues, L. Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresour. Technol. 2018, 267, 347–355. [Google Scholar] [CrossRef][Green Version]
- Gomes, D.G.; Gama, F.M.; Domingues, L. Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnol. Biofuels 2018, 11, 111. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weiss, N.; Börjesson, J.; Pedersen, L.S.; Meyer, A.S. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling. Biotechnol. Biofuels 2013, 6, 5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Otter, D.E.; Munro, P.A.; Scott, G.K.; Geddes, R. Elution of Trichoderma reesei cellulase from cellulose by pH adjustment with sodium hydroxide. Biotechnol. Lett. 1984, 6, 369–374. [Google Scholar] [CrossRef]
- Otter, D.E.; Munro, P.A.; Scott, G.K.; Geddes, R. Desorption of Trichoderma reesei cellulose from cellulose by a range of desorbents. Biotechnol. Bioeng. 1989, 34, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Sathitsuksanoh, N.; Zhang, Y.H.P. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulose desorption for potential recycling. Analyst 2009, 134, 2267–2272. [Google Scholar] [CrossRef] [PubMed]
- Haven, M.Ø.; Lindedam, J.; Jeppesen, M.D.; Elleskov, M.; Rodrigues, A.C.; Gama, M.; Jørgensen, H.; Felby, C. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale. Appl. Energy 2015, 159, 188–195. [Google Scholar] [CrossRef][Green Version]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef][Green Version]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Romero-Fernández, M.; Paradisi, F. General overview on immobilization techniques of enzymes for biocatalysis. In Catalyst Immobilization; Benaglia, M., Puglisi, A., Eds.; John Wiley & Sons, Ltd.: Weinheim, Germany, 2020; pp. 409–435. [Google Scholar]
- Cui, J.D.; Jia, S.R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges. Crit. Rev. Biotechnol. 2015, 35, 15–28. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Stephanopoulos, G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr. Opin. Biotechnol. 2021, 69, 91–102. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Engineering of immobilized enzymes: pH, thermal stability and kinetic aspects. In Practical Aspects of Chemical Engineering; Ochowiak, M., Woziwodzki, S., Mitkowski, P., Doligalski, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 161–170. [Google Scholar]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Sigurdardóttir, S.B.; Lehmann, J.; Ovtar, S.; Grivel, J.-C.; Negra, M.D.; Kaiser, A.; Pinelo, M. Enzyme immobilization on inorganic surfaces for membrane reactor applications: Mass transfer challenges, enzyme leakage and reuse of materials. Adv. Synth. Catal. 2018, 360, 2578–2607. [Google Scholar] [CrossRef]
- Asar, M.F.; Ahmad, N.; Husain, Q. Chitosan modified Fe3O4/graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: Its application in the saccharification of microcrystalline cellulose. Prep. Biochem. Biotechnol. 2020, 50, 460–467. [Google Scholar] [CrossRef]
- Verma, M.L.; Kumar, S.; Das, A.; Randhawa, J.S.; Chamundeeswari, M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 2020, 18, 315–323. [Google Scholar] [CrossRef]
- Dinçer, A.; Telefoncu, A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J. Mol. Catal. B Enzym. 2007, 45, 10–14. [Google Scholar] [CrossRef]
- Zang, L.; Qiao, X.; Hu, L.; Yang, C.; Liu, Q.; Wei, C.; Qiu, J.; Mo, H.; Song, G.; Yang, J.; et al. Preparation and evaluation of coal fly ash/chitosan composites as magnetic supports for highly efficient cellulase immobilization and cellulose bioconversion. Polymers 2018, 10, 523. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miao, X.; Pi, L.; Fang, L.; Wu, R.; Xiong, C. Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase. Biocatal. Biotransform. 2016, 34, 272–282. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, X.; Xing, Z.; Geng, Y.; Wilson, J. Preparation and characterization of magnetic Fe3O4—chitosan nanoparticles for cellulase immobilization. Cellulose 2017, 24, 5541–5550. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of Biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, W.; Yang, Z.; Yang, X.; Wang, N.; Yu, X. Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 2017, 22, 269. [Google Scholar] [CrossRef]
- Tan, L.; Tan, Z.; Feng, H.; Qiu, J. Cellulose as a template to fabricate a cellulase-immobilized composite with high bioactivity and reusability. New J. Chem. 2018, 42, 1665–1672. [Google Scholar] [CrossRef]
- Tantayotai, P.; Rattanaporn, K.; Tepaamorndech, S.; Cheenkachorn, K.; Sriariyanun, M. Analysis of an ionic liquid and salt tolerant microbial consortium which is useful for enhancement of enzymatic hydrolysis and biogas production. Waste Biomass Valoriz. 2019, 10, 1481–1491. [Google Scholar] [CrossRef]
- Grewal, J.; Ahmad, R.; Khare, S.K. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification. Bioresour. Technol. 2017, 242, 236–243. [Google Scholar] [CrossRef]
- Zhou, M.; Ju, X.; Zhou, Z.; Yan, L.; Chen, J.; Yao, X.; Xu, X.; Li, L.Z. Development of an immobilized cellulase system based on metal-organic frameworks for improving ionic liquid tolerance and in situ saccharification of bagasse. ACS Sustain. Chem. Eng. 2019, 7, 19185–19193. [Google Scholar] [CrossRef]
- Qi, B.; Luo, J.; Wan, Y. Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling. Bioresour. Technol. 2018, 268, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Chu, T.; Chu, J.; Gao, B.; He, B. A versatile approach for enzyme immobilization using chemically modified 3D-printed scaffolds. ACS Sustain. Chem. Eng. 2019, 7, 18048–18054. [Google Scholar] [CrossRef]
- Jiang, W.; Pei, R.; Zhou, S.F. 3D-printed xylanase within biocompatible polymers as excellent catalyst for lignocellulose degradation. Chem. Eng. J. 2020, 400, 125920. [Google Scholar] [CrossRef]
- Rodríguez-Restrepo, Y.A.; Orrego, C.E. Immobilization of enzymes and cells on lignocellulosic materials. Environ. Chem. Lett. 2020, 18, 787–806. [Google Scholar] [CrossRef]
- He, B.; Chang, P.; Zhu, X.; Zhang, S. Anemone-inspired enzymatic film for cellulose heterogeneous catalysis. Carbohydr. Polym. 2021, 260, 117795. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Dhanya, B.S.; Verma, M.L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Technol. 2020, 3, 808–824. [Google Scholar] [CrossRef]
- Han, J.; Wan, J.; Wang, Y.; Wang, L.; Li, C.; Mao, Y.; Ni, L. Recyclable soluble-insoluble upper critical solution temperature-type poly(methacrylamide- co-acrylic acid)-cellulase biocatalyst for hydrolysis of cellulose into glucose. ACS Sustain. Chem. Eng. 2018, 6, 7779–7788. [Google Scholar] [CrossRef]
- Hasunuma, T.; Kondo, A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 2012, 47, 1287–1294. [Google Scholar] [CrossRef]
- Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 2001, 56, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Newcomb, M.; Wu, J.H.D. Cellulase, Clostridia, and Ethanol. Microbiol. Mol. Biol. Rev. 2005, 69, 124–154. [Google Scholar] [CrossRef][Green Version]
- Lo, J.; Olson, D.G.; Murphy, S.J.L.; Tian, L.; Hon, S.; Lanahan, A.; Guss, A.M.; Lynd, L.R. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab. Eng. 2017, 39, 71–79. [Google Scholar] [CrossRef][Green Version]
- Tian, L.; Perot, S.J.; Hon, S.; Zhou, J.; Liang, X.; Bouvier, J.T.; Guss, A.M.; Olson, D.G.; Lynd, L.R. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microb. Cell Fact. 2017, 16, 171. [Google Scholar] [CrossRef][Green Version]
- Tian, L.; Papanek, B.; Olson, D.G.; Rydzak, T.; Holwerda, E.K.; Zheng, T.; Zhou, J.; Maloney, M.; Jiang, N.; Giannone, R.J.; et al. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol. Biofuels 2016, 9, 116. [Google Scholar] [CrossRef][Green Version]
- Yang, X.; Xu, M.; Yang, S.T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab. Eng. 2015, 32, 39–48. [Google Scholar] [CrossRef]
- Bao, T.; Zhao, J.; Li, J.; Liu, X.; Yang, S.T. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. Bioresour. Technol. 2019, 285, 121316. [Google Scholar] [CrossRef]
- Li, Y.; Tschaplinski, T.J.; Engle, N.L.; Hamilton, C.Y.; Rodriguez, M.; Liao, J.C.; Schadt, C.W.; Guss, A.M.; Yang, Y.; Graham, D.E. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol. Biofuels 2012, 5, 2. [Google Scholar] [CrossRef][Green Version]
- Chung, D.; Cha, M.; Guss, A.M.; Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. USA 2014, 111, 8931–8936. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chung, D.; Cha, M.; Snyder, E.N.; Elkins, J.G.; Guss, A.M.; Westpheling, J. Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii. Biotechnol. Biofuels 2015, 8, 163. [Google Scholar] [CrossRef][Green Version]
- Williams-Rhaesa, A.M.; Rubinstein, G.M.; Scott, I.M.; Lipscomb, G.L.; Poole, I.I.F.L.; Kelly, R.M.; Adams, M.W.W. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab. Eng. Commun. 2018, 7, 00073. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, D.; Wei, Y.; Wang, Q.; Li, Z.; Chen, Y.; Huang, R. Direct Ethanol Production from Lignocellulosic Sugars and Sugarcane Bagasse by a Recombinant Trichoderma reesei Strain HJ48. Sci. World J. 2014, 798683. [Google Scholar] [CrossRef][Green Version]
- Ali, S.S.; Nugent, B.; Mullins, E.; Doohan, F.M. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose. PLoS ONE 2013, 8, 54701. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cunha, J.T.; Soares, P.O.; Baptista, S.L.; Costa, C.E.; Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: A review and perspectives on bioethanol production. Bioengineered 2020, 11, 883–903. [Google Scholar] [CrossRef] [PubMed]
- Baptista, S.L.; Costa, C.E.; Cunha, J.T.; Soares, P.O.; Domingues, L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol. Adv. 2021, 47, 107697. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.T.; Romani, A.; Costa, C.E.; Sa-Correia, I.; Domingues, L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl. Microbiol. Biotechnol. 2019, 103, 159–175. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Wang, C.; Wang, L.; Yang, R.; Hou, P.; Liu, J. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. J. Ind. Microbiol. Biotechnol. 2017, 44, 453–464. [Google Scholar] [CrossRef]
- Hyeon, J.-E.; Yu, K.O.; Suh, D.J.; Suh, Y.W.; Lee, S.E.; Lee, J.; Han, S.O. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2010, 310, 39–47. [Google Scholar] [CrossRef][Green Version]
- Khatun, M.M.; Yu, X.; Kondo, A.; Bai, F.; Zhao, X. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. Bioresour. Technol. 2017, 245, 1447–1454. [Google Scholar] [CrossRef]
- Phillips, C.M.; Beeson, W.T.; Cate, J.H.; Marletta, M.A. Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa. ACS Chem. Biol. 2011, 6, 1399–1406. [Google Scholar] [CrossRef]
- Liang, Y.; Si, T.; Ang, E.L.; Zhao, H. Engineered Pentafunctional Minicellulosome for Simultaneous Saccharification and Ethanol Fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 6677–6684. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cunha, J.T.; Soares, P.O.; Romaní, A.; Thevelein, J.M.; Domingues, L. Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol. Biofuels 2019, 12, 20. [Google Scholar] [CrossRef]
- Sakamoto, T.; Hasunuma, T.; Hori, Y.; Yamada, R.; Kondo, A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol. 2012, 158, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.T.; Romaní, A.; Inokuma, K.; Johansson, B.; Hasunuma, T.; Kondo, A.; Domingues, L. Consolidated bioprocessing of corn cob-derived hemicellulose: Engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnol. Biofuels 2020, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Ho, C.Y.; Ho, F.J.; Tsai, T.Y.; Ke, H.M.; Wang, C.H.T.; Chen, H.L.; Shih, M.C.; Huang, C.C.; Li, W.H. PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnol. Biofuels 2012, 5, 53. [Google Scholar] [CrossRef][Green Version]
- Chang, J.J.; Ho, F.J.; Ho, C.Y.; Wu, Y.C.; Hou, Y.H.; Huang, C.C.; Shih, M.C.; Li, W.H. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol. Biofuels 2013, 6, 19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Anandharaj, M.; Lin, Y.J.; Rani, R.P.; Nadendla, E.K.; Ho, M.C.; Huang, C.C.; Cheng, J.F.; Chang, J.J.; Li, W.H. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc. Natl. Acad. Sci. USA 2020, 117, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Qiao, J.; Wang, X.; Sun, W.; Chen, L.; Li, S.; Wu, K.; Ma, L.; Liu, Y. Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. Biotechnol. Biofuels 2020, 13, 108. [Google Scholar] [CrossRef]
- Thirumalai Vasan, P.; Sobana Piriya, P.; Immanual Gilwax Prabhu, D.; John Vennison, S. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour. Technol. 2011, 102, 2585–2589. [Google Scholar] [CrossRef]
- Loaces, I.; Schein, S.; Noya, F. Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase. Bioresour. Technol. 2017, 224, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Bashir, Z.; Sheng, L.; Anil, A.; Lali, A.; Minton, N.P.; Zhang, Y. Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw. Biotechnol. Biofuels 2019, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Claes, A.; Deparis, Q.; Foulquié-Moreno, M.R.; Thevelein, J.M. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab. Eng. 2020, 59, 131–141. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Sowatad, A.; Kanokratana, P.; Havanapan, P.-O.; Champreda, V. Expression and Extracellular Secretion of Endo-glucanase and Xylanase by Zymomonas mobilis. Appl. Biochem. Biotechnol. 2019, 187, 239–252. [Google Scholar] [CrossRef]
- Akbas, M.Y.; Stark, B.C. Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 2016, 43, 1593–1609. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, V. Chapter 22—Bioethanol Production from Corn. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, UK, 2019; pp. 615–631. [Google Scholar]
- Matano, Y.; Hasunuma, T.; Kondo, A. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour. Technol. 2013, 135, 403–409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, D.; Cunha, J.; Zanuso, E.; Teixeira, J.; Domingues, L. Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes. Polysaccharides 2021, 2, 287-310. https://doi.org/10.3390/polysaccharides2020020
Gomes D, Cunha J, Zanuso E, Teixeira J, Domingues L. Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes. Polysaccharides. 2021; 2(2):287-310. https://doi.org/10.3390/polysaccharides2020020
Chicago/Turabian StyleGomes, Daniel, Joana Cunha, Elisa Zanuso, José Teixeira, and Lucília Domingues. 2021. "Strategies towards Reduction of Cellulases Consumption: Debottlenecking the Economics of Lignocellulosics Valorization Processes" Polysaccharides 2, no. 2: 287-310. https://doi.org/10.3390/polysaccharides2020020