Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Size Determination
2.3. Sampling and Recruitment of Participants
2.4. Measurements
2.4.1. Baseline Data Collection
- Sociodemographic Data
- Anthropometric Data
- Dietary Data
- Biochemical Data
- Fasting Blood Glucose Determination
- Determination of Glycated Hemoglobin
- Blood Pressure Measurement
2.4.2. Endline Data Collection
2.5. Ethical Approval
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Nutrient Intake of Participants Within Study Groups
3.3. Nutrient Intake of Participants Between Study Groups
3.4. Anthropometric, Blood Pressure, and Blood Glucose Status of Participants Between Study Groups
3.5. Anthropometric, Blood Pressure, and Blood Glucose Status of Participants Within Study Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ILWT2D | Individuals living with type 2 diabetes |
BMI | Body mass index |
BF | Body fat |
VF | Visceral fat |
FBG | Fasting blood glucose |
BP | Blood pressure |
LMICs | Low- and middle-income countries |
ROS | Reactive oxygen species |
COVID-19 | Coronavirus disease 2019 |
GHS | Ghana cedis |
HbA1c | Glycated hemoglobin |
SD | Standard deviation |
USD | United States dollars |
RDA | Recommended dietary allowance |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
References
- WHO. WHO Noncommunicable Diseases Country Profiles; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Fu, A.Z.; Qiu, Y.; Radican, L.; Wells, B.J. Health Care and Productivity Costs Associated with Diabetic Patients with Macrovascular Comorbid Conditions. Diabetes Care 2009, 32, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Dall, T.M.; Beronjia, K.; Lin, J.; Semilla, A.P.; Chakrabarti, R.; Hogan, P.F.; Petersen, M.P. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef]
- Lui, J.N.M.; Lau, E.S.H.; Yang, A.; Wu, H.; Fu, A.; Lau, V.; Loo, K.; Yeung, T.; Yue, R.; Ma, R.C.W.; et al. Temporal Associations of Diabetes-Related Complications with Health-Related Quality of Life Decrements in Chinese Patients with Type 2 Diabetes: A Prospective Study among 19 322 Adults—Joint Asia Diabetes Evaluation (JADE) Register (2007–2018). J. Diabetes 2023, 16, e13503. [Google Scholar] [CrossRef]
- Palmer, K.N.B.; Crocker, R.M.; Marrero, D.G.; Tan, T.W. A Vicious Cycle: Employment Challenges Associated with Diabetes Foot Ulcers in an Economically Marginalized Southwest US Sample. Front. Clin. Diabetes Healthc. 2023, 4, 1027578. [Google Scholar] [CrossRef]
- IDF. IDF Diabetes Atlas Ninth; IDF: Tel Aviv, Israel, 2019; ISBN 9782930229874. [Google Scholar]
- Asamoah-Boaheng, M.; Sarfo-Kantanka, O.; Tuffour, A.B.; Eghan, B.; Mbanya, J.C. Prevalence and Risk Factors for Diabetes Mellitus among Adults in Ghana: A Systematic Review and Meta-Analysis. Int. Health 2019, 11, 83–92. [Google Scholar] [CrossRef] [PubMed]
- WHO Ghana Country Office. Ghana on the Offensive Against Diabetes; WHO Ghana Country Office: Accra, Ghana, 2023. [Google Scholar]
- American Diabetes Association Professional Practice Committee Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S158–S178. [CrossRef]
- O’donoghue, G.; O’sullivan, C.; Corridan, I.; Daly, J.; Finn, R.; Melvin, K.; Peiris, C. Lifestyle Interventions to Improve Glycemic Control in Adults with Type 2 Diabetes Living in Low-and-Middle Income Countries: A Systematic Review and Meta-Analysis of Randomized Controlled Trials (Rcts). Int. J. Environ. Res. Public Health 2021, 18, 6273. [Google Scholar] [CrossRef]
- Pozzilli, P.; Fallucca, F. Diet and Diabetes: A Cornerstone for Therapy. Diabetes Metab. Res. Rev. 2014, 30, 1–3. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S86–S127. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2025. Diabetes Care 2025, 48, S167–S180. [Google Scholar] [CrossRef]
- Chen, R.; Chen, G. Personalized Nutrition for People with Diabetes and at Risk of Diabetes Has Begun. J. Future Foods 2022, 2, 193–202. [Google Scholar] [CrossRef]
- Osei, P.K.; Appiah, C.; Anderson, A.K. Impact of Dietetic Intervention on Metabolic Syndrome Patients Attending Diet Therapy Clinic: A Prospective, Single-Arm Intervention Study. Glob. J. Health Sci. 2021, 13, 89. [Google Scholar] [CrossRef]
- Khazrai, Y.M.; Defeudis, G.; Pozzilli, P. Effect of Diet on Type 2 Diabetes Mellitus: A Review. Diabetes Metab. Res. Rev. 2014, 30, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, I.; Wróblewski, M.; Nuszkiewicz, J.; Sutkowy, P.; Wróblewska, J.; Woźniak, A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int. J. Mol. Sci. 2023, 24, 6382. [Google Scholar] [CrossRef]
- Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H., Jr. Molecular Mechanisms of ROS Production and Oxidative Stress in Diabetes. Biochem. J. 2016, 473, 4527–4550. [Google Scholar] [CrossRef] [PubMed]
- Rains, J.L.; Jain, S.K. Oxidative Stress, Insulin Signaling, and Diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef]
- Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.-P.; Colette, C. Activation of Oxidative Stress by Acute Glucose Fluctuations in Patients with Type 2 Diabetes. J. Am. Med. Assoc. 2006, 295, 1681–1687. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are Oxidative StressnActivated Signaling Pathways Mediators of Insulin Resistance and β-Cell Dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Banerjee, M.; Vats, P. Redox Biology Reactive Metabolites and Antioxidant Gene Polymorphisms in Type. Redox Biol. 2014, 2, 170–177. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Ceriello, A. Possible Role of Oxidative Stress in the Pathogenesis of Hypertension. Diabetes Care 2008, 31 (Suppl. S2), S181–S184. [Google Scholar] [CrossRef]
- Griendling, K.K.; Camargo, L.L.; Rios, F.J.; Alves-Lopes, R.; Montezano, A.C.; Touyz, R.M. Oxidative Stress and Hypertension. Circ. Res. 2021, 128, 993–1020. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S207–S238. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S128–S145. [Google Scholar] [CrossRef] [PubMed]
- Appiah, C.A.; Ngounda, J.; Boakye-Yiadom, M.; Mills-Robertson, F.C.; Nel, M.; Johnson, R.; Walsh, C. Bridelia Ferruginea Tea Consumption Improves Antioxidant Status in Individuals Living with Type 2 Diabetes. Diabetology 2025, 6, 6. [Google Scholar] [CrossRef]
- Alipoor, B.; Homayouni, A.; Vaghef, E. Diabetes, Oxidative Stress and Tea. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Chamomile Tea Improves Glycemic Indices and Antioxidants Status in Patients with Type 2 Diabetes Mellitus. Nutrition 2016, 32, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Pieme, C.A.; Tatangmo, J.A.; Simo, G.; Cabral, P.; Nya, B.; Jocelyne, V.; Moor, A.; Moukette, B.M.; Nzufo, F.T.; Legrand, B.; et al. Relationship between Hyperglycemia, Antioxidant Capacity and Some Enzymatic and Non—Enzymatic Antioxidants in African Patients with Type 2 Diabetes. BMC Res. Notes 2017, 10, 141. [Google Scholar] [CrossRef]
- Tuell, D.S.; Los, E.A.; Ford, G.A.; Stone, W.L. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants 2023, 12, 1139. [Google Scholar] [CrossRef]
- Celli, A.; Barnouin, Y.; Jiang, B.; Blevins, D.; Colleluori, G.; Mediwala, S.; Armamento-Villareal, R.; Qualls, C.; Villareal, D.T. Lifestyle Intervention Strategy to Treat Diabetes in Older Adults: A Randomized Controlled Trial. Diabetes Care 2022, 45, 1943–1952. [Google Scholar] [CrossRef]
- Camara, A.; Baldé, N.M.; Sobngwi-Tambekou, J.; Kengne, A.P.; Diallo, M.M.; Tchatchoua, A.P.K.; Kaké, A.; Sylvie, N.; Balkau, B.; Bonnet, F.; et al. Poor Glycemic Control in Type 2 Diabetes in the South of the Sahara: The Issue of Limited Access to an HbA1c Test. Diabetes Res. Clin. Pract. 2015, 108, 187–192. [Google Scholar] [CrossRef]
- Aschner, P.; Gagliardino, J.J.; Ilkova, H.; Lavalle, F.; Ramachandran, A.; Mbanya, J.C.; Shestakova, M.; Chantelot, J.; Chan, J.C.N. Persistent Poor Glycaemic Control in Individuals with Type 2 Diabetes in Developing Countries: 12 Years of Real-World Evidence of the International Diabetes Management Practices Study (IDMPS). Diabetologia 2020, 63, 711–721. [Google Scholar] [CrossRef]
- Hlovor, I.K. The ‘Second U-Turn’: Domestic Politics and Foreign Economic Policy Choice in Ghana. Afr. Rev. 2023, 1, 1–43. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Mwangi, K.J.; Mustapha, F.; Quint, J.; Tabrizi, R.; Palafox, B.; Etchebehere, M.; Kengne, A.P.; Madhu, P.P.; Peer, N.; et al. Exploring Key-Stakeholder Perceptions on Non-Communicable Disease Care during the COVID-19 Pandemic in Kenya. Pan Afr. Med. J. 2023, 44, 153. [Google Scholar]
- Devi, R.; Goodyear-Smith, F.; Subramaniam, K.; Mccormack, J.; Calder, A.; Parag, V.; Huang, P. The Impact of COVID-19 on the Care of Patients With Noncommunicable Diseases in Low- and Middle-Income Countries: An Online Survey of Patient Perspectives. J. Patient Exp. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Apprey, C.; Addae, H.Y.; Boateng, G.; Aduku, L.E.; Annan, R.A. Dietary Diversity and Nutrient Adequacy among Women in Bosomtwe District, Ghana. Matern. Child Nutr. 2024, 21, e13757. [Google Scholar] [CrossRef] [PubMed]
- Puwanant, M.; Boonrusmee, S.; Jaruratanasirikul, S.; Chimrung, K.; Sriplung, H. Dietary Diversity and Micronutrient Adequacy among Women of Reproductive Age: A Cross-Sectional Study in Southern Thailand. BMC Nutr. 2022, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.; Monge-Rojas, R.; Vargas-Quesada, R.; Previdelli, A.N.; Quesada, D.; Kovalskys, I.; Herrera-Cuenca, M.; Cortes, L.Y.; García, M.C.Y.; Liria-Domínguez, R.; et al. Exploring the FAO Minimum Dietary Diversity Indicator as a Suitable Proxy of Micronutrient Adequacy in Men and Women Across Reproductive and Non-Reproductive Ages in 8 Latin American Countries. Food Nutr. Bull. 2024, 45, S55–S65. [Google Scholar] [CrossRef]
- Mann, C.J. Observational Research Methods. Research Design II: Cohort, Cross Sectional, and Case-Control Studies. Emerg. Med. J. 2003, 20, 54–60. [Google Scholar] [CrossRef]
- Ni, C.; Jia, Q.; Ding, G.; Wu, X.; Yang, M. Low-Glycemic Index Diets as an Intervention in Metabolic Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 307. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mejia; Mirrahimi, A.; Jenkins, D.J.A.; Livesey, G.; et al. Effect of Low Glycaemic Index or Load Dietary Patterns on Glycaemic Control and Cardiometabolic Risk Factors in Diabetes: Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ 2021, 374, n1651. [Google Scholar] [CrossRef] [PubMed]
- Rippin, G.; Largent, J.; Hoogendoorn, W.E.; Sanz, H.; Bosco, J.; Mack, C. External Comparator Cohort Studies—Clarification of Terminology. Front. Drug Saf. Regul. 2024, 3, 1321894. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to Calculate Sample Size for Different Study Designs in Medical Research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef]
- Mobula, L.M.; Sarfo, F.S.; Carson, K.A.; Burnham, G.; Arthur, L.; Ansong, D.; Sarfo-Kantanka, O.; Plange-Rhule, J.; Ofori-Adjei, D. Predictors of Glycemic Control in Type-2 Diabetes Mellitus: Evidence from a Multicenter Study in Ghana. Transl. Metab. Syndr. Res. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of Dietary Assessment Methods for Measuring Intakes of Foods, Beverages, and Dietary Supplements in Research Studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Appiah, C.; Samwini, A.; Brown, P.; Hayford, F.; Asamoah-Boakye, O. Proximate Composition and Serving Sizes of Selected. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 15898–15918. [Google Scholar] [CrossRef]
- Maan, H.B.; Meo, S.A.; Rouq, F.A.; Meo, I.M.U. Impact of Glycated Hemoglobin (HbA1c) on Cognitive Functions in Type 2 Diabetic Patients. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5978–5985. [Google Scholar] [PubMed]
- GSS. Ghana 2021 Population and Housing Census: General Report Highlights; GSS: Accra, Ghana, 2022; Volume 3. [Google Scholar]
- GSS. 2010 Population & Housing Census Report: The Elderly in Ghana; GSS: Accra, Ghana, 2013. [Google Scholar]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Subcommittee on Interpretation, Uses of Dietary Reference Intakes; Subcommittee on Upper Reference Levels of Nutrients; Panel on the Definition of Dietary Fiber; Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); National Academies Press: Washington, DC, USA, 2005; ISBN 030908525X. [Google Scholar]
- Noordzij, M.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Study Designs in Clinical Research. Nephron Clin. Pract. 2009, 113, 9–12. [Google Scholar] [CrossRef]
- Wali, J.A.; Solon-Biet, S.M.; Freire, T.; Brandon, A.E. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. Biology 2021, 10, 336. [Google Scholar] [CrossRef]
- Miller, C.K.; Kristeller, J.L.; Headings, A.; Nagaraja, H.; Miser, W.F. Comparative Effectiveness of a Mindful Eating Intervention to a Diabetes Self-Management Intervention among Adults with Type 2 Diabetes: A Pilot Study. J. Acad. Nutr. Diet. 2012, 112, 1835–1842. [Google Scholar] [CrossRef]
- Lindström, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J. The Finnish Diabetes Prevention Study (DPS). Diabetes Care 2003, 26, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Malden, D.; Lacey, B.; Emberson, J.; Karpe, F.; Allen, N.; Bennett, D.; Lewington, S. Body Fat Distribution and Systolic Blood Pressure in 10,000 Adults with Whole-Body Imaging: UK Biobank and Oxford BioBank. Obesity 2019, 27, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
Study Groups | |||
---|---|---|---|
Variables | Comparator n (%) | Intervention n (%) | p-Value # |
n = 45 | n = 45 | ||
Gender | |||
Male | 7 (15.6) | 13 (28.9) | 0.20 |
Female | 38 (84.4) | 32 (71.1) | |
Age group (years) ± | |||
Middle-aged adults | 23 (51.1) | 18 (40.0) | 0.28 |
Older-aged adults | 22 (48.9) | 27 (60.0) | |
Marital status | |||
Single | 6 (13.3) | 3 (6.7) | 0.45 |
Married | 18 (40.0) | 23 (51.1) | |
Divorced/Widowed | 21 (46.7) | 19 (42.2) | |
Educational level * | |||
Low | 35 (77.8) | 33 (73.3) | 0.97 |
Middle | 8 (17.8) | 9 (20.0) | |
High | 2 (4.4) | 3 (6.7) | |
Occupation | |||
Formal | 0 (0.0) | 4 (8.9) | 0.09 |
Informal | 25 (55.6) | 19 (42.2) | |
Unemployed | 20 (44.4) | 22 (48.9) | |
Monthly income status ^ | |||
Less than GH₵500 | 17 (37.8) | 25 (55.6) | 0.16 |
GH₵500–GH₵999 | 21 (46.7) | 15 (33.3) | |
GH₵1000 and above | 7 (15.5) | 5 (11.1) | |
Family history of diabetes | |||
Yes | 34 (75.6) | 29 (64.4) | 0.36 |
No | 11 (24.4) | 16 (35.6) |
Study Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Nutrient Intakes | Comparator, n = 33 | Intervention, n = 38 | |||||||
Variables | RDA per Day | Baseline | Endline | Δ | p-Value * | Baseline | Endline | Δ | p-Value * |
^ Energy | 1283.3 ± 384.6 | 1584.7 ± 374.9 | 301.4 | 0.005 | 1519.4 ± 534.7 | 1454.6 ± 646.5 | −64.8 | 0.55 | |
Protein | M—56 g F—46 g | 39.8 ± 13.0 | 52.6 ± 14.8 | 12.8 | <0.001 | 45.5 ± 18.6 | 39.7 ± 17.1 | −5.8 | 0.17 |
Fat | 40.3 ± 19.5 | 48.1 ± 17.3 | 7.8 | 0.08 | 49.8 ± 25.1 | 46.5 ± 28.4 | −3.3 | 0.53 | |
Carbohydrate | 130g | 197.9 ± 54.6 | 234.7 ± 50.6 | 36.8 | 0.007 | 226.9 ± 74.9 | 215.3 ± 76.6 | −11.7 | 0.41 |
Antioxidant micronutrients | |||||||||
Zinc | M—11mg F—8 mg | 5.9 ± 2.5 | 7.1 ± 2.3 | 1.2 | 0.013 | 6.8 ± 3.6 | 6.7 ± 4.2 | −0.1 | 0.90 |
Copper | 900 µg | 1000 ± 300 | 1200 ± 300 | 200 | 0.002 | 1200 ± 400 | 1100 ± 400 | −100 | 0.47 |
Selenium | 55 µg | 58.0 ± 27.2 | 80.6 ± 29.5 | 22.6 | 0.003 | 64.2 ± 30.1 | 55.0 ± 24.4 | −9.2 | 0.12 |
Vitamin A | M—900 µg F—700 µg | 174.9 ± 154.3 | 193.7 ± 101.4 | 18.8 | 0.54 | 227.5 ± 184.3 | 318.8 ± 274.7 | 91.3 | 0.038 |
Vitamin C | M—90 mg F—75 mg | 84.7 ± 30.4 | 102.6 ± 40.2 | 17.9 | 0.017 | 95.5 ± 34.9 | 105.4 ± 42.1 | 9.9 | 0.24 |
Vitamin E | 15 mg | 4.8 ± 2.5 | 5.7 ± 2.4 | 0.9 | 0.10 | 5.6 ± 3.3 | 6.6 ± 4.1 | 1.1 | 0.16 |
Study Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Baseline | Endline | |||||||
Nutrients Intakes | RDA per Day | Intervention n = 45 | Comparator n = 45 | Δ | p-Value * | Intervention n = 38 | Comparator n = 33 | Δ | p-Value * |
Macronutrients | |||||||||
^ Energy, kcal | 1656.2 ± 837.1 | 1320.4 ± 398 | 335.8 | 0.024 | 1454.6 ± 646.5 | 1584.7 ± 374.9 | −130.1 | 0.06 | |
Protein, g | M—56 g F—46 g | 48.1 ± 20.0 | 40.6 ± 14.0 | 7.5 | 0.08 | 39.7 ± 17.1 | 52.6 ± 14.8 | −12.9 | <0.001 |
Fat, g | 53.0 ± 29.1 | 41.5 ± 19.3 | 11.5 | 0.024 | 46.5 ± 28.4 | 48.1 ± 17.3 | −33.6 | 0.33 | |
Carbohydrates, g | 130 g | 244.6 ± 103.9 | 202.4 ± 55.7 | 42.2 | 0.07 | 215.3 ± 76.6 | 234.7 ± 50.6 | −19.4 | 0.051 |
Antioxidant micronutrients | |||||||||
Zinc, mg | M—11 mg, F—8 mg | 7.9 ± 5.6 | 5.8 ± 2.4 | 2.1 | 0.07 | 6.7 ± 4.2 | 7.1 ± 2.2 | −0.4 | 0.09 |
Copper, µg | 900 µg | 1.2 ± 0.5 | 1.0 ± 0.3 | 0.2 | 0.06 | 1.1 ± 0.4 | 1.2 ± 0.3 | −0.1 | 0.07 |
Selenium, µg | 55 µg | 66.6 ± 29.4 | 58.6 ± 27.7 | 8.0 | 0.22 | 55.0 ± 24.4 | 80.6 ± 29.6 | −25.6 | <0.001 |
Vitamin A, µg | M—900 µg F—700 µg | 285.4 ± 235.8 | 169.2 ± 136.9 | 116.2 | 0.046 | 318.8 ± 274.7 | 193.7 ± 101.4 | 125.1 | 0.05 |
Vitamin C, mg | M—90 mg, F—75 mg | 93.1 ± 35.8 | 88.1 ± 31.9 | 5.0 | 0.48 | 105.4 ± 42.1 | 102.6 ± 40.2 | 2.8 | 0.69 |
Vitamin E, mg | 15 mg | 6.3 ± 5.0 | 4.8 ± 2.2 | 1.5 | 0.14 | 6.6 ± 4.1 | 5.7 ± 2.4 | 0.9 | 0.88 |
Study Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline, n = 90 | Endline, n = 71 | ||||||||
Variables | ^ Cut-Off Range | Intervention n = 45 | Comparator n = 45 | Δ | p-Value * | Intervention n = 38 | Comparator n = 33 | Δ | p-Value * |
SBP, mmHg | <130 | 136.7 ± 19.0 | 132.5 ± 16.0 | 4.2 | 0.25 | 124.6 ± 13.0 | 136.1 ± 16.2 | −11.5 | 0.001 |
DBP, mmHg | <80 | 86.2 ± 10.4 | 82.9 ± 9.4 | 3.3 | 0.18 | 82.1 ± 7.5 | 83.4 ± 7.0 | −1.3 | 0.28 |
BMI, kg/m2 | 28.2 ± 6.7 | 27.7 ± 5.6 | 0.5 | 0.99 | 26.9 ± 5.5 | 29.1 ± 5.1 | −2.2 | 0.055 | |
%BF | 37.5 ± 13.0 | 37.8 ± 9.3 | −0.3 | 0.78 | 35.5 ± 10.5 | 40.7 ± 7.4 | −5.2 | 0.04 | |
Visceral fat | 1–9 | 10.0 ± 3.8 | 9.6 ± 3.2 | 0.4 | 0.72 | 9.1 ± 3.2 | 10.5 ± 3.0 | −1.4 | 0.044 |
FBG, mmol/L | <7.0 | 8.9 ± 2.7 | 9.4 ± 3.6 | −0.5 | 0.78 | 6.7 ± 1.5 | 10.1 ± 4.6 | −3.4 | <0.001 |
HbA1c, % | <6.5 | 7.2 ± 1.0 | 7.8 ± 1.2 | −0.6 | 0.035 | 6.4 ± 0.8 | 8.0 ± 1.6 | −1.6 | <0.001 |
Study Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Comparator | Intervention | ||||||||
Variable | Cut-Off Range ^ | Baseline n = 45 | Endline n = 33 | Δ | p-Value * | Baseline n = 45 | Endline n = 38 | Δ | p-Value * |
SBP, mmHg | <130 | 133.6 ± 16.9 | 136.1 ± 16.2 | 2.5 | 0.36 | 136.9 ± 19.9 | 124.6 ± 13.0 | −12.3 | <0.001 |
DBP mmHg | <80 | 82.4 ± 9.8 | 83.4 ± 7.0 | 9.9 | 0.57 | 86.5 ± 10.9 | 82.1 ± 7.5 | −4.4 | <0.001 |
BMI, kg/m2 | 28.7 ± 5.1 | 29.1 ± 5.1 | 0.4 | 0.15 | 27.8 ± 6.0 | 26.9 ± 5.5 | −0.9 | 0.003 | |
%BF | 39.9 ± 7.8 | 40.7 ± 7.4 | 0.8 | 0.029 | 37.8 ± 11.9 | 35.5 ± 10.5 | −2.3 | <0.001 | |
VF | 1–9 | 10.3 ± 3.0 | 10.5 ± 3.0 | 0.2 | 0.12 | 9.8 ± 3.4 | 9.1 ± 3.2 | −0.7 | <0.001 |
FBG, mmol/L | <7.0 | 9.3 ± 3.8 | 10.1 ± 4.6 | 0.8 | 0.26 | 8.8 ± 2.8 | 6.7 ± 1.5 | −2.1 | <0.001 |
HbA1c, % | <6.5 | 7.7 ± 1.2 | 8.0 ± 1.6 | 0.3 | 0.20 | 7.3 ± 1.0 | 6.4 ± 0.8 | −0.9 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appiah, C.A.; Wugah, H.; Carboo, J.A.; Amoako, M.; Wiafe, M.A.; Hayford, F.E.A. Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study. Obesities 2025, 5, 56. https://doi.org/10.3390/obesities5030056
Appiah CA, Wugah H, Carboo JA, Amoako M, Wiafe MA, Hayford FEA. Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study. Obesities. 2025; 5(3):56. https://doi.org/10.3390/obesities5030056
Chicago/Turabian StyleAppiah, Collins Afriyie, Harriet Wugah, Janet Adede Carboo, Mary Amoako, Michael Akenteng Wiafe, and Frank Ekow Atta Hayford. 2025. "Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study" Obesities 5, no. 3: 56. https://doi.org/10.3390/obesities5030056
APA StyleAppiah, C. A., Wugah, H., Carboo, J. A., Amoako, M., Wiafe, M. A., & Hayford, F. E. A. (2025). Diet Therapy Improves Body Composition, Blood Pressure and Glycemic Status in Individuals Living with Type 2 Diabetes: A Prospective Cohort Study. Obesities, 5(3), 56. https://doi.org/10.3390/obesities5030056