Body Mapping as Risk Factors for Non-Communicable Diseases in Ghana: Evidence from Ghana’s 2023 Nationwide Steps Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size and Sampling Procedure
2.3. Ethical Approval and Participant Consent
2.4. Outcome Variables
2.5. Anthropometric and Other Measurements
2.6. Data Collection Process
2.7. Data Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Characteristics of Participants with at Least One Self-Reported NCD Diagnosis
3.3. Body Mapping Related Factors Associated with at Least One Self-Reported NCD Diagnosis
3.4. Receiver Operator Curve Analysis of Body Mapping Indicators as a Predictor of Having at Least One Measured NCD; Hypertension, Diabetes, Dyslipidemia, or Self-Reported Myocardial Infarction or Stroke
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCD | Non-Communicable Disease |
LMIC | Low- and Middle-Income Countries |
BMI | Body Mass Index |
WC | Waist Circumference |
HC | Hip Circumference |
WHR | Waist-to-Hip Ratio |
WHtR | Waist-to-Height Ratio |
VAT | Visceral Adipose Tissue |
STEPS | STEPwise Approach to Surveillance (WHO methodology) |
WHO | World Health Organization |
GHS-ERC | Ghana Health Service Ethics Review Committee |
ROC | Receiver Operator Characteristic |
AUC | Area Under the Curve |
COR | Crude Odds Ratio |
AOR | Adjusted Odds Ratio |
HDL | High-Density Lipoprotein |
eSTEPS | Electronic STEPS application used for data collection |
References
- World Health Organization. Non Communicable Diseases, Fact Sheets. In: Noncommunicable Disease Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 14 January 2025).
- Ezzati, M.; Pearson-Stuttard, J.; Bennett, J.E.; Mathers, C.D. Acting on non-communicable diseases in low- and middle-income tropical countries. Nature 2018, 559, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.d.J.; Al-Mamun, M.d.; Islam, M.d.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. JACC 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Eze, P.; Lawani, L.O.; Agu, U.J.; Acharya, Y. Catastrophic health expenditure in sub-Saharan Africa: Systematic review and meta-analysis. Bull. World Health Organ. 2022, 100, 337–351J. [Google Scholar] [CrossRef]
- World Economic Forum. Why the 21st Century’s Biggest Health Challenge is Our Shared Responsibility. 2018. Available online: https://www.weforum.org/stories/2019/01/why-the-21st-centurys-biggest-health-challenge-is-our-shared-responsibility/ (accessed on 26 June 2024).
- Kankeu, H.T.; Saksena, P.; Xu, K.; Evans, D.B. The financial burden from non-communicable diseases in low- and middle-income countries: A literature review. Health Res. Policy Syst. 2013, 11, 31. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/274512/9789241514620-eng.pdf (accessed on 14 January 2025).
- Mbanya, V.N.; Kengne, A.P.; Mbanya, J.C.; Akhtar, H. Body mass index, waist circumference, hip circumference, waist–hip-ratio and waist–height-ratio: Which is the better discriminator of prevalent screen-detected diabetes in a Cameroonian population? Diabetes Res. Clin. Pract. 2015, 108, 23–30. [Google Scholar] [CrossRef]
- Hewage, N.; Wijesekara, U.; Perera, R. Determining the best method for evaluating obesity and the risk for non-communicable diseases in women of childbearing age by measuring the body mass index, waist circumference, waist-to-hip ratio, waist-to-height ratio, A Body Shape Index, and hip index. Nutrition 2023, 114, 112135. [Google Scholar] [CrossRef]
- Yoon, K.H.; Lee, J.H.; Kim, J.W.; Cho, J.H.; Choi, Y.H.; Ko, S.H.; Zimmet, P.; Son, H.Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Chan, J.C.N.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.H.; Hu, F.B. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA—J. Am. Med. Assoc. 2009, 301, 2129–2140. [Google Scholar] [CrossRef]
- De Pergola, G.; Silvestris, F. Obesity as a Major Risk Factor for Cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef]
- Fortner, R.T.; Katzke, V.; Kühn, T.; Kaaks, R. Obesity and breast cancer. Recent Results Cancer Res. 2016, 208, 43–65. [Google Scholar] [PubMed]
- Zammit, C.; Liddicoat, H.; Moonsie, I.; Makker, H. Obesity and respiratory diseases. Int. J. Gen. Med. 2010, 3, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Nuertey, B.D.; Alhassan, A.I.; Nuertey, A.D.; Mensah, I.A.; Adongo, V.; Kabutey, C.; Addai, J.; Biritwum, R.B. Prevalence of obesity and overweight and its associated factors among registered pensioners in Ghana; a cross sectional studies. BMC Obes. 2017, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Nuertey, B.D.; Amissah-Arthur, K.N.; Addai, J.; Adongo, V.; Nuertey, A.D.; Kabutey, C.; Mensah, I.A.; Biritwum, R.B. Prevalence, Causes, and Factors Associated with Visual Impairment and Blindness among Registered Pensioners in Ghana. J. Ophthalmol. 2019, 2019, 1717464. [Google Scholar] [CrossRef]
- Akowuah, P.K.; Kobia-Acquah, E. Childhood Obesity and Overweight in Ghana: A Systematic Review and Meta-Analysis. J. Nutr. Metab. 2020, 2020, 1907416. [Google Scholar] [CrossRef]
- Boateng, G.O.; Adams, E.A.; Odei Boateng, M.; Luginaah, I.N.; Taabazuing, M.-M. Obesity and the burden of health risks among the elderly in Ghana: A population study. PLoS ONE 2017, 12, e0186947. [Google Scholar] [CrossRef]
- Ofori-Asenso, R.; Agyeman, A.A.; Laar, A.; Boateng, D. Overweight and obesity epidemic in Ghana—A systematic review and meta-analysis. BMC Public Health 2016, 16, 1239. [Google Scholar] [CrossRef]
- Amoadu, M.; Obeng, P.; Abekah Baah, J.; Acquah, P.; Cobbinah, G.; Aku Ogum, M.; Owusu Sarfo, J.; Wilson Ansah, E. Overweight and Obesity Among In-School Children and Adolescents (5–19 Years) in Ghana: A Scoping Review of Prevalence and Risk Factors. J. Obes. 2024, 2024, 8895265. [Google Scholar] [CrossRef]
- Abubakar, M.B.; Uthman, Y.A.; Ibrahim, K.G. Prevalence of overweight and obesity among health-care workers in Ghana: A systematic review. Niger. J. Exp. Clin. Biosci. 2021, 9, 47–53. [Google Scholar] [CrossRef]
- Asosega, K.A.; Adebanji, A.O.; Abdul, I.W. Spatial analysis of the prevalence of obesity and overweight among women in Ghana. BMJ Open 2021, 11, e041659. [Google Scholar] [CrossRef]
- Asosega, K.A.; Aidoo, E.N.; Adebanji, A.O.; Owusu-Dabo, E. Examining the risk factors for overweight and obesity among women in Ghana: A multilevel perspective. Heliyon 2023, 9, e16207. [Google Scholar] [CrossRef]
- World Health Organization. Obesity. In: Health Topics. 2024. Available online: https://www.who.int/westernpacific/health-topics/obesity (accessed on 14 January 2025).
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. 2000. Available online: https://books.google.com/books?hl=en&lr=&id=AvnqOsqv9doC&oi=fnd&pg=PR3&dq=World+Health+Organization.+Obesity:+Preventing+and+Managing+the+Global+Epidemic.+Report+of+a+WHO+Consultation.+WHO+Technical+Report+Series+894.+Geneva:+World+Health+Organization%3B+2000.&ots=6XI37oXV2N&sig=TyCDgyzHPxDlLBAuOkfJAhx4_08 (accessed on 24 July 2025).
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008; Volume 2008, pp. 8–11. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3885684 (accessed on 17 January 2025).
- Kruger, H.S.; Venter, C.S.; Vorster, H.H. Obesity in African women in the North West Province, South Africa is associated with an increased risk of non-communicable diseases: The THUSA study. Br. J. Nutr. 2001, 86, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Oumer, A.; Ale, A.; Tariku, Z.; Hamza, A.; Abera, L.; Seifu, A. Waist-to-hip circumference and waist-to-height ratio could strongly predict glycemic control than body mass index among adult patients with diabetes in Ethiopia: ROC analysis. PLoS ONE 2022, 17, e0273786. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008. 2011. Available online: https://apps.who.int/iris/bitstream/handle/10665/44583/?sequence=1 (accessed on 17 January 2025).
- Darsini, D.; Hamidah, H.; Notobroto, H.B.; Cahyono, E.A. Health Risks Associated with High Waist Circumference: A Systematic Review. J. Public Health Res. 2020, 9, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, K.; Zhao, H.; Hu, X.; Yin, C.; Zhao, X.; Shi, S. Association of body mass index and waist circumference with high blood pressure in older adults. BMC Geriatr. 2021, 21, 260. [Google Scholar] [CrossRef]
- Sun, J.; Ma, Y.; Liu, H.; Qu, Q.; Cheng, C.; Kong, X.; Huang, W.; Sun, W. High waist circumference is a risk factor of new-onset hypertension: Evidence from the China Health and Retirement Longitudinal Study. J. Clin. Hypertens. 2022, 24, 320–328. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Hua, Y.; Zou, H.-Y.-Y.; Qu, Q.; Yuan, Y.; Sun, G.-Z.; Sun, W.; Kong, X.-Q. Association between waist circumference and the prevalence of (Pre) hypertension among 27,894 US adults. Front. Cardiovasc. Med. 2021, 8, 717257. [Google Scholar] [CrossRef]
- Moosaie, F.; Fatemi Abhari, S.M.; Deravi, N.; Karimi Behnagh, A.; Esteghamati, S.; Dehghani Firouzabadi, F.; Rabizadeh, S.; Nakhjavani, M.; Esteghamati, A. Waist-to-height ratio is a more accurate tool for predicting hypertension than waist-to-hip circumference and BMI in patients with type 2 diabetes: A prospective study. Front. Public Health 2021, 9, 726288. [Google Scholar] [CrossRef]
- Ke, J.-F.; Wang, J.-W.; Lu, J.-X.; Zhang, Z.-H.; Liu, Y.; Li, L.-X. Waist-to-height ratio has a stronger association with cardiovascular risks than waist circumference, waist-hip ratio and body mass index in type 2 diabetes. Diabetes Res. Clin. Pract. 2022, 183, 109151. [Google Scholar] [CrossRef]
- Jia, Z.; Zhou, Y.; Liu, X.; Wang, Y.; Zhao, X.; Wang, Y.; Liang, W.; Wu, S. Comparison of different anthropometric measures as predictors of diabetes incidence in a Chinese population. Diabetes Res. Clin. Pract. 2011, 92, 265–271. [Google Scholar] [CrossRef]
- Mfuru, G.H.; Allan, J.N.; Njau, A.; Ubuguyu, O.; Malima, K.Y. Using waist circumference as a predictor of hypertension in Manzese, Dar es Salaam: A community-based cross-sectional study, 2023. BMC Public Health 2024, 24, 3618. [Google Scholar] [CrossRef]
- Nakanga, W.P.; Crampin, A.C.; Mkandawire, J.; Banda, L.; Andrews, R.C.; Hattersley, A.T.; Nyirenda, M.J.; Rodgers, L.R. Waist circumference and glycaemia are strong predictors of progression to diabetes in individuals with prediabetes in sub-Saharan Africa: 4-year prospective cohort study in Malawi. PLOS Glob. Public Health 2023, 3, e0001263. [Google Scholar] [CrossRef]
Characteristics | All Participants | Men | Women |
---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (SD) | |
Age (years) | 35.1 [34.6–35.7] | 34.8 [33.9–35.7] | 35.4 [34.9–36.1] |
Height (cm) | 165.2 [163.9–166.5] | 170.3 [168.2–172.5] | 159.7 [158.4–161.0] |
Weight (Kg) | 66.0 [64.5–67.5] | 65.6 [63.9–67.2] | 66.9 [65.8–68.0] |
Waist Circumference (cm) | 85.9 [84.9–86.8] | 81.9 [80.1–83.7] | 88.3 [87.3–89.3] |
Hip Circumference | 98.9 [98.0–99.8] | 94.3 [92.5–96.1] | 101.0 [100.8–102.7] |
BMI (kg/m2) | 24.9 [24.7–25.1] | 22.7 [22.3–23.1] | 26.3 [26.0–26.6] |
Waist-to-Hip Ratio | 0.9 [0.9–0.9] | 0.9 [0.9–0.9] | 0.9 [0.9–0.9] |
Waist-to-Height Ratio | 0.5 [0.5–0.5] | 0.5 [0.5–0.5] | 0.6 [0.61–0.6] |
Variable | Self-Reported at Least One NCD | Measured with at Least One NCD | ||||
---|---|---|---|---|---|---|
Weighted N(%) | NCD (%) [95% CI] | p-Value | Weighted N(%) | NCD (%) [95% CI] | p-Value | |
Age | <0.001 | <0.001 | ||||
18 to 29 years | 2292 (44.0) | 14.2 [11.8, 17.0] | 1420 (26.2) | 27.6 [24.6, 30.9] | ||
30 to 44 years | 1641 (31.5) | 28.6 [26.1, 31.4] | 2110 (38.9) | 47.3 [43.9, 50.7] | ||
45 to 59 years | 930 (17.9) | 40.8 [37.2, 44.6] | 1331 (24.5) | 64.4 [60.6, 68.0] | ||
60 to 69 years | 345 (6.6) | 52.1 [46.8, 57.4] | 570 (10.5) | 72.3 [40.6, 45.4] | ||
Sex | <0.001 | <0.001 | ||||
Male | 2624 (50.4) | 21.3 [187, 24.0] | 2019 (37.2) | 37.5 [34.5, 40.6] | ||
Female | 2583 (49.6) | 30.8 [28.6, 33.1] | 3412 (62.8) | 48.6 [45.8, 51.5] | ||
Level of education | 0.006 | 0.005 | ||||
No formal education | 1381 (26.5) | 30.6 [27.8, 33.5] | 1866 (34.4) | 48.7 [44.3, 53.1] | ||
Primary | 611 (11.7) | 21.6 [16.9, 27.2] | 660 (12.2) | 50.0 [35.34, 46.88] | ||
SHS | 1597 (30.7) | 25.7 [23.0, 28.7] | 1608 (29.6) | 42.9 [39.46, 46.37] | ||
Tertiary | 1618 (31.1) | 24.0 [21.0, 27.4] | 1297 (23.9) | 39.1 [35.07, 43.3] | ||
Ethnicity | 0.238 | 0.0178 | ||||
Akan | 2050 (39.4) | 25.5 [23.2, 28.0] | 2197 (40.5) | 44.9 [41.9, 48.0] | ||
Ga/Dangme | 300 (5.8) | 33.3 [27.3, 40.0] | 283 (5.2) | 53.8 [43.7, 63.5] | ||
Ewe | 689 (13.2) | 27.3 [22.9, 32.1] | 693 (12.8) | 44.3 [38.9, 49.8] | ||
Mole Dagbani | 1040 (20.0) | 24.7 [20.7, 29.3] | 1000 (18.4) | 37.9 [32.8, 43.3] | ||
Others | 1127 (21.7) | 25.5 [22.2, 29.1] | 1259 (23.2) | 40.7 [35.8, 45.7] | ||
Religion | 0.412 | 0.0511 | ||||
Chistian | 3608 (69.3) | 26 [24.6, 28.5] | 3916 (72.1) | 44.9 [42.3, 47.5] | ||
Muslim | 1312 (25.2) | 24.7 [21.1, 28.7] | 1915 (22.0) | 38.9 [33.5, 44.7] | ||
Traditional | 183 (3.5) | 29.2 [22.6, 36.8] | 197 (3.6) | 34.0 [25.8, 43.3] | ||
Others | 104 (2.0) | 20.4 [13.5, 29.5] | 123 (2.3) | 46.7 [34.1, 59.7] | ||
Marital Status | <0.001 | <0.001 | ||||
Never married | 1954 (37.5) | 14.9 [12.3, 17.8] | 1252 (23.1) | 28.4 [25.0, 32.0] | ||
Currently married | 2445 (47.0) | 31.6 [29.4, 33.9] | 2964 (54.6) | 49.9 [46.9, 52.8] | ||
Others | 808 (15.5) | 36.0 [32.3, 39.9] | 1215 (22.4) | 58.5 [54.4, 62.5] | ||
Occupation | <0.001 | <0.001 | ||||
Unemployed | 441 (8.5) | 25.9 [19.5, 33.5] | 421 (7.8) | 43.3 [35.5, 51.5] | ||
Government employee | 232 (4.5) | 27.2 [20.4, 35.3] | 254 (4.7) | 51.2 [43.0, 59.4] | ||
Non-government employee | 516 (9.9) | 21.3 [17.1, 26.3] | 397 (7.3) | 42.0 [35.1, 49.2] | ||
Self-employed | 2974 (57.1) | 30.3 [28.2, 32.6] | 3682 (67.8) | 48.5 [46.0, 51.0] | ||
Others | 1044 (20.1) | 15.8 [12.6, 19.6] | 677 (12.5) | 26.2 [21.5, 31.6] | ||
BMI | <0.001 | |||||
Underweight | 495 (9.5) | 19.9 [15.3, 25.3] | 440 (8.8) | 33.7 [27.0, 41.1] | ||
Normal | 2943 (56.5) | 20.5 [18.3, 22.9] | 2698 (51.3) | 36.0 [33.3, 38.8] | ||
Overweight | 1082 (20.8) | 32.0 [28.5, 35.6] | 1246 (23.7) | 51.5 [47.1, 55.8] | ||
Obese | 688 (13.2) | 44.6 [40.2, 49.0] | 872 (16.6) | 66.0 [60.74, 70.86] | ||
Waist Circumference | <0.001 | |||||
Normal | 3383 (65.0) | 20.2 [18.1, 22.5] | 2964 (56.4) | 35.1 [32.4, 37.8] | ||
High | 837 (16.1) | 27.7 [24.2, 31.6] | 890 (16.9) | 51.1 [46.2, 56.0] | ||
Very High | 987 (19.0) | 44.5 [40.8, 48.2] | 1402 (26.7) | 64.9 [60.8, 68.8] | ||
Hip Circumference | <0.001 | <0.001 | ||||
Normal | 1693 (32.5) | 18.5 [15.3, 22.0] | 1269 (24.1) | 32.3 [28.5, 36.4] | ||
Increased | 920 (17.7) | 23.2 [19.8, 27.1] | 862 (16.4) | 39.1 [34.6, 43.9] | ||
Substantially increased | 2593 (49.8) | 32.0 [29.8, 34.2] | 3125 (59.5) | 52.0 [49.0, 55.0] | ||
Waist-to-Hip ratio | <0.001 | |||||
Normal | 2839 (54.0) | 15.2 [13.9, 16.7] | 2839 (54.0) | 35.0 [32.2, 37.8] | ||
Increased | 2417 (46.0) | 20.6 [19.1, 22.3] | 2417 (46.0) | 57.5 [54.3, 60.7] |
Variables | COR | 95% CI | p-Value | AOR | 95% CI | p-Value |
---|---|---|---|---|---|---|
Age | ||||||
18 to 29 years | Ref | Ref | ||||
30 to 44 years | 2.35 | 1.98, 2.79 | <0.001 | 1.79 | 1.38, 2.32 | <0.001 |
45 to 59 years | 4.73 | 3.78, 5.92 | <0.001 | 3.00 | 2.24, 4.04 | <0.001 |
60 to 69 years | 6.85 | 5.22, 8.99 | <0.001 | 5.09 | 3.73, 6.94 | <0.001 |
Sex | ||||||
Male | Ref | Ref | ||||
Female | 1.58 | 1.36, 1.82 | <0.001 | 1.20 | 0.90, 1.59 | 0.218 |
Level of education | ||||||
No formal education | Ref | Ref | ||||
Primary | 0.73 | 0.56, 0.95 | 0.022 | 0.92 | 0.65, 1.29 | 0.624 |
SHS | 0.73 | 0.64, 0.97 | 0.026 | 1.06 | 0.82, 1.36 | 0.645 |
Tertiary | 0.67 | 0.53, 0.86 | 0.001 | 1.34 | 1.01, 1.77 | 0.041 |
Ethnicity | ||||||
Akan | Ref | Ref | ||||
Ga/Dangme | 1.42 | 0.94, 2.15 | 0.093 | 1.33 | 0.98, 1.81 | 0.068 |
Ewe | 1.42 | 0.76, 1.26 | 0.505 | 1.17 | 0.92, 1.50 | 0.182 |
Mole Dagbani | 0.75 | 0.58, 0.96 | 0.024 | 1.46 | 1.04, 2.04 | 0.026 |
Others | 0.84 | 0.67, 1.06 | 0.143 | 1.23 | 0.98, 1.55 | 0.079 |
Religion | ||||||
Chistian | Ref | |||||
Muslim | 0.78 | 0.61, 1.01 | 0.061 | |||
Traditional | 0.63 | 0.42, 0.996 | 0.031 | |||
Others | 1.07 | 0.63, 1.84 | 0.788 | |||
Marital Status | ||||||
Never married | Ref | Ref | ||||
Currently married | 2.51 | 2.08, 3.02 | <0.001 | 1.29 | 0.96, 1.74 | 0.068 |
Others | 3.55 | 2.85, 4.42 | <0.001 | 1.43 | 1.05, 1.94 | 0.022 |
Occupation | ||||||
Unemployed | Ref | Ref | ||||
Government employee | 1.37 | 0.84, 2.23 | 0.202 | 0.78 | 0.48, 1.31 | 0.361 |
Non-government employee | 0.95 | 0.63, 1.42 | 0.784 | 0.85 | 0.50, 1.44 | 0.546 |
Self-employed | 1.23 | 0.88, 1.73 | 0.229 | 0.89 | 0.57, 1.37 | 0.589 |
Others | 0.46 | 0.29, 0.73 | 0.001 | 0.73 | 0.42, 1.25 | 0.260 |
BMI | ||||||
Underweight | Ref | Ref | ||||
Normal | 1.01 | 0.80, 1.53 | 0.541 | 1.01 | 0.72, 1.41 | 0.952 |
Overweight | 2.09 | 1.46, 2.98 | <0.001 | 1.27 | 0.85, 1.91 | 0.240 |
Obese | 3.82 | 2.56, 5.62 | <0.001 | 1.67 | 1.01, 2.54 | 0.019 |
Waist Circumference | ||||||
Normal | Ref | Ref | ||||
High | 1.93 | 1.57, 2.38 | <0.001 | 1.11 | 0.83, 1.50 | 0.478 |
Very High | 3.42 | 2.77, 4.21 | <0.001 | 1.40 | 1.02, 1.993 | 0.036 |
Hip Circumference | ||||||
Normal | Ref | Ref | ||||
Increased | 1.34 | 1.014, 1.79 | 0.040 | 1.04 | 0.78, 1.40 | 0.783 |
Substantially increased | 2.27 | 1.86, 2.76 | <0.001 | 1.08 | 0.77, 1.52 | 0.647 |
Waist-to-hip ratio | ||||||
Normal | Ref | |||||
Increased | 2.52 | 2.13, 2.97 | <0.001 | 1.08 | 0.89, 1.31 | 0.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwin, P.K.; Nuertey, B.D.; Ansong, J.; Nartey, E.B.; Gyimah, L.; Tabong, P.T.-N.; Abbeyquaye, E.P.; Eshun, P.F.; Ampem Amoako, Y.; Totah, T.; et al. Body Mapping as Risk Factors for Non-Communicable Diseases in Ghana: Evidence from Ghana’s 2023 Nationwide Steps Survey. Obesities 2025, 5, 71. https://doi.org/10.3390/obesities5040071
Mwin PK, Nuertey BD, Ansong J, Nartey EB, Gyimah L, Tabong PT-N, Abbeyquaye EP, Eshun PF, Ampem Amoako Y, Totah T, et al. Body Mapping as Risk Factors for Non-Communicable Diseases in Ghana: Evidence from Ghana’s 2023 Nationwide Steps Survey. Obesities. 2025; 5(4):71. https://doi.org/10.3390/obesities5040071
Chicago/Turabian StyleMwin, Pascal Kingsley, Benjamin Demah Nuertey, Joana Ansong, Edmond Banafo Nartey, Leveana Gyimah, Philip Teg-Nefaah Tabong, Emmanuel Parbie Abbeyquaye, Priscilla Foriwaa Eshun, Yaw Ampem Amoako, Terence Totah, and et al. 2025. "Body Mapping as Risk Factors for Non-Communicable Diseases in Ghana: Evidence from Ghana’s 2023 Nationwide Steps Survey" Obesities 5, no. 4: 71. https://doi.org/10.3390/obesities5040071
APA StyleMwin, P. K., Nuertey, B. D., Ansong, J., Nartey, E. B., Gyimah, L., Tabong, P. T.-N., Abbeyquaye, E. P., Eshun, P. F., Ampem Amoako, Y., Totah, T., Lule, F. J., Asiedu, S. S. O., & Hodgson, A. (2025). Body Mapping as Risk Factors for Non-Communicable Diseases in Ghana: Evidence from Ghana’s 2023 Nationwide Steps Survey. Obesities, 5(4), 71. https://doi.org/10.3390/obesities5040071