Biopolymeric Materials Used as Nonviral Vectors: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scientific Prospecting
3.1.1. Annual Evolution
3.1.2. Worldwide Distribution
3.1.3. Discussion of Articles
3.2. Technological Prospecting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pack, D.W.; Hoffman, A.S.; Pun, S.; Stayton, P.S. Design and development of polymers for gene delivery. Nat. Rev. 2005, 4, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 2004, 57, 1–8. [Google Scholar] [CrossRef]
- Quong, D.; Neufeld, R.J. DNA protection from extracapsular nucleases, within chitosan or poly-L-lysine-coated alginated beads. Biotechnol. Bioeng. 1998, 60, 124–134. [Google Scholar] [CrossRef]
- Ghivizzani, S.C.; Oligino, T.J.; Glorioso, J.C.; Robbins, P.D.; Evans, C. Gene Therapy Approaches for Treating Rheumatoid Arthritis. Clin. Orthop. Relat. Res. 2000, 379, S288–S299. [Google Scholar] [CrossRef] [PubMed]
- Marshall, E. FDA Halts All Gene Therapy Trials at Penn. Science 2000, 287, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Oligino, T.J.; Yao, Q.; Ghivizzani, S.C.; Robbins, P. Vector systems for gene transfer to joints. Clin. Orthop. 2000, 379, S17–S30. [Google Scholar] [CrossRef] [PubMed]
- Somia, N.; Verma, I.M. Gene therapy: Trials and tribulations. Nat. Rev. Genet. 2000, 1, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ferber, D. Gene therapy: Safer and virus-free? Science 2001, 294, 1638–1642. [Google Scholar] [CrossRef]
- Singh, M.; Yadav, A.; Ma, X.; Amoah, E. Plasmid DNA transformation in Escherichia coli: Effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. Int. J. Biotechnol. Biochem. 2010, 6, 561–568. [Google Scholar]
- Cehovin, A.; Simpson, P.J.; Mcdowell, M.A.; Brown, D.R.; Noschese, R.; Pallett, M.; Brady, J.; Baldwin, G.S.; Lea, S.M.; Matthews, S.J.; et al. Specific DNA recognition mediated by a type IV pilin. Proc. Natl. Acad. Sci. USA 2013, 110, 3065–3070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, K.S.; Sampa Sarkar, S.; Mirzadeh, N.; Selvakannan, P.R.; Bhargava, S.K. Self-Assembled Functional Nanostructure of Plasmid DNA with Ionic Liquid [Bmim][PF6]: Enhanced Efficiency in Bacterial Gene Transformation. Langmuir 2015, 31, 4722–4732. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, L.; Scholz, A.; Lipp, P. Conceptual and technical aspects of transfection and gene delivery. Bioorg. Med. Chem. Lett. 2015, 25, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Fayazpour, F.; Lucas, B.; Alvarez-Lorenzo, C.; Sanders, N.N.; Demeester, J.; Smedt, S.C. Physicochemical and Transfection Properties of Cationic Hydroxyethylcellulose/DNA Nanoparticles. Biomacromolecules 2006, 7, 2856–2862. [Google Scholar] [CrossRef]
- Calvete, C.L.; Caseiro, M.M.; Souza, C.B. Biotecnologia: Transformação Bacteriana por Método de Choque-Térmico. UNILUS Ensino Pesqui. 2015, 12, 41–53. [Google Scholar]
- Brown, M.D.; Schatzlein, A.G.; Uchegbu, I.F. Gene delivery with synthetic (non viral) carriers. Int. J. Pharm. 2001, 23, 1–21. [Google Scholar] [CrossRef]
- Wagner, E.; Ogris, M.; Zauner, W. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. 1998, 30, 97–113. [Google Scholar] [PubMed]
- Sivakumar, B.; Aswathy, R.G.; Nagaoka, Y.; Suzuki, M.; Fukuda, T.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D.N. Multifunctional Carboxymethyl Cellulose-Based Magnetic Nanovector as a Theragnostic System for Folate Receptor Targeted Chemotherapy, Imaging, and Hyperthermia against Cancer. Am. Chem. Soc. 2013, 29, 3453–3466. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.A. A pesquisa médica e biomédica no Brasil: Comparações com o desempenho científico brasileiro e mundial. Ciênc. Saúde Coletiva 2004, 9, 303–327. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Dai, Y.; Lv, L.; Zhao, H. Chitosan-Graft-Polyethylenimine/DNA Nanoparticles as Novel Non-Viral Gene Delivery Vectors Targeting Osteoarthritis. PLoS ONE 2014, 9, 12. [Google Scholar] [CrossRef]
- Togo, Y.; Takahashi, K.; Saito, K.; Kiso, H.; Huang, B.; Tsukamoto, H.; Hyon, S.-H.; Bessho, K. Aldehyded Dextran and ε-Poly (L-lysine) Hydrogel as Nonviral Gene Carrier. Stem Cells Int. 2013, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshita, Y.; Higashihara, J.; Onishi, M.; Mizuno, M.; Yoshida, J.; Takasaki, T.; Kubota, N.; Onishi, Y. Mechanism of the Introduction of Exogenous Genes into Cultured Cells Using DEAE-Dextran-MMA Graft Copolymer as a Non-Viral Gene Carrier. Molecules 2009, 14, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008, 9, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Saidy, N.R.N.; Fu, R.; Wang, R. Chitosan Inhibits pBR322-AmpR transformation in Escherichia coli DH5α. J. Exp. Microbiol. Immunol. (JEMI) 2015, 15, 1–7. [Google Scholar]
- Ghiamkazemi, S.; Amanzadeh, A.; Dinarvand, R.; Rafiee-Tehrani, M.; Amini, M. Synthesis, and Characterization, and Evaluation of Cellular Effects of the FOL-PEG-g-PEI-GAL Nanoparticles as a Potential Non-Viral Vector for Gene Delivery. J. Nanomater. 2010, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Oskuee, R.K.; Mahmoudi, A.; Gholami, L.; Rahmatkhah, A.; Malaekeh-Nikouei, B. Cationic Liposomes Modified with Polyallylamine as a Gene Carrier: Preparation, Characterization and Transfection Efficiency Evaluation. Adv. Pharm. Bul. 2016, 6, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Sun, X.; Liu, D.; Chen, Z.; Lu, Z.; Zhang, N. Biodegradable Tri-Block Copolymer Poly (lactic acid)-poly (ethylene glycol)-poly(L-lysine)(PLA-PEG-PLL) as a Non-Viral Vector to Enhance Gene Transfection. Int. J. Mol. 2011, 12, 1371–1388. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Hayashi, M.A.F.; Oliveira, E.B.; Karpel, R.L. DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 2012, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Bae, S.-H.; Kim, B.; Park, J.S.; Jung, S.; Lee, M.; Kim, Y.-H.; Choi, D. Cardiac Usage of Reducible Poly (oligo-D-arginine) As a Gene Carrier for Vascular Endothelial Growth Factor Expression. PLoS ONE 2015, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perisic, T.; Zhang, Z.; Foehr, P.; Hopfner, U.; Klutz, K.; Burgkart, R.; Slobodianski, A.; Goeldner, M.; Machens, H.G.; Schilling, A.F. Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts. PLoS ONE 2017, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-H.; Noh, Y.-W.; Cho, M.Y.; Lim, Y.T. An Electrostatically Self-Assembled Ternary Nanocomplex as a Non-Viral Vector for the Delivery of Plasmid DNA into Human Adipose-Derived Stem Cells. Molecules 2016, 21, 572. [Google Scholar] [CrossRef] [Green Version]
- Shcharbin, D.; Dzmitruk, V.; Shakhbazau, A.; Goncharova, N.; Seviaryn, I.; Kosmacheva, S.; Potapnev, M.; Pedziwiatr-Werbicka, E.; Bryszewska, M.; Talabaev, M.; et al. Fourth Generation Phosphorus-Containing Dendrimers: Prospective Drug and Gene Delivery Carrier. Pharmaceutics 2011, 3, 458–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Xu, B.-H.; Xu, J.-J.; Shou, D.; Gao, J.-Q. Synthesis of Mannosylated Polyethylenimine and Its Potential Application as Cell-Targeting Non-Viral Vector for Gene Therapy. Polymers 2014, 6, 2573–2587. [Google Scholar] [CrossRef] [Green Version]
- Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 2001, 53, 341–358. [Google Scholar] [CrossRef]
- Li, Z.-T.; Guo, J.; Zhang, J.-S.; Zhao, Y.-P. Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydr. Polym. 2010, 80, 254–259. [Google Scholar] [CrossRef]
- Chen, H.; Cui, S.; Zhao, Y.; Zhang, C.; Zhang, S.; Peng, X. Grafting Chitosan with Polyethylenimine in an Ionic Liquid for Efficient Gene Delivery. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
Published Articles from 2006 to 2020 | ||||
---|---|---|---|---|
Database | Scopus | Web of Science | Scielo | |
Keywords | ||||
biopolymer | 2.247 | 1.838 | 31 | |
polysaccharide | 13.179 | 11.203 | 44 | |
carbohydrate | 11.589 | 10.493 | 92 | |
gene delivery | 4.152 | 3.843 | 2 | |
nonviral vector | 204 | 182 | 1 | |
biopolymer and gene delivery | 2 | 1 | 0 | |
biopolymer and nonviral vector | 0 | 0 | 0 | |
polysaccharide and gene delivery | 12 | 11 | 0 | |
polysaccharide and nonviral vector | 1 | 0 | 0 | |
carbohydrate and gene delivery | 7 | 7 | 0 | |
carbohydrate and nonviral vector | 0 | 0 | 0 | |
biopolymer and gene delivery and nonviral vector | 0 | 0 | 0 | |
polysaccharide and gene delivery and nonviral vector | 0 | 0 | 0 | |
carbohydrate and gene delivery and nonviral vector | 0 | 0 | 0 | |
TOTAL | 31.393 | 27.578 | 170 |
Material Type | Cytotoxicity | Nonviral Vector Efficiency | References |
---|---|---|---|
Chitosan-Polyethyleneimine/DNA nanoparticles | Low | Significantly enhanced (p < 0.05) | [19] |
Aldehyde and ε-poly (L-lysine) dextran hydrogel | Low | Significantly enhanced (p < 0.05) | [20] |
Dextran-MMA cationic polysaccharide (methyl methacrylate ester) conjugated to the copolymer (2-diethylaminoethyl-dextran-methylmethacrylate) | Low | Significantly enhanced (p < 0.05) | [21] |
Quaternized cellulose | Low | Significantly enhanced (p < 0.05) | [22] |
Quaternized chitosan | High | Not significantly enhanced (p > 0.05) | [23] |
Keywords | EPO | USPTO | INPI |
---|---|---|---|
biopolymer | 1.110 | 165 | 39 |
polysaccharide | 7.695 | 387 | 112 |
carbohydrate | 2.462 | 255 | 84 |
gene delivery | 670 | 82 | 2 |
nonviral vector | 35 | 0 | 1 |
biopolymer and gene delivery | 0 | 0 | 0 |
biopolymer and nonviral vector | 0 | 0 | 0 |
polysaccharide and gene delivery | 2 | 0 | 0 |
polysaccharide and nonviral vector | 1 | 0 | 0 |
carbohydrate and gene delivery | 0 | 0 | 0 |
carbohydrate and nonviral vector | 0 | 0 | 0 |
biopolymer and gene delivery and nonviral vector | 0 | 0 | 0 |
polysaccharide and gene delivery and nonviral vector | 0 | 0 | 0 |
carbohydrate and gene delivery and nonviral vector | 0 | 0 | 0 |
TOTAL | 11.975 | 889 | 238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.d.A.; Liarte, D.B.; Ribeiro, A.B.; Rizzo, M.d.S.; Costa, M.P.d.; Osajima, J.A.; Silva-Filho, E.C. Biopolymeric Materials Used as Nonviral Vectors: A Review. Polysaccharides 2021, 2, 100-109. https://doi.org/10.3390/polysaccharides2010007
Santos JdA, Liarte DB, Ribeiro AB, Rizzo MdS, Costa MPd, Osajima JA, Silva-Filho EC. Biopolymeric Materials Used as Nonviral Vectors: A Review. Polysaccharides. 2021; 2(1):100-109. https://doi.org/10.3390/polysaccharides2010007
Chicago/Turabian StyleSantos, Jailson de Araújo, Daniel Barbosa Liarte, Alessandra Braga Ribeiro, Marcia dos Santos Rizzo, Marcília Pinheiro da Costa, Josy A. Osajima, and Edson C. Silva-Filho. 2021. "Biopolymeric Materials Used as Nonviral Vectors: A Review" Polysaccharides 2, no. 1: 100-109. https://doi.org/10.3390/polysaccharides2010007
APA StyleSantos, J. d. A., Liarte, D. B., Ribeiro, A. B., Rizzo, M. d. S., Costa, M. P. d., Osajima, J. A., & Silva-Filho, E. C. (2021). Biopolymeric Materials Used as Nonviral Vectors: A Review. Polysaccharides, 2(1), 100-109. https://doi.org/10.3390/polysaccharides2010007