Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water
Abstract
:1. Introduction
2. Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic Stress
3. Chitin- and Chitosan-Based Derivatives in Plant Protection against Abiotic Stress
4. Chitin- and Chitosan-Based Derivatives in Recovery of Contaminated Soil and Water
5. Open Questions, Future Perspectives and Conclusions
Funding
Conflicts of Interest
References
- He, M.; He, C.-Q.; Ding, N.-Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996–1010. [Google Scholar]
- Malerba, M.; Cerana, R. Recent advances of chitosan application in plants. Polymers 2018, 10, 118–127. [Google Scholar]
- Malerba, M.; Cerana, R. Recent applications of chitin- and chitosan-based polymers in plants. Polymers 2019, 11, 839–847. [Google Scholar]
- Batool, S.; Rashid, S.A.; Moah, M.J.; Sarfraz, M.; Ashraf, M.A. Geographical distribution of persistent organic pollutants in the environment: A review. J. Environ. Biol. 2016, 37, 1125–1134. [Google Scholar]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; Bezerra, C.O.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar]
- Iriti, M.; Vitalini, S. Sustainable crop protection, global climate change, food security and safety—Plant immunity at the crossroads. Vaccines 2020, 8, 42. [Google Scholar] [CrossRef][Green Version]
- Shamshina, J.; Oldham, T.; Rogers, R.D. Applications of chitin in agriculture. Sustain. Agric. Rev. 2019, 36, 125–146. [Google Scholar] [CrossRef]
- Esyanti, R.R.; Dwivany, F.M.; Mahani, S.; Nugrahapraja, H.; Meitha, K. Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (Capsicum annuum L.). Aust. J. Crop. Sci. 2019, 13, 55–60. [Google Scholar] [CrossRef]
- Fooladi vanda, G.; Shabani, L.; Razavizadeh, R. Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Bot. Stud. 2019, 60, 26. [Google Scholar] [CrossRef][Green Version]
- Mohamed, E.A. Copper and chitosan nanoparticles as potential elicitors of innate immune response in date palm: A comparative study. Arch. Phytopathol. Plant Prot. 2019, 52, 1276–1288. [Google Scholar] [CrossRef]
- Colman, S.L.; Salcedo, M.F.; Mansilla, A.Y.; Iglesias, M.J.; Fiol, D.F.; Martín-Saldaña, S.; Alvarez, V.A.; Chevalier, A.A.; Casalongué, C.A. Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Plant Physiol. Biochem. 2019, 143, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Shahryari, F.; Rabiei, Z.; Sadighian, S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Soleiman, N.Y. Control of beet fly (Pegomya hyoscyami) (Diptera: Anthomyidae) using chitosan and nanochitosan. Plant Arch. 2019, 19 (Suppl. 2), 462–465. [Google Scholar]
- Mejdoub-Trabelsi, B.; Touihri, S.; Ammar, N.; Riahi, A.; Daami-Remadi, M. Effect of chitosan for the control of potato diseases caused by Fusarium species. J. Phytopathol. 2020, 168, 18–27. [Google Scholar] [CrossRef]
- Ma, B.; Wang, J.; Liu, C.; Hu, J.; Tan, K.; Zhao, F.; Yuan, M.; Zhang, J.; Gai, Z. Preventive effects of fluoro-substituted benzothiadiazole derivatives and chitosan oligosaccharide against the rice seedling blight induced by Fusarium oxysporum. Plants 2019, 8, 538. [Google Scholar] [CrossRef][Green Version]
- Shi, Q.; George, J.; Krystel, J.; Zhang, S.; Lapointe, S.L.; Stelinski, L.L.; Stover, E. Hexaacetyl-chitohexaose, a chitin-derived oligosaccharide, transiently activates citrus defenses and alters the feeding behavior of Asian citrus psyllid. Hortic. Res. 2019, 6, 76. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.C.; Hur, J.Y.; Park, S.K. Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. Eur. J. Plant Pathol. 2019, 155, 253–263. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ichino, T.; Saito, A. Transition of the bacterial community and culturable chitinolytic bacteria in chitin-treated upland soil: From Streptomyces to methionine-auxotrophic Lysobacter and other genera. Microbes Environ. 2020, 35. [Google Scholar] [CrossRef][Green Version]
- Gao, F.; Zhang, B.-S.; Zhao, J.-H.; Huang, J.-F.; Jia, P.S.; Wang, S.; Zhang, J.; Zhou, J.-M.; Guo, H.-S. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 2019, 5, 1167–1176. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations—FAO. Deficit Irrigation Practices; Water Reports, No. 22; FAO: Rome, Italy, 2002. [Google Scholar]
- Lin, K.-H.; Lin, F.-W.; Wu, C.-W.; Chang, Y.-S. Biostimulation of maize (Zea mays) and irrigation management improved crop growth and water use under controlled environment. Agronomy 2019, 9, 559. [Google Scholar] [CrossRef][Green Version]
- Farouk, S.; EL-Metwally, I.M. Synergistic responses of drip-irrigated wheat crop to chitosan and/or silicon under different irrigation regimes. Agric. Water Manag. 2019, 226, 105807. [Google Scholar] [CrossRef]
- Behboudi, F.; Tahmasebi-Sarvestani, Z.; Kassaee, M.Z.; Modarres-Sanavy, S.A.M.; Sorooshzadeh, A.; Mokhtassi-Bidgoli, A. Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J. Plant Nutr. 2019, 42, 1439–1451. [Google Scholar] [CrossRef]
- Veroneze-Júnior, V.; Martins, M.; Mc Leod, L.; Souza, K.R.D.; Santos-Filho, P.R.; Magalhães, P.C.; Carvalho, D.T.; Santos, M.H.; Souza, T.C. Leaf application of chitosan and physiological evaluation of maize hybrids contrasting for drought tolerance under water restriction. Braz. J. Biol. 2019. [Google Scholar] [CrossRef]
- Khordadi Varamin, J.; Fanoodi, F.; Sinaki, J.M.; Rezvan, S.; Damavandi, A. Physiological response of sesame (Sesamum indicum L.) to application of chitosan and magnesium-nano fertilizers under irrigation cut-off in a sustainable agriculture system. Iran. J. Plant Physiol. 2018, 9, 2629–2639. [Google Scholar]
- Al-Ghamdi, A.A. Marjoram physiological and molecular performance under water stress and chitosan treatment. Acta Physiol. Plant. 2019, 41. [Google Scholar] [CrossRef]
- Monfared, B.B.; Noormohamadi, G.; Rad, A.H.S.; Hervan, E.M. Effects of sowing date, cultivar and chitosan on quality and quantity of rapeseed (Brassica napus L.) oil. J. Agric. Sci. 2019, 25, 508–517. [Google Scholar] [CrossRef][Green Version]
- Attia, Z.; Dalal, A.; Moshelion, M. Vascular bundle sheath and mesophyll cells modulate leaf water balance in response to chitin. Plant J. 2019. [Google Scholar] [CrossRef]
- Peykani, L.S.; Sepehr, M.F. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Iran. J. Plant Physiol. 2018, 9, 2661–2670. [Google Scholar]
- Turk, H. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiol. Biochem. 2019, 141, 415–422. [Google Scholar] [CrossRef]
- Chanratana, M.; Joe, M.M.; Roy Choudhury, A.; Anandham, R.; Krishnamoorthy, R.; Kim, K.; Jeon, S.; Choi, J.; Choi, J.; Sa, T. Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech 2019, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.Y.; Gu, W.R.; Zhang, L.G.; Li, C.F.; Chen, X.C.; Li, J.; Li, L.J.; Xie, T.L.; Wei, S. Role of chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress. Russ. J. Plant Physiol. 2019, 66, 140–151. [Google Scholar] [CrossRef]
- Liaqat, A.; Ihsan, M.Z.; Rizwan, M.S.; Mehmood, A.; Ijaz, M.; Alam, M.; Abdullah, M.; Wajid, M.; Hussain, R.; Naeem, M.; et al. Inducing effect of chitosan on the physiological and biochemical indices of eggplant (Solanum melongena L.) genotypes under heat and high irradiance. Appl. Ecol. Environ. Res. 2019, 17, 11273–11287. [Google Scholar] [CrossRef]
- Al-Hassani, F.A.M.; Majid, B.H. Effect of arginine, chitosan and agryl mulching on the growth and yield of pepper plant under the conditions of unheated greenhouses. Plant Arch. 2019, 19, 256–262. [Google Scholar]
- Hussain, I.; Ahmad, S.; Ullah, I.; Basit, A.; Ahmad, I.; Sajid, M.; Alam, M.; Khan, S.; Ayaz, S. Foliar application of chitosan modulates the morphological and biochemical characteristics of tomato. Asian J. Agric. Biol. 2019, 7, 365–372. [Google Scholar]
- Shaheen, A.M.; Ragab, M.E.; Rizk, F.A.; Mahmoud, S.H.; Soliman, M.M.; Omar, N.M. Effect of some active stimulants on plant growth, tubers yield and nutritional values of potato plants grown in newly reclaimed soil. Anim. Plant Sci. 2019, 29, 215–225. [Google Scholar]
- Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Omer, A.M. Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: Seed priming vs foliar application. S. Afr. J. Bot. 2019, 125, 102–108. [Google Scholar] [CrossRef]
- Obsuwan, K.; Ngampanya, B.; Uthairatanakij, A.; Thepsithar, C. Effects of fertiliser ratio and chitosan on inflorescence quality and display life of a Mokara hybrid. Acta Hortic. 2019, 1262. [Google Scholar] [CrossRef]
- El Amerany, F.; Rhazi, M.; Wahbi, C.; Taourirte, M.; Meddich, A. The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci. Hortic. 2020, 261, 109015. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef][Green Version]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Iron nanoparticles α-chitin nanocomposite for enhanced antimicrobial, dyes degradation and heavy metals removal activities. J. Polym. Environ. 2018, 26, 3638–3654. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, S.; Yilihamu, A.; Ma, Q.; Shi, M.; Ouyang, B.; Zhang, Q.; Guan, X.; Yang, S.-T. Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environ. Res. 2019, 179, 108779. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, X.; Baowei, Y.; Di, N.; Liu, X.; Ma, Q.; Yang, S.; Yilihamu, A.; Yang, S.-T. Carboxylated graphene oxide-chitosan spheres immobilize Cu2+ in soil and reduce its bioaccumulation in wheat plants. Environ. Int. 2019, 133, 105208. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, K.; Vinodhini, A.P.; Sudha, P.N.; Faleh, A.A.; Sukumaran, A. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int. J. Biol. Macromol. 2019, 132, 939–953. [Google Scholar] [CrossRef]
- Qian, J.; Zhou, L.; Yang, X.; Hua, D.; Wu, N. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay. J. Hazard. Mater. 2020, 386, 121965. [Google Scholar] [CrossRef]
- Alsharari, S.F.; Tayel, A.A.; Moussa, S.H. Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int. J. Biol. Macromol. 2018, 118, 2265–2268. [Google Scholar] [CrossRef]
- Wang, B.; Bai, Z.; Jiang, H.; Prinsen, P.; Luque, R.; Zhao, S.; Xuan, J. Selective heavy metal removal and water purification by microfluidically generated-chitosan microspheres: Characteristics, modeling and application. J. Hazard. Mater. 2019, 364, 192–205. [Google Scholar] [CrossRef][Green Version]
- Pérez Mora, B.E.; Bellú, S.E.; Mangiameli, M.F.; García, S.I.; González, J.C. Optimization of continuous arsenic biosorption present in natural contaminated groundwater. J. Chem. Technol. Biotechnol. 2019, 94, 547–555. [Google Scholar] [CrossRef][Green Version]
- Taha, A.A.; Hameed, N.J.; Rashid, F.H. Preparation and characterization of (hyacinth plant/chitosan) composite as a heavy metal removal. Baghdad Sci. J. 2019, 16, 865–870. [Google Scholar] [CrossRef][Green Version]
- Türker, O.C.; Baran, T. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Int. J. Phytoremed. 2019, 20, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.F.; Lacerda, M.F.A.R.; Thomaz, D.V.; de Souza Golveia, J.C.; Pereira, M.D.G.C.; de Souza Gil, E.; Schimidt, F.; Santiago, M.F. Optimization of laccase–alginate–chitosan-based matrix toward 17 α-ethinylestradiol removal. Prep. Biochem. Biotechnol. 2019, 49, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Junyu, Z.; Zefeng, S.; Yuesuo, Y. Preparation of low-cost sludge-based mesoporous carbon and its adsorption of tetracycline antibiotics. Water Sci. Technol. 2019, 79, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Menk, J.J.; do Nascimento, A.I.S.; Leite, F.G.; de Oliveira, R.A.; Jozala, A.F.; de Oliveira Junior, J.M.; Chaud, M.V.; Grotto, D. Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere 2019, 237, 124515. [Google Scholar] [CrossRef] [PubMed]
- Muangchinda, C.; Chamcheun, C.; Sawatsing, R.; Pinyakong, O. Diesel oil removal by Serratia sp. W4-01 immobilized in chitosan-activated carbon beads. Environ. Sci. Pollut. Res. 2018, 25, 26927–26938. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.C.F.S.; Araújo, B.R.; Birolli, W.G.; Marques, C.G.; Diniz, L.E.C.; Barbosa, A.M., Jr.; Porto, A.L.M.; Romão, L.P.C. Fluoranthene biodegradation by Serratia sp. AC-11 immobilized into chitosan beads. Appl. Biochem. Biotechnol. 2019, 188, 1168–1184. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Lu, Q.; Zhan, C.; Tariq, M.; Huang, K.; Liu, F.; Zhu, F.; Liu, G.; Cui, C.; Lin, K. Efficient novel amphiphilic double shells layer coupled with nanoscale zero-valent composite for the degradation of trichloroethylene. Sci. Total Environ. 2019, 659, 821–827. [Google Scholar] [CrossRef]
- Crocker, F.H.; Jung, C.M.; Indest, K.J.; Carr, M.R. Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). Biodegradation 2019, 30, 415–431. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Fakhry, H.; Elzain, A.A.; Farouk, H.; Hafez, E.E. Rhizofiltration system consists of chitosan and natural Arundo donax L. for removal of basic red dye. Int. J. Biol. Macromol. 2018, 120, 1508–1514. [Google Scholar] [CrossRef]
- Masilompane, T.M.; Chaukura, N.; Mishra, S.B.; Mishra, A.K. Chitosan-lignin-titania nanocomposites for the removal of brilliant black dye from aqueous solution. Int. J. Biol. Macromol. 2018, 120, 1659–1666. [Google Scholar] [CrossRef]
- Rashidipour, M.; Maleki, A.; Kordi, S.; Birjandi, M.; Pajouhi, N.; Mohammadi, E.; Heydari, R.; Rezaee, R.; Rasoulian, B.; Davari, B. Pectin/chitosan/tripolyphosphate nanoparticles: Efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J. Agric. Food Chem. 2019, 67, 5736–5745. [Google Scholar] [CrossRef] [PubMed]
- Rychter, P. Chitosan/glyphosate formulations as a potential, environmental friendly herbicide with prolonged activity. J. Environ. Sci. Health Part B 2019, 54, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Sabeen, A.H.; Kamaruddin, S.N.B.; Noor, Z.Z. Environmental impacts assessment of industrial wastewater treatment system using electroless nickel plating and life cycle assessment approaches. Internat. J. Environ. Sci. Technol. 2019, 16, 3171–3182. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, M.M. Application of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 2010, 11, 5152–5164. [Google Scholar] [CrossRef] [PubMed][Green Version]
- European Commission Directorate-General for Agriculture and Rural Development; Egtop/2016 Final Report on Plant Protection (III); European Commission: Brussels, Belgium, 2016.
Plant Species | Characteristics of the Protective Molecules and Method of Administration | Protective Effect | Reference |
---|---|---|---|
Capsicum annuum L. | 1% chitosan, foliar application | Resistance against Phytophthora capsici | [9] |
Melissa officinalis | 0.005, 0.01, 0.015% chitosan, shoot spraying | Accumulation of defense-related enzymes and phenolic compounds | [10] |
Phoenix dactylifera L. | 0.1% chitosan nanoparticles, seedling irrigation | Enhancement of the innate immunity | [11] |
Solanum lycopersicum | 0.001, 0.01, 0.1% chitosan microparticles, foliar application | Accumulation of defense-related enzymes | [12] |
Stone fruit trees | 0.001% chitosan-Ag nanoparticles, foliar application | Resistance against Pseudomonas syringae | [13] |
Beta vulgaris | 0.2% chitosan; 0.05% nano chitosan, foliar sprayjng | Resistance against Pegomya hyoscyami | [14] |
Solanum tuberosum L. | 0.4% chitosan, tuber immersion | Resistance against Fusarium spp. | [15] |
Oryza sativa L. | 0.3% chitosan oligosaccharide, seedlings sprayjng | Resistance against Fusarium oxysporum | [16] |
Citrus reticulata Blanco | 0.05% chitin oligosaccharide, leaf infiltration | Resistance against Candidatus Liberibacter asiaticus | [17] |
“in vitro” test | 0.5% chitin oligosaccharide diluted in culture medium | Inhibition of Botrytis cinerea spores germination | [18] |
Plant Species | Characteristics of the Protective Molecules and Methods of Administration | Protective Effect | Reference |
---|---|---|---|
Zea mays L. cv. White Pearl | 0, 2 and 4 g chitin added to 1 kg of soil | Drought stress tolerance | [22] |
Triticum aestivum L. | 0.0125% chitosan, foliar application | Drought stress tolerance | [23] |
Triticum aestivum cv. pishtaz | 0.0009% chitosan nanoparticles, soil and foliar application | Drought stress tolerance | [24] |
Zea mays L. | 0.01% chitosan, foliar application | Drought stress tolerance | [25] |
Sesamum indicum L. | 0.00048, 0.00064% chitosan, foliar application | Drought stress tolerance | [26] |
Origanum majorana | 0.005, 0.02, 0.05% chitosan, plant irrigation | Drought stress tolerance | [27] |
Brassica napus L. | 0.2% chitosan, seedling soaking | Drought stress tolerance | [28] |
Arabidopsis thaliana | 0.01% chitin, plant spraying | Drought stress tolerance | [29] |
Triticum aestivum L., Zea mays L. | 25, 50, 75% chitosan, seed coating | Salt stress tolerance | [30] |
Zea mays cv. Arifiye | 0.1% chitosan, foliar application | Salt stress tolerance | [31] |
Solanum lycopersicum Mill. | Chitosan–aggregated growth-promoting bacteria | Salt stress tolerance | [32] |
Zea mays L. | 0.01% chitosan, seedling soaking | Cadmium stress tolerance | [33] |
Solanum melongena L. | 0.0125, 0.0150, 0.02% chitosan, foliar application | Heat stress tolerance | [34] |
Capsicum annuum L. | 0.00125, 0.00250, 0.00375% chitosan, plant spraying | Heat stress tolerance | [35] |
Solanum lycopersicum Mill. | 0.003, 0.006, 0.009, 0.012% chitosan, foliar application | Heat stress tolerance | [36] |
Solanum tuberosum L. | 0.25, 0.5% chitosan, foliar application | Poor soil tolerance | [37] |
Phaseolus vulgaris cv. Contender | 10% chitosan nanoparticles loaded with NPK fertilizers, seed priming and foliar application | Poor soil tolerance | [38] |
Mokara Orchids Hybrids | 0.002, 0.004, 0.008% chitosan, foliar application | Poor fertilization tolerance | [39] |
Solanum lycopersicum | 1 mg/plant of chitosan, applied to the soil in the transplant cavity | Poor fertilization tolerance | [40] |
Fragaria x ananassa Duch. cv. Elsanta | 0.001% chitosan, foliar application | Poor fertilization tolerance | [41] |
Contaminated Environment | Characteristics of the Protective Molecules | Contaminant(s) | Reference |
---|---|---|---|
“In vitro” assays | Iron/chitin nanoparticles | Heavy metals, dyes, microorganisms | [43] |
Soil and water | Carboxylated graphene oxide/chitosan/cellulose nanocomposite | Copper ions | [44] |
Soil, water and seedlings | Carboxylated graphene oxide/chitosan/cellulose nanocomposite | Copper ions | [45] |
Water | Chitosan/polyvinyl alcohol/montmorillonite clay membrane | Chromium ions | [46] |
Soil | Chitosan/Prussian blue microgel | Cesium and other radionuclides | [47] |
Soil | Chitosan nanoparticles | Lead and copper ions | [48] |
Water | Chitosan microspheres | Copper ions | [49] |
Water | Chitosan/packed columns | Arsenic ions | [50] |
Water | Hyacinth plant extract/chitosan nanocomposite | Copper, lead and cadmium ions | [51] |
Water | Chitosan/Lemna gibba hybrid system | Boron ions | [52] |
Water | Chitosan/laccase/arginate matrix | 17α-ethinylestradiol | [53] |
Water | Chitosan/mesoporous carbon material | Tetracycline antibiotics | [54] |
Soil and water | Chitin- and chitosan-containing mushroom stem waste | Paracetamol, 17α-ethinylestradiol | [55] |
Water | Chitosan/Serratia sp. W4-01 carbon beads | Diesel oil | [56] |
Soil and water | Chitosan/Serratia sp. AC-11 carbon beads | Polycyclic aromatic hydrocarbons | [57] |
Water | Chitosan/zero-valent iron nanocomposite material | Trichloroethylene | [58] |
Soil | Chitin-rich crustaceans shells | Hexahydro-1,3,5-trinitro-1,3,5-triazine; 2,4-dinitrotoluene | [59] |
Water | Chitosan beads and cells of Arundo donax L. plants | CI Basic Red 14 dye | [60] |
Water | Chitosan-lignin-titania nanocomposite | Brilliant Black dye | [61] |
Soil and water | Chitosan nanoparticles | Paraquat | [62] |
Soil and water | Chitosan formulations | Glyphosate | [63] |
Water | Chitosan and electroless nickel plating | CO2, SO2 | [64] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malerba, M.; Cerana, R. Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. Polysaccharides 2020, 1, 21-30. https://doi.org/10.3390/polysaccharides1010003
Malerba M, Cerana R. Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. Polysaccharides. 2020; 1(1):21-30. https://doi.org/10.3390/polysaccharides1010003
Chicago/Turabian StyleMalerba, Massimo, and Raffaella Cerana. 2020. "Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water" Polysaccharides 1, no. 1: 21-30. https://doi.org/10.3390/polysaccharides1010003