Sociodemographic Disparities in the Prevalence of Metabolic Syndrome in Rural South Africa: An Analysis of Gender, Age, and Marital, Employment, and Educational Status
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Main Outcome and Selected Explanatory Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Suapumee, N.; Seeherunwong, A.; Wanitkun, N.; Chansatitporn, N. Examining determinants of control of metabolic syndrome among older adults with NCDs receiving service at NCD Plus clinics: Multilevel analysis. BMC Health Serv. Res. 2024, 24, 1118. [Google Scholar] [CrossRef] [PubMed]
- Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 28 September 2024).
- Motala, A.A.; Esterhuizen, T.; Pirie, F.J.; Omar, M.A. The prevalence of metabolic syndrome and determination of the optimal waist circumference cutoff points in a rural South African community. Diabetes Care 2011, 34, 1032–1037. [Google Scholar] [CrossRef]
- Okafor, C. The metabolic syndrome in Africa: Current trends. Indian. J. Endocrinol. Metab. 2012, 16, 56–66. [Google Scholar] [CrossRef]
- Bowo-Ngandji, A.; Kenmoe, S.; Ebogo-Belobo, J.T.; Kenfack-Momo, R.; Takuissu, G.R.; Kengne-Ndé, C.; Mbaga, D.S.; Tchatchouang, S.; Kenfack-Zanguim, J.; Fogang, R.L.; et al. Prevalence of the metabolic syndrome in African populations: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0289155. [Google Scholar] [CrossRef]
- Ntimana, C.B.; Choma, S.S.R. Modifiable determinants of central obesity among the rural black population in the DIMAMO HDSS, Limpopo, South Africa. Front. Public Health 2023, 11, 1165662. [Google Scholar] [CrossRef]
- Agyemang, C.; Kushitor, S.B.; Afrifa-Anane, G.F.; de-Graft Aikins, A. Obesity in Africa: A Silent Public Health Crisis. In Metabolic Syndrome: A Comprehensive Textbook; Ahima, R.S., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 47–64. [Google Scholar] [CrossRef]
- Ntimana, C.B.; Seakamela, K.P.; Mashaba, R.G.; Maimela, E. Determinants of Central Obesity in Children and Adolescents and Associated Complications in South Africa: A Systematic Review. Front. Public Health 2024, 12, 1324855. Available online: https://pdfs.semanticscholar.org/4b2c/3a9b8f1737b925a137893381f8819cd9c0b2.pdf (accessed on 11 July 2024). [CrossRef]
- Sarkar, J.; Sarkar, C. Association of Overweight and Central Obesity in Women of Reproductive Age and Overweight Children Below Five Years of Age Preprints. 2024. Available online: https://www.preprints.org/manuscript/202405.2174/v1 (accessed on 28 September 2024).
- Maimela, E.; Alberts, M.; Modjadji, S.E.; Choma, S.S.; Dikotope, S.A.; Ntuli, T.S.; Van Geertruyden, J.P. The Prevalence and Determinants of Chronic Non-Communicable Disease Risk Factors amongst Adults in the Dikgale Health Demographic and Surveillance System (HDSS) Site, Limpopo Province of South Africa. PLoS ONE 2016, 11, e0147926. [Google Scholar] [CrossRef]
- Ntimana, C.B.; Mashaba, R.G.; Seakamela, K.P.; Maimela, E.; Masemola-Maphutha, M.L.; Choma, S.S.R. Comorbidities of Obesity in a Rural African Population Residing in Limpopo Province, South Africa: A Comparison between General and Central Obesity. Obesities 2024, 4, 375–388. [Google Scholar] [CrossRef]
- Van Zyl, S.; Van der Merwe, L.J.; Walsh, C.M.; Groenewald, A.J.; Van Rooyen, F.C. Risk-factor profiles for chronic diseases of lifestyle and metabolic syndrome in an urban and rural setting in South Africa. Afr. J. Prim. Health Care Fam. Med. 2012, 4, 1–10. Available online: https://phcfm.org/index.php/phcfm/article/view/346 (accessed on 8 September 2024). [CrossRef]
- Ali, S.A.; Soo, C.; Agongo, G.; Alberts, M.; Amenga-Etego, L.; Boua, R.P.; Choudhury, A.; Crowther, N.J.; Depuur, C.; Gómez-Olivé, F.X.; et al. Genomic and environmental risk factors for cardiometabolic diseases in Africa: Methods used for Phase 1 of the AWI-Gen population cross-sectional study. Glob. Health Action 2018, 11 (Suppl. S2), 1507133. [Google Scholar] [CrossRef]
- Iqbal, A.Z.; Basharat, S.; Basharat, A.; Basharat, S. Prevalence of the Metabolic Syndrome and Its Component Abnormalities among School Age Pakistani Children. J. Ayub Med. Coll. Abbottabad 2014, 26, 194–199. [Google Scholar]
- Husain, N.E.; Noor, S.K.; Elmadhoun, W.M.; Almobarak, A.; Awadalla, H.; Woodward, C.L.; Mital, D.; Ahmed, M.H. Diabetes, metabolic syndrome and dyslipidemia in people living with HIV in Africa: Re-emerging challenges not to be forgotten. HIVAIDS-Res. Palliat. Care 2017, 1, 193–202. [Google Scholar] [CrossRef]
- Kruger, M.J.; Nell, T.A. The prevalence of the metabolic syndrome in a farm worker community in the Boland district, South Africa. BMC Public. Health 2017, 17, 61. [Google Scholar] [CrossRef]
- Santos, A.C.; Ebrahim, S.; Barros, H. Gender, socio-economic status and metabolic syndrome in middle-aged and old adults. BMC Public Health 2008, 8, 62. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Parizadeh, D.; Azizi, F.; Hadaegh, F. Sex differences in the association between diabetes and hypertension and the risk of stroke: Cohort of the Tehran Lipid and Glucose Study. Biol. Sex. Differ. 2022, 13, 10. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Habibi-Moeini, A.S.; Zadeh, S.S.T.; Azizi, F.; Hadaegh, F. Effect of family history of diabetes and obesity status on lifetime risk of type 2 diabetes in the Iranian population. J. Glob. Health 2022, 12, 04068. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359461/ (accessed on 29 September 2024). [CrossRef]
- Opoku, A.A.; Abushama, M.; Konje, J.C. Obesity and menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102348. [Google Scholar] [CrossRef]
- Basu, S.; Thirunavukarasu, A.J.; Maheshwari, V.; Zode, M.; Hassan, R. Burden, determinants and treatment status of metabolic syndrome among older adults in India: A nationally representative, community-based cross-sectional survey. BMJ Public Health 2023, 1, e000389. Available online: https://bmjpublichealth.bmj.com/content/1/1/e000389 (accessed on 29 September 2024). [CrossRef]
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V.; Adedokun, A.O.; Seekoe, E. Prevalence and Correlates of Metabolic Syndrome Among Adults Attending Healthcare Facilities in Eastern Cape, South Africa. Open Public Health J. 2017, 10, 148–159. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, J.; Chen, R.; Gao, J.; Ding, R.; Fu, Y.; Zhang, L.; Hu, D. Socioeconomic status and metabolic syndrome in the general population of China: A cross-sectional study. BMC Public Health 2012, 12, 921. [Google Scholar] [CrossRef]
- Ngo, A.D.; Paquet, C.; Howard, N.J.; Coffee, N.T.; Adams, R.; Taylor, A.; Daniel, M. Area-level socioeconomic characteristics and incidence of metabolic syndrome: A prospective cohort study. BMC Public Health 2013, 13, 681. [Google Scholar] [CrossRef]
- Costa, A.C.D.O.; Duarte, Y.A.D.O.; Andrade, F.B.D. Metabolic syndrome: Physical inactivity and socioeconomic inequalities among non-institutionalized Brazilian elderly. Rev. Bras. Epidemiol. 2020, 23, e200046. [Google Scholar] [CrossRef]
- Nutbeam, D.; Lloyd, J.E. Understanding and responding to health literacy as a social determinant of health. Annu. Rev. Public Health 2021, 42, 159–173. [Google Scholar] [CrossRef]
- Hoveling, L.A.; Lepe, A.; Boissonneault, M.; de Beer, J.A.A.; Smidt, N.; de Kroon, M.L.A.; Liefbroer, A.C. Educational inequalities in metabolic syndrome prevalence, timing, and duration amongst adults over the life course: A microsimulation analysis based on the lifelines cohort study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 104. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, H.; Gu, H.; Zhao, X. Gender-associated factors for frailty and their impact on hospitalization and mortality among community-dwelling older adults: A cross-sectional population-based study. PeerJ 2018, 6, e4326. [Google Scholar] [CrossRef]
- Nouri-Keshtkar, M.; Shahrokhabadi, M.S.; Ghaheri, A.; Hosseini, R.; Ketabi, H.; Farjam, M.; Chen, D.-G.; Rezaeian, M.; Homayounfar, R.; Tahamtani, Y.; et al. Role of gender in explaining metabolic syndrome risk factors in an Iranian rural population using structural equation modelling. Sci. Rep. 2023, 13, 16007. [Google Scholar] [CrossRef]
- Shiferaw, W.S.; Akalu, T.Y.; Gedefaw, M.; Anthony, D.; Kassie, A.M.; Kebede, W.M.; Mulugeta, H.; Dessie, G.; Aynalem, Y.A. Metabolic syndrome among type 2 diabetic patients in Sub-Saharan African countries: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1403–1411. [Google Scholar] [CrossRef]
- Faijer-Westerink, H.J.; Kengne, A.P.; Meeks, K.A.; Agyemang, C. Prevalence of metabolic syndrome in sub-Saharan Africa: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 547–565. [Google Scholar] [CrossRef]
- Chikwati, R.P.; Jaff, N.G.; Mahyoodeen, N.G.; Micklesfield, L.K.; Ramsay, M.; Gómez-Olivé, F.X.; Mohamed, S.F.; Choma, S.S.; George, J.A.; Crowther, N.J. The association of menopause with cardiometabolic disease risk factors in women living with and without HIV in sub-Saharan Africa: Results from the AWI-Gen 1 study. Maturitas 2024, 187, 108069. [Google Scholar] [CrossRef] [PubMed]
n = 575 | Male 167 (29%) | Female 408 (71%) | p-Value for Trend | Cramer’s V | |
---|---|---|---|---|---|
n (%) | n (%) | ||||
Age in years | |||||
40–44 | 122 (21.2) | 34 (20.4) | 88 (21.6) | 0.990 | 0.014 |
45–49 | 135 (23.5) | 40 (24.0) | 95 (23.3) | ||
50–54 | 153 (26.6) | 45 (26.9) | 108 (26.5) | ||
55–60 | 165 (28.7) | 48 (28.7) | 117 (28.7) | ||
Level of education | |||||
None | 52 | 18 (10.8) | 34 (8.3) | 0.016 | 0.134 |
Primary | 182 | 39 (23.4) | 143 (35.0) | ||
Secondary | 314 | 98 (58.7) | 216 (52.9) | ||
Tertiary | 26 | 12 (7.2) | 14 (3.4) | ||
Marital status | |||||
Never married or cohabited | 130 | 37 (22.2) | 93 (22.8) | 0.844 | 0.036 |
Married/living with partner | 313 | 89 (53.3) | 224 (54.9) | ||
Divorced/Widowed | 132 | 41 (24.6) | 91 (22.3) | ||
Employment status | |||||
Unemployed | 359 | 101 (60.5) | 258 (63.2) | 0.536 | 0.025 |
Employed | 216 | 66 (39.5) | 150 (36.8) |
n | Male n (%) | Female n (%) | p-Value | Cramer’s V | |
---|---|---|---|---|---|
Waist circumference | |||||
Low | 240 | 70 (41.9) | 170 (41.7) | 0.956 | 0.002 |
High | 335 | 97 (58.1) | 238 (58.3) | ||
Triglycerides | |||||
Low | 495 | 141 (84.4) | 354 (86.8) | 0.463 | 0.031 |
High | 80 | 26 (15.6) | 54 (13.2) | ||
HDL-C | |||||
Low | 179 | 17 (10.2) | 162 (39.7) | <0.001 | 0.289 |
High | 396 | 150 (89.8) | 246 (60.3) | ||
Average SBP | |||||
Low | 363 | 137 (82.0) | 226 (55.4) | <0.001 | 0.251 |
High | 212 | 30 (18.0) | 182 (44.6) | ||
Average DBP | |||||
Low | 367 | 139 (83.2) | 228 (55.9) | <0.001 | 0.258 |
High | 208 | 28 (16.8) | 180 (44.1) | ||
Fasting Blood Glucose | |||||
Low | 362 | 122 (73.1) | 240 (58.8) | <0.001 | 0.134 |
High | 213 | 45 (26.9) | 168 (41.2) |
N | Have Metabolic Syndrome | p-Value for Trend | Cramer’s V | ||
---|---|---|---|---|---|
Yes 162 (28.2%) | No 413 (71.8%) | ||||
Age | |||||
40–44 n (%) | 122 | 26 (21.3) | 96 (78.7) | 0.111 | 0.102 |
45–49 n (%) | 135 | 35 (21.3) | 100 (78.7) | ||
50–54 n (%) | 153 | 45 (29.4) | 108 (70.6) | ||
55–60 n (%) | 165 | 56 (33.9) | 109 (66.1) | ||
Gender | |||||
Female n (%) | 408 | 136 (33.3) | 272 (66.7) | <0.001 | 0.179 |
Male n (%) | 167 | 26 (15.6) | 141 (84.4) | ||
Employment status | |||||
Unemployed n (%) | 359 | 102 (28.4) | 257 (71.6) | 0.924 | 0.007 |
Employed n (%) | 216 | 60 (27.8) | 156 (72.2) | ||
Marital status | |||||
Never married or never cohabited n (%) | 130 | 31 (23.9) | 99 (76.2) | 0.444 | 0.082 |
Married/living with Partner n (%) | 313 | 91 (29.1) | 222 (70.9) | ||
Divorced/Widowed n (%) | 132 | 40 (30.3) | 92 (69.7) | ||
Level of education | |||||
None n (%) | 52 | 19 (36.5) | 33 (63.5) | <0.001 | 0.203 |
Primary n (%) | 182 | 72 (39.6) | 110 (60.4) | ||
Secondary n (%) | 314 | 68 (21.7) | 246 (78.3) | ||
Tertiary n (%) | 26 | 3 (11.5) | 23 (88.5) |
n | Have Metabolic Syndrome | p-Value for Trend | Cramer’s V | ||
---|---|---|---|---|---|
Males n (%) | Females n (%) | ||||
Age groups | |||||
40–44 | 26 | 4 (15.38) | 22 (16.18) | 0.305 | 0.150 |
45–49 | 35 | 5 (19.23) | 30 (22.06) | ||
50–54 | 45 | 11 (42.31) | 34 (25.00) | ||
55–60 | 56 | 6 (23.08) | 50 (36.76) | ||
Employment status | |||||
Unemployed | 102 | 14 (53.85) | 88 (64.71) | 0.203 | 0.083 |
Employed | 60 | 12 (46.15) | 48 (35.29) | ||
Marital status | |||||
Never married or never cohabited | 31 | 5 (19.23) | 26 (19.12) | 0.714 | 0.032 |
Married/living with Partner | 91 | 13 (50.00) | 78 (57.35) | ||
Divorced/Widowed | 40 | 8 (30.77) | 32 (23.53) | ||
Level of education | |||||
None | 19 | 6 (23.08) | 13 (9.56) | 0.052 | 0.218 |
Primary | 72 | 6 (23.08) | 66 (48.53) | ||
Secondary | 68 | 13 (50.00) | 55 (40.44) | ||
Tertiary | 3 | 1 (13.85) | 2 (1.47) |
Univariate Logistic Regression | Multivariate Logistic Regression | |||
---|---|---|---|---|
Age | OR (95% CI) | p-value | AOR (95% CI) | p-value |
40–44 | Ref | Ref | ||
45–49 | 1.3 (0.7–2.3) | 0.386 | 1.4 (0.8–2.6) | 0.237 |
50–54 | 1.6 (0.9–2.7) | 0.113 | 1.8 (1.0–2.3) | 0.039 |
55–60 | 1.9 (1.1–3.2) | 0.024 | 2.1 (1.2–3.7) | 0.009 |
Gender | ||||
Female | Ref | Ref | ||
Male | 0.36 (0.2–0.6) | <0.001 | 0.4 (0.2–0.6) | <0.001 |
Level of education | ||||
None | Ref | Ref | ||
Primary | 1.2 (0.6–2.2) | 0.694 | 1.0 (0.5–2.0) | 0.905 |
Secondary | 0.5 (0.3–0.9) | 0.021 | 0.4 (0.2–0.8) | 0.013 |
Tertiary | 0.2 (0.1–0.9) | 0.029 | 0.2 (0.1–0.9) | 0.037 |
Marital status | ||||
Never married/cohabited | Ref | |||
Married/living with partner | 1.3 (0.8–2.1) | 0.263 | ||
Divorced/Widowed | 1.4 (0.8–2.4) | 0.241 | ||
Employment status | ||||
Unemployed | Ref | |||
Employed | 0.96 (0.6–1.4) | 0.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashala, D.G.; Ntimana, C.B.; Seakamela, K.P.; Mashaba, R.G.; Maimela, E. Sociodemographic Disparities in the Prevalence of Metabolic Syndrome in Rural South Africa: An Analysis of Gender, Age, and Marital, Employment, and Educational Status. Obesities 2024, 4, 480-490. https://doi.org/10.3390/obesities4040038
Mashala DG, Ntimana CB, Seakamela KP, Mashaba RG, Maimela E. Sociodemographic Disparities in the Prevalence of Metabolic Syndrome in Rural South Africa: An Analysis of Gender, Age, and Marital, Employment, and Educational Status. Obesities. 2024; 4(4):480-490. https://doi.org/10.3390/obesities4040038
Chicago/Turabian StyleMashala, Dimakatso Given, Cairo Bruce Ntimana, Kagiso Peace Seakamela, Reneilwe Given Mashaba, and Eric Maimela. 2024. "Sociodemographic Disparities in the Prevalence of Metabolic Syndrome in Rural South Africa: An Analysis of Gender, Age, and Marital, Employment, and Educational Status" Obesities 4, no. 4: 480-490. https://doi.org/10.3390/obesities4040038
APA StyleMashala, D. G., Ntimana, C. B., Seakamela, K. P., Mashaba, R. G., & Maimela, E. (2024). Sociodemographic Disparities in the Prevalence of Metabolic Syndrome in Rural South Africa: An Analysis of Gender, Age, and Marital, Employment, and Educational Status. Obesities, 4(4), 480-490. https://doi.org/10.3390/obesities4040038