Prevalence of Arterial Hypertension and Associated Factors Among Female Workers in a Large Company in Southern Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample and Sampling
2.3. Data Collection and Instruments
2.4. Outcome: Systemic Arterial Hypertension (SAH)
2.5. Covariates (Associated Factors)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SAH | Systemic Arterial Hypertension |
| BP | Blood Pressure |
| PR | Prevalence Ratio |
| CI | Confidence Interval |
| BMI | Body Mass Index |
| OR | Odds Ratio |
| SBP | Systolic Blood Pressure |
| DBP | Diastolic Blood Pressure |
References
- Malachias, M.V. 7th Brazilian guideline of arterial hypertension: Presentation. Arq. Bras. Cardiol. 2016, 107 (Suppl. S3), XV–XIX. [Google Scholar] [CrossRef]
- Jardim, P.C.B.V. The Brazilian Society of Cardiology and Hypertension: It’s Time for Action. Arq. Bras. Cardiol. 2018, 111, 343–344. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Ostchega, Y.; Fryar, C.D.; Nwankwo, T.; Nguyen, D.T. Hypertension Prevalence Among Adults Aged 18 and Over: United States, 2017–2018; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8.
- Andrade, S.S.d.A.; Stopa, S.R.; Brito, A.S.; Chueri, P.S.; Szwarcwald, C.L.; Malta, D.C. Self-reported hypertension prevalence in the Brazilian population: Analysis of the National Health Survey, 2013. Epidemiol. Serv. Saúde 2015, 24, 297–304. [Google Scholar] [CrossRef]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandao, A.A.; Feitosa, A.D.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Mion Junior, D.; et al. Brazilian Guidelines of Hypertension—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef] [PubMed]
- Malta, D.C.; Goncalves, R.P.F.; Machado, I.E.; Freitas, M.I.F.; Azeredo, C.; Szwarcwald, C.L. Prevalence of arterial hypertension according to different diagnostic criteria, National Health Survey. Rev. Bras. Epidemiol. 2018, 21, e180021. [Google Scholar] [CrossRef]
- Caldeira, T.C.M.; Sereno, A.C.R.A.; Soares, M.M.; Maia, E.G.; Claro, R.M. Trend in hypertension prevalence and health behaviors among the brazilian adult population: 2006–2019. Obesities 2023, 3, 145–154. [Google Scholar] [CrossRef]
- Xavier, P.B.; Garcez, A.; Cibeira, G.H.; Germano, A.; Olinto, M.T.A. Factors associated with the occurrence of arterial hypertension in industry workers of state of Rio Grande do Sul, Brazil. Arq. Bras. Cardiol. 2021, 117, 484–491. [Google Scholar] [CrossRef]
- Ribeiro Junior, U.E.S.; Fernandes, R.C.P. Hypertension in Workers: The Role of Physical Activity and its Different Dimensions. Arq. Bras. Cardiol. 2020, 114, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Spekalski, M.V.S.; Bobato, G.R.; Cabral, L.P.A.; Fadel, C.B.; Krum, E.A.; Bordin, D. Prevalence and factors associated to arterial hypertension in workers at a higher education institution. Rev. Saude Publica Do Paraná 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Pereira, S.G.S.; Silva Junior, R.F.D.; Ribeiro, C.; Barbosa, H.A.; Torres, J.; Silva, C. Factors associated with prehypertension and hypertension among healthcare workers working in high-complexity services. Cien. Saude Colet. 2021, 26, 6059–6068. [Google Scholar] [CrossRef]
- Vasconcelos, F.N.d.; Canuto, R.; Guilherme, R.C.; Clark, S.G.F.; Lira, P.I.C.d. Worker’s systemic arterial hypertension. Braz. J. Dev. 2020, 6, 70695–70708. [Google Scholar] [CrossRef]
- Ivicevic Uhernik, A.; Kralj, V.; Cukelj, P.; Brkic-Bilos, I.; Erceg, M.; Benjak, T.; Stevanovic, R. Undiagnosed hypertension in Croatia. Croat. Med. J. 2023, 64, 4–12. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Couto, H.; Vieira, F.L.H.; Lima, E.G. Work stress and arterial hypertension. Rev. Bras. Hipertens. 2007, 14, 112–115. [Google Scholar]
- Vital, T.; Silva, I.d.O.; Paz, F.d.N. Arterial hypertension and work-related risk factors: A literature review. Res. Soc. Dev. 2020, 9, e905975085. [Google Scholar] [CrossRef]
- Cunha, C.L.P. Obesity-Induced Hypertension. Arq. Bras. Cardiol. 2023, 120, e20230391. [Google Scholar] [CrossRef]
- Alves, M.G.; Chor, D.; Faerstein, E.; Lopes Cde, S.; Werneck, G.L. Short version of the “job stress scale”: A Portuguese-language adaptation. Rev. Saude Publica 2004, 38, 164–171. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. In Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2000; Available online: https://iris.who.int/handle/10665/42330 (accessed on 28 August 2024).
- Victora, C.G.; Huttly, S.R.; Fuchs, S.C.; Olinto, M.T. The role of conceptual frameworks in epidemiological analysis: A hierarchical approach. Int. J. Epidemiol. 1997, 26, 224–227. [Google Scholar] [CrossRef]
- BRAZIL. Ministry of Health. [Vigitel Brazil 2006–2023: Self-Reported Morbidity and Self-Assessment of Health Status: Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone Survey: Estimates of Frequency and Sociodemographic Distribution of Self-Reported Morbidity and Health Self-Assessment in the Capitals of the 26 Brazilian States and the Federal District Between 2006 and 2023]; 2023. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/vigitel_2006_2023_morbidade_autoavaliacao.pdf (accessed on 20 February 2025).
- Malta, D.C.; Bernal, R.T.I.; Andrade, S.; Silva, M.; Velasquez-Melendez, G. Prevalence of and factors associated with self-reported high blood pressure in Brazilian adults. Rev. Saude Publica 2017, 51, 11s. [Google Scholar] [CrossRef]
- Vinholes, D.B.; Bassanesi, S.L.; Chaves Junior, H.C.; Machado, C.A.; Melo, I.M.F.; Fuchs, F.D.; Fuchs, S.C. Association of workplace and population characteristics with prevalence of hypertension among Brazilian industry workers: A multilevel analysis. BMJ Open 2017, 7, e015755. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, A.M.; Assunção, A.Á. Job strain and arterial hypertension in nursing professionals from the municipal healthcare network in Belo Horizonte, Minas Gerais, Brazil. Rev. Bras. Saúde Ocup. 2016, 41, e6. [Google Scholar] [CrossRef][Green Version]
- Urbanetto Jde, S.; Prado Lima Figueiredo, A.E.; da Silva Gustavo, A.; Bosi de Souza Magnago, T.S.; Pinheiro da Costa, B.E.; Poli-de-Figueiredo, C.E. Arterial hypertension in nursing personnel of an emergency hospital. Int. J. Nurs. Pract. 2015, 21, 433–442. [Google Scholar] [CrossRef]
- Sarno, F.; Bandoni, D.H.; Jaime, P.C. Overweight and hypertension in workers from companies benefited by the Worker Food Program (WFP). Rev. Bras. Epidemiol. 2008, 11, 453–462. [Google Scholar] [CrossRef]
- Moreira, O.C.; Oliveira, R.A.R.d.; Andrade Neto, F.; Amorim, W.; Oliveira, C.E.P.; Doimo, L.A.; Amorim, P.R.d.S.; Laterza, M.C.; Monteiro, W.D.; Marins, J.C.B. Association between cardiovascular risk and hypertension in universities professors. Rev. Bras. Educ. Fís. Esporte 2011, 25, 397–406. [Google Scholar] [CrossRef]
- Rezende, T.C.G.D.; Christovam, É.R.; de Paula, M.N.; dos Santos Silva, I.T. Obesity-induced hypertension: A literature review. J. Arch. Health 2024, 5, e1788. [Google Scholar] [CrossRef]
- da Silva, N.T.; Giacon, T.R.; da Costa, M.P.; Vitor, A.L.R.; Vanderlei, L.C.M. Prevalence and correlation between obesity, arterial hypertension, and physical activity practice. Colloq. Vitae 2011, 3, 32–36. [Google Scholar] [CrossRef]
- Dua, S.; Bhuker, M.; Sharma, P.; Dhall, M.; Kapoor, S. Body mass index relates to blood pressure among adults. N. Am. J. Med. Sci. 2014, 6, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.C.; do Amaral Gomes, P.H.; Correa, M.M.; Pires, L.C.; da Silva, J.B.L. Association of anthropometric indices with arterial hypertension in adults participating in educational events. Braz. J. Health Rev. 2020, 3, 15253–15259. [Google Scholar] [CrossRef]
- Lima, J.d.S.; Bezerra, L.A.; Gomes, R.M.O.P.; Fontes, A.A.B.; Noronha, V.F.C.M.; de Jesus, J.B.; Lima, S.O.; Cruz, J.F. Correlation between anthropometric indicators of obesity and blood pressure levels. Braz. J. Health Rev. 2021, 4, 14725–14735. [Google Scholar] [CrossRef]
- Chen, Y.; Juvinao-Quintero, D.; Velez, J.C.; Munoz, S.; Castillo, J.; Gelaye, B. Personal and work-related burnout is associated with elevated diastolic blood pressure and diastolic hypertension among working adults in chile. Int. J. Environ. Res. Public Health 2023, 20, 1899. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.; Lima Filho, E.C.; Fischer, F.M.; Moreira Filho, D.C. Diastolic blood pressure associated with accumulated work time among drivers and collectors. Rev. Saude Publica 1993, 27, 363–372. [Google Scholar] [CrossRef]
- Schnall, P.L.; Pieper, C.; Schwartz, J.E.; Karasek, R.A.; Schlussel, Y.; Devereux, R.B.; Ganau, A.; Alderman, M.; Warren, K.; Pickering, T.G. The relationship between’job strain,’workplace diastolic blood pressure, and left ventricular mass index: Results of a case-control study. JAMA 1990, 263, 1929–1935. [Google Scholar] [CrossRef]
- Solovieva, S.; Lallukka, T.; Virtanen, M.; Viikari-Juntura, E. Psychosocial factors at work, long work hours, and obesity: A systematic review. Scand. J. Work Environ. Health 2013, 39, 241–258. [Google Scholar] [CrossRef]
- Shariq, O.A.; McKenzie, T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020, 9, 80–93. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Dell’oro, R. Sympathetic activation in obesity: A noninnocent bystander. Hypertension 2010, 56, 338–340. [Google Scholar] [CrossRef]
- Lobato, N.S.; Filgueira, F.P.; Akamine, E.H.; Tostes, R.C.; Carvalho, M.H.; Fortes, Z.B. Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz. J. Med. Biol. Res. 2012, 45, 392–400. [Google Scholar] [CrossRef]
- Grosch, J.W.; Caruso, C.C.; Rosa, R.R.; Sauter, S.L. Long hours of work in the U.S.: Associations with demographic and organizational characteristics, psychosocial working conditions, and health. Am. J. Ind. Med. 2006, 49, 943–952. [Google Scholar] [CrossRef]
- Sun, W.; Wu, H.; Wang, L. Occupational stress and its related factors among university teachers in China. J. Occup. Health 2011, 53, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.; Olinto, M.T.; Dias-da-Costa, J.S.; Alves, A.L.; Balbinotti, M.; Pattussi, M.P.; Bassani, D.G. Socioeconomic, demographic and lifestyle factors associated with dietary patterns of women living in Southern Brazil. Cad. Saude Publica 2009, 25, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Canuto, R.; Garcez, A.; Spritzer, P.M.; Olinto, M.T.A. Associations of perceived stress and salivary cortisol with the snack and fast-food dietary pattern in women shift workers. Stress 2021, 24, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Mohammed, R.A. Obesity: Prevalence, causes, consequences, management, preventive strategies and future research directions. Metabol. Open 2025, 27, 100375. [Google Scholar] [CrossRef] [PubMed]
- Canazaro, B.C.; Aguiar, O.B.; Moreno, A.B.; Alves, M.G.M.; Fonseca, M. Association between job stress and quality of life in nutritionists working in public hospitals in Rio de Janeiro, Brazil. Cien. Saude Colet. 2022, 27, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Backes, V.; Bairros, F.; Cafruni, C.B.; Cummins, S.; Shareck, M.; Mason, K.; Dias-da-Costa, J.S.; Olinto, M.T.A. Food environment, income and obesity: A multilevel analysis of a reality of women in Southern Brazil. Cad. Saude Publica 2019, 35, e00144618. [Google Scholar] [CrossRef]

| Total Sample N = 451 | Without SAH N = 326 | With SAH N = 125 | |||||
|---|---|---|---|---|---|---|---|
| Characteristics | n | % | n | % | n | % | p-value |
| Age (years) | 0.018 b | ||||||
| 18–30 | 164 | 36.4 | 129 | 78.7 | 35 | 21.3 | |
| 31–40 | 153 | 33.9 | 108 | 70.6 | 45 | 29.4 | |
| ≥41 | 134 | 29.7 | 89 | 66.4 | 45 | 33.6 | |
| Mean (SD) | 35.1 | (10.1) | 34.5 | (10.2) | 36.6 | (9.6) | 0.063 c |
| Median (IQR) | 35 | (27–42) | 34 | (26–41) | 37 | (29–43) | 0.038 d |
| Skin color | 0.488 a | ||||||
| White | 314 | 69.6 | 230 | 73.3 | 84 | 26.8 | |
| Others | 137 | 30.4 | 96 | 70.1 | 41 | 29.9 | |
| Marital status | 0.111 a | ||||||
| Without a partner | 233 | 51.7 | 176 | 75.5 | 57 | 24.5 | |
| With partner | 218 | 48.3 | 150 | 68.8 | 68 | 31.2 | |
| Per capita household income | 0.004 b | ||||||
| <1 minimum wage | 172 | 38.1 | 115 | 66.9 | 57 | 33.1 | |
| 1–2 minimum wages | 190 | 42.1 | 136 | 71.6 | 54 | 28.4 | |
| >2 minimum wages | 89 | 19.8 | 75 | 84.3 | 14 | 15.7 | |
| Mean (SD), minimum wages | 1.5 | (1.2) | 1.5 | (1.2) | 1.4 | (1.1) | 0.746 c |
| Median (IQR), minimum wages | 1.2 | (0.8–1.7) | 1.2 | (0.8–1.7) | 1.1 | (0.8–1.7) | 0.683 d |
| Education (years of schooling) | 0.996 a | ||||||
| ≤8 | 33 | 7.3 | 24 | 72.7 | 9 | 27.3 | |
| 9–11 | 244 | 54.1 | 176 | 72.1 | 68 | 27.9 | |
| >11 | 174 | 38.6 | 126 | 72.4 | 48 | 27.6 | |
| Mean (SD) | 12.0 | (2.6) | 12.1 | (2.6) | 12.0 | (2.5) | 0.734 c |
| Median (IQR) | 11 | (11–13) | 11 | (11–13) | 11 | (11–13) | 0.963 d |
| Night work | 0.469 a | ||||||
| No | 353 | 78.3 | 258 | 73.1 | 95 | 26.9 | |
| Yes (10 pm–6 am) | 98 | 21.7 | 68 | 69.4 | 30 | 30.6 | |
| Length of employment (months) | 0.230 b | ||||||
| ≤12 | 93 | 20.6 | 70 | 75.3 | 23 | 24.7 | |
| 13–36 | 135 | 29.9 | 101 | 74.8 | 34 | 25.2 | |
| >36 | 223 | 49.5 | 155 | 69.5 | 68 | 30.5 | |
| Mean (SD) | 73.3 | (78.2) | 72.7 | (80.3) | 74.8 | (72.6) | 0.799 c |
| Median (IQR) | 36 | (18–120) | 36 | (16–120) | 48 | (22–108) | 0.419 d |
| Job role | 0.102 a | ||||||
| Administrative | 95 | 21.1 | 75 | 78.9 | 20 | 21.1 | |
| Factory work (production) | 356 | 78.9 | 251 | 70.5 | 105 | 29.5 | |
| Physical activity for leisure | 0.048 a | ||||||
| No | 323 | 71.6 | 225 | 69.7 | 98 | 30.3 | |
| Yes | 128 | 28.4 | 101 | 78.9 | 27 | 21.1 | |
| Sleep quality | 0.449 a | ||||||
| Very good/Good | 298 | 66.1 | 212 | 71.1 | 86 | 28.9 | |
| Poor/Very Poor | 153 | 33.9 | 114 | 74.5 | 39 | 25.5 | |
| Number of meals (day) | 0.961 a | ||||||
| >3 meals | 194 | 43.0 | 140 | 72.2 | 54 | 27.8 | |
| ≤3 meals | 257 | 57.0 | 186 | 72.4 | 71 | 27.6 | |
| Mean (SD) | 3.7 | (1.0) | 3.7 | (1.0) | 3.6 | (1.0) | 0.626 c |
| Median (IQR) | 4 | (3–4) | 4 | (3–4) | 4 | (3–4) | 0.833 d |
| Smoking | 0.974 a | ||||||
| Never smoked | 341 | 75.6 | 247 | 72.4 | 94 | 27.6 | |
| Former smoker | 76 | 16.9 | 55 | 72.4 | 21 | 27.6 | |
| Smoking | 34 | 7.5 | 24 | 70.6 | 10 | 29.4 | |
| Alcohol consumption | 0.213 a | ||||||
| No consumption | 316 | 70.1 | 223 | 70.6 | 93 | 29.4 | |
| ≥1 time a week | 135 | 29.9 | 103 | 76.3 | 32 | 23.7 | |
| Occupational Stress (Job Stress Scale) | 0.095 a | ||||||
| No | 352 | 78.0 | 261 | 74.1 | 91 | 25.9 | |
| Yes | 99 | 22.0 | 65 | 65.7 | 34 | 34.3 | |
| Obesity (BMI ≥ 30 kg/m2) | <0.001 a | ||||||
| No | 313 | 69.4 | 247 | 78.9 | 66 | 21.1 | |
| Yes | 138 | 30.6 | 79 | 57.2 | 59 | 42.8 | |
| Mean (SD), BMI | 27.9 | (5.5) | 27.2 | (4.9) | 29.8 | (6.4) | <0.001 c |
| Median (IQR), BMI | 26.9 | (24.3–31.1) | 26.7 | (24.2–29.6) | 29.5 | (24.8–34.3) | <0.001 d |
| Self-perception of health | 0.013 a | ||||||
| Excellent/Very good/Good | 330 | 73.0 | 249 | 75.5 | 81 | 24.5 | |
| Fair/Poor | 122 | 27.0 | 77 | 63.6 | 44 | 36.4 | |
| Model I a | Model II b | Model III c | Model IV d | |||||
|---|---|---|---|---|---|---|---|---|
| Level/Characteristics | PR (95% CI) | p-Value | PR (95% CI) | p-Value | PR (95% CI) | p-Value | PR (95% CI) | p-Value |
| Distal Level | ||||||||
| Age | ||||||||
| 18–30 | Ref. 1.00 | Ref. 1.00 | ||||||
| 31–40 | 1.38 (0.94–2.02) | 0.101 | 1.27 (0.86–1.88) | 0.233 | ||||
| ≥41 | 1.57 (1.08–2.30) | 0.044 | 1.48 (1.01–2.18) | 0.046 | ||||
| Marital status | ||||||||
| Without a partner | Ref. 1.00 | Ref. 1.00 | ||||||
| With partner | 1.27 (0.94–1.72) | 0.112 | 1.18 (0.87–1.70) | 0.290 | ||||
| Per capita household income | ||||||||
| <1 minimum wage | Ref. 1.00 | Ref. 1.00 | ||||||
| 1–2 minimum wages | 0.86 (0.63–1.17) | 0.332 | 0.83 (0.61–1.14) | 0.251 | ||||
| >2 minimum wages | 0.47 (0.28–0.80) | 0.006 | 0.48 (0.28–0.80) | 0.005 | ||||
| Intermediate Level | ||||||||
| Physical activity for leisure | ||||||||
| No | Ref. 1.00 | Ref. 1.00 | ||||||
| Yes | 0.69 (0.48–1.01) | 0.057 | 0.75 (0.51–1.09) | 0.131 | ||||
| Job role Administrative Factory work (production) | Ref. 1.00 1.40 (0.92–2.14) | 0.117 | Ref. 1.00 1.17 (0.75–1.83) | 0.478 | ||||
| Occupational stress | ||||||||
| No | Ref. 1.00 | Ref. 1.00 | ||||||
| Yes | 1.33 (0.96–1.83) | 0.087 | 1.21 (0.87–1.68) | 0.264 | ||||
| Proximal Level | ||||||||
| Obesity (BMI ≥ 30 kg/m2) | ||||||||
| No | Ref. 1.00 | Ref. 1.00 | ||||||
| Yes | 2.03 (1.52–2.70) | <0.001 | 1.85 (1.30–2.47) | <0.001 | ||||
| Self-perception of health | ||||||||
| Excellent/Very good/Good | Ref. 1.00 | Ref. 1.00 | ||||||
| Fair/Poor | 1.48 (1.10–2.00) | 0.011 | 1.30 (0.97–1.72) | 0.084 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, Y.G.; Arruda, H.C.; Kohl, I.S.; da Silva, J.C.; Garcez, A.; Olinto, M.T.A. Prevalence of Arterial Hypertension and Associated Factors Among Female Workers in a Large Company in Southern Brazil. Obesities 2025, 5, 80. https://doi.org/10.3390/obesities5040080
Marinho YG, Arruda HC, Kohl IS, da Silva JC, Garcez A, Olinto MTA. Prevalence of Arterial Hypertension and Associated Factors Among Female Workers in a Large Company in Southern Brazil. Obesities. 2025; 5(4):80. https://doi.org/10.3390/obesities5040080
Chicago/Turabian StyleMarinho, Yasmin Garcia, Harrison Canabarro Arruda, Ingrid Stähler Kohl, Janaína Cristina da Silva, Anderson Garcez, and Maria Teresa Anselmo Olinto. 2025. "Prevalence of Arterial Hypertension and Associated Factors Among Female Workers in a Large Company in Southern Brazil" Obesities 5, no. 4: 80. https://doi.org/10.3390/obesities5040080
APA StyleMarinho, Y. G., Arruda, H. C., Kohl, I. S., da Silva, J. C., Garcez, A., & Olinto, M. T. A. (2025). Prevalence of Arterial Hypertension and Associated Factors Among Female Workers in a Large Company in Southern Brazil. Obesities, 5(4), 80. https://doi.org/10.3390/obesities5040080

