Degree of Food Processing (NOVA Classification) and Blood Pressure in Women with Overweight and Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Socioeconomic, Lifestyle and Clinical Conditions Asseessment
2.3. Anthropometric Assessment
2.4. Food Consumption Assessment
2.5. Blood Pressure Measurement
2.6. Statistical Analysis
3. Results
3.1. Socioeconomic Characterization, Lifestyle and Clinical Conditions
3.2. Anthropometric Parameters, Blood Pressure and Food Consumption
3.3. Association between the Degree of Food Processing, Anthropometric Variables and Blood Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estivaleti, J.M.; Guzman-Habinger, J.; Lobos, J.; Azeredo, C.M.; Claro, R.; Ferrari, G.; Adami, F.; Rezende, L.F.M. Time trends and projected obesity epidemic in Brazilian adults between 2006 and 2030. Sci. Rep. 2022, 12, 12699. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Conde, W.L.; Silva, I.V.; da Ferraz, F.R. Undernutrition and obesity trends in Brazilian adults from 1975 to 2019 and its associated factors. Cad Saude Publica 2022, 38 (Suppl. S1), e00149721. [Google Scholar] [CrossRef]
- Litwin, M.; Kułaga, Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr. Nephrol. 2021, 36, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Weyer, G.W.; Dunlap, B.; Shah, S.D. Hypertension in Women: Evaluation and Management. Obstet. Gynecol. Clin. 2016, 43, 287–306. [Google Scholar] [CrossRef]
- Regensteiner, J.G.; Reusch, J.E.B. Sex Differences in Cardiovascular Consequences of Hypertension, Obesity, and Diabetes: JACC Focus Seminar 4/7. J. Am. Coll. Cardiol. 2022, 79, 1492–1505. [Google Scholar] [CrossRef]
- da Silva Araujo, C.F.; de Castro Mello, J.V.; Pereira Duque, A.; Scheiner Nogueira, I.D.C.; Felix Mediano, M.F.; Rodrigues Junior, L.F.; Bôas Huguenin, G.V. Lack of association between metabolic phenotype and food consumption by degree of food processing: Results from the Study of Workers’ Health (ESAT). Nutr. Hosp. 2023, 40, 119–127. [Google Scholar]
- Kapoor, N.; Lotfaliany, M.; Sathish, T.; Thankappan, K.R.; Thomas, N.; Furler, J.; Oldenburg, B.; Tapp, R.J. Prevalence of normal weight obesity and its associated cardio-metabolic risk factors–Results from the baseline data of the Kerala Diabetes Prevention Program (KDPP). PLoS ONE 2020, 15, e0237974. [Google Scholar] [CrossRef]
- Norde, M.M.; Bromage, S.; Marchioni, D.M.L.; Vasques, A.C.; Deitchler, M.; Arsenaut, J.; de Carvalho, A.M.; Velloso, L.; Willett, W.; Giovannucci, E.; et al. The global diet quality score as an indicator of adequate nutrient intake and dietary quality-a nation-wide representative study. Nutr. J. 2024, 23, 42. [Google Scholar] [CrossRef]
- Ropero, A.B.; Bolhuis, D.; Mosca, A.C.; Pellegrini, N. Consumer Awareness of the Degree of Industrial Food Processing and the Association with Healthiness-A Pilot Study. Nutrients 2022, 14, 4438. [Google Scholar] [CrossRef]
- Ministry of Health. Food Guide for the Brazilian Population. Ministry of Health, Health Care Secretariat, Department of Primary Care. Department of Primary Care. In Brasília, 2nd ed.; Ministry of Health: St Leonards, Australia, 2014; Available online: https://www.gov.br/saude/pt-br/assuntos/saude-brasil/publicacoes-para-promocao-a-saude/guia_alimentar_populacao_brasileira_2ed.pdf/view (accessed on 15 October 2023).
- da Silva Scaranni, P.D.O.; de Oliveira Cardoso, L.; Chor, D.; Melo, E.C.P.; Matos, S.M.A.; Giatti, L.; Barreto, S.M.; da Fonseca, M.d.J.M. Ultra-processed foods, changes in blood pressure and incidence of hypertension: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2021, 24, 3352–3360. [Google Scholar] [CrossRef]
- Guo, L.; Li, F.; Tang, G.; Yang, B.; Yu, N.; Guo, F.; Li, C. Association of ultra-processed foods consumption with risk of cardio-cerebrovascular disease: A systematic review and meta-analysis of cohort studies. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 2076–2088. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.; Ribeiro, I.; Jurema-Santos, G.; Nobre, I.; Santos, R.; Rodrigues, C.; Oliveira, K.; Henrique, R.; Ferreira-E-Silva, W.; Araújo, A. Can the Consumption of Ultra-Processed Food Be Associated with Anthropometric Indicators of Obesity and Blood Pressure in Children 7 to 10 Years Old? Foods 2020, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Rezende-Alves, K.; Hermsdorff, H.H.M.; Miranda, A.E.D.S.; Lopes, A.C.S.; Bressan, J.; Pimenta, A.M. Food processing and risk of hypertension: Cohort of Universities of Minas Gerais, Brazil (CUME Project). Public Health Nutr. 2021, 24, 4071–4079. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística-IBGE. Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal no Brasil; Ministério da Economia: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Cavalcanti, I.M.L.; Nascimento, C.R.D.; Tenório, P.P.; Araújo, T.F.D.S. Analysis of the Influence of Abdominal Obesity on Systemic Arterial Hypertension and on the Lipid Profile on Cardiometabolic Risk Stratification in Adult Women. Int. J. Cardiovasc. Sci. 2022, 35, 625–634. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use of and Interpretation of Anthropometry. Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Balkau, B.; Deanfield, J.E.; Després, J.P.; Bassand, J.P.; Fox, K.A.A.; Smith, S.C.; Barter, P.; Tan, C.E.; Gaal, L.V.; Wittchen, H.-U.; et al. International day for the evaluation of abdominal obesity (IDEA): A study of waist circumference, cardiovascular disease, and diabetes mellitus in 168 000 primary care patients in 63 countries. Circulation 2007, 116, 1942–1951. [Google Scholar] [CrossRef]
- Lohman, T.G. Applicability of body composition techniques and constants for children and youths. Exerc. Sport Sci. Rev. 1986, 14, 325–357. [Google Scholar] [CrossRef]
- Pollock, M.L.; Wilmore, J.H. Exercício na Saúde e na Doença: Avaliaçăo e Prescriçăo para Prevençăo e Reabilitaçăo, 2nd ed.; MEDSI: Rio de Janeiro, Brazil, 1993. [Google Scholar]
- Furlan-Viebig, R.; Pastor-Valero, M. Development of a food frequency questionnaire to study diet and non-communicable diseases in adult population. Rev. Saude Publica 2004, 38, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Silva, D.A. Insegurança Alimentar e Nutricional em Adultos do Estado de Pernambuco: Situação e Fatores Associados ao Acesso à Alimentação. Ph.D. Thesis, Niversidade Federal de Pernambuco, Recife, Brazil, 2019. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936. [Google Scholar] [CrossRef]
- Cavallo, D.N.; Horino, M.; McCarthy, W.J. Adult intake of minimally processed fruits and vegetables: Associations with cardiometabolic disease risk factors. J. Acad. Nutr. Diet 2016, 116, 1387. [Google Scholar] [CrossRef]
- SBC. Diretrizes Brasileiras de Hipertensão Arterial–2020. Arq. Bras. Cardiol. 2021, 3, 516–658. [Google Scholar]
- Ruilope, L.M.; Nunes Filho, A.C.B.; Nadruz, W.; Rodríguez Rosales, F.F.; Verdejo-Paris, J. Obesity and hypertension in Latin America: Current perspectives. Hipertens Riesgo Vasc. 2018, 35, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lyrio, A.O.; Souza, E.S.; Conceição, S.d.S.; Batista, J.E.T.; Brito, S.M.; Filho, I.S.G.; Figueiredo, A.C.M.G.; da Cruz, S.S. Prevalence of overweight and obesity and associated factors among women of childbearing age in Brazil. Public Health Nutr. 2021, 24, 5481–5490. [Google Scholar] [CrossRef]
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Santiago, E.R.C.; Diniz, A.D.S.; Oliveira, J.S.; Leal, V.S.; Andrade, M.I.S.D.; Lira, P.I.C.D. Prevalence of Systemic Arterial Hypertension and Associated Factors Among Adults from the Semi-Arid Region of Pernambuco, Brazil. Arq. Bras. De Cardiol. 2019, 113, 687–695. [Google Scholar] [CrossRef]
- Faulkner, J.L. Obesity-associated cardiovascular risk in women: Hypertension and heart failure. Clin. Sci. 2021, 135, 1523–1544. [Google Scholar] [CrossRef] [PubMed]
- Pool, L.R.; Aguayo, L.; Brzezinski, M.; Perak, A.M.; Davis, M.M.; Greenland, P.; Hou, L.; Marino, B.S.; Van Horn, L.; Wakschlag, L.; et al. Childhood Risk Factors and Adulthood Cardiovascular Disease: A Systematic Review. J. Pediatr. 2021, 232, 118–126.e23. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.O.; Barros, M.A.; Oliveira, T.L.; Nobre, I.G.; de Morais, A.S.; Santos, M.A.; Leandro, C.G.; Costa-Silva, J.H. Cardiac autonomic dysfunction in school age children with overweight and obesity. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2410–2417. [Google Scholar] [CrossRef]
- Fukuhara, M.; Arima, H.; Ninomiya, T.; Hata, J.; Yonemoto, K.; Doi, Y.; Hirakawa, Y.; Matsumura, K.; Kitazono, T.; Kiyohara, Y. Impact of lower range of prehypertension on cardiovascular events in a general population: The Hisayama Study. J. Hypertens 2012, 30, 893–900. [Google Scholar] [CrossRef]
- Barnes, J.N.; Hart, E.C.; Curry, T.B.; Nicholson, W.T.; Eisenach, J.H.; Wallin, B.G.; Charkoudian, N.; Joyner, M.J. Aging enhances autonomic support of blood pressure in women. Hypertension 2014, 63, 303. [Google Scholar] [CrossRef]
- Sorriento, D.; Wilson, D.; Lalonde, C.; Tadí, M.; Tasí, T.; Lozí, M. Hypertension in Women. Front. Cardiovasc. Med. 2022, 1, 905504. [Google Scholar]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar]
- Barbosa, S.S.; Sousa, L.C.M.; Silva, D.F.d.O.; Pimentel, J.B.; Evangelista, K.C.M.d.S.; Lyra, C.d.O.; Lopes, M.M.G.D.; Lima, S.C.V.C. A Systematic Review on Processed/Ultra-Processed Foods and Arterial Hypertension in Adults and Older People. Nutrients 2022, 14, 1215. [Google Scholar] [CrossRef] [PubMed]
- Rezende-Alves, K.; Hermsdorff, H.H.M.; Miranda, A.E.d.S.; Bressan, J.; Mendonça, R.d.D.; de Oliveira, F.L.P.; Pimenta, A.M. Effects of minimally and ultra-processed foods on blood pressure in Brazilian adults: A two-year follow up of the CUME Project. J. Hypertens 2023, 41, 122–131. [Google Scholar] [CrossRef]
- Berti, T.L.; Rocha, T.F.D.; Curioni, C.C.; Verly Junior, E.; Bezerra, F.F.; Canella, D.S.; Faerstein, E. Food consumption according to degree of processing and sociodemographic characteristics: Estudo Pró-Saúde, Brazil. Rev. Bras. De Epidemiol. 2019, 22, e190046. [Google Scholar] [CrossRef]
- Santos, F.S.D.; Dias, M.D.S.; Mintem, G.C.; Oliveira, I.O.D.; Gigante, D.P. Food processing and cardiometabolic risk factors: A systematic review. Rev. Saude Publica 2020, 54, 70. [Google Scholar] [CrossRef]
Degree of Processing Food | Definition | Foods |
---|---|---|
Unprocessed or minimally processed foods | Obtained from plants or animals without having been altered after leaving nature or undergoing minimal alterations | Rice, brown rice, corn/couscous, oats, potatoes, sweet potatoes, cassava flour, cassava, yams, tapioca, beans, green beans, soybeans, natural/salted peanuts, chestnuts/walnuts, almonds, whole milk, skimmed milk or semi-skimmed milk, beef (stewed, roasted, grilled or fried), pork, liver, chicken/beef or pork giblets, chicken with skin, chicken without skin, fish in sauce, fried fish, seafood, boiled chicken egg, fried chicken egg, raw salad, cooked salad, chayote, carrot, pumpkin, okra/gherkin, green beans, cauliflower/cabbage/chard, spinach/kale leaves/broccoli, beetroot, banana, orange, acerola, passion fruit, mango, apple, papaya, avocado, guava, melon, jackfruit, grape, seriguela, pineapple, umbu, cajá, pine cone, pear, soursop, cashews, carambola, tamarind, strawberry/kiwi, coffee, tea, coconut water, sugar-free fruit juice |
Processed foods | Made by adding salt or sugar to an unprocessed/minimally processed food (MPF) | French bread/white bread, wholemeal bread, sliced bread, pasta, French fries, curd/Prato cheese /mozzarella or butter/ricotta cheese, Minas cheese, light curd, beef jerky/sun-dried meat, tuna, canned sardines, bacon, fruit in syrup or candied fruit, oven-baked snacks, simple homemade cake, fruit juice with sugar, beer, wine, tequila/whiskey |
Ultra-processed foods | Products that involve several stages, processing techniques and various ingredients in their manufacture | Cream cracker biscuits, wholemeal biscuits, Japanese peanuts or nuts with a caramelized topping or another topping, milk or soy extract, cream, full fat yogurt, light yogurt, full fat cream cheese, light cream cheese, mortadella, ham, sausage, preserved meat, breaded meat, chocolate, candies and sweets, pudding/delicacies/ice cream/chocolate, packaged snacks, coxinhas/pie/rissoles/pasteis, pizza/sandwiches/McDonalds, ketchup/mustard, cornstarch and maria biscuits, biscuits with filling or butter, cake mixes, frosted cakes and pies, instant noodles, granola bars, sugary breakfast cereals, soda, diet soda, artificial juice |
Cooking ingredients | Extracted from nature or taken directly from nature to season and cook food | Butter, margarine, olive oil, oil, mayonnaise, light mayonnaise, sugar, honey/rapadura |
Parameters | Normal Weight n = 23 | Overweight n = 29 | Obesity n = 33 | Total n = 85 | p Value |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | ||
Marital status | |||||
Single/divorced | 14 (16.4%) | 16 (18.8%) | 19 (22.3%) | 49 (57.6%) | 0.804 |
Married | 9 (10.6%) | 12 (14.1%) | 15 (17.6%) | 36 (42.4) | |
Education | |||||
Elementary school | 5 (5.9%) | 11 (12.9%) | 17 (20.0%) | 33 (38.8%) | 0.149 |
High school | 14 (16.5%) | 12 (14.1%) | 15 (17.6%) | 41 (48.2%) | |
Technical education or higher | 4 (4.7%) | 6 (7.05%) | 1 (1.17%) | 11 (12.9%) | |
Income | |||||
<1 minimum wage | 7 (8.3%) | 7 (8.3%) | 13 (15.5%) | 27 (32.1%) | 0.498 |
1 minimum wage | 11 (13.1%) | 17 (20.2%) | 15 (17.9%) | 43 (51.2%) | |
≤2 minimum wages | 4 (4.8%) | 5 (6.0%) | 2 (2.4%) | 11 (13.1%) | |
Not specified | 1 (1.2%) | - | 2 (2.4%) | 3 (3.6%) | |
Pathologies | |||||
Without pathology | 17 (20.0%) | 16 (18.8%) | 17 (20.0%) | 50 (58.8%) | 0.098 |
Hypertension | 0 (0.0%) | 0 (0.0%) | 6 (7.1%) | 6 (7.1%) | |
Dyslipidemia | 0 (0.0%) | 2 (2.4%) | 2 (2.4%) | 4 (4.8%) | |
Anxiety/depression | 2 (2.4%) | 3 (3.5%) | 0 (0.0%) | 5 (5.9%) | |
Others | 4 (4.8%) | 8 (9.4%) | 8 (9.4%) | 20 (23.6%) | |
Medications | |||||
Cardiometabolic | 1 (1.2%) | 5 (5.9%) | 10 (11.8%) | 16 (18.8%) | 0.194 |
Others | 4 (4.7%) | 4 (4.7%) | 4 (4.7%) | 12 (14.1%) | |
No medications | 18 (21.2%) | 20 (23.5%) | 19 (22.4%) | 57 (67.1%) | |
Smoker | 0.966 | ||||
Yes | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 3 (3.5%) | |
No | 22 (25.9%) | 28 (32.9%) | 32 (37.6%) | 82 (96.5%) | |
Alcoholic beverage | |||||
Yes | 9 (10.6%) | 11 (12.9%) | 13 (15.3%) | 33 (38.8%) | 0.555 |
No | 14 (16.5%) | 18 (21.2%) | 20 (23.6%) | 52 (61.2%) | |
Physical activity | |||||
Yes | 7 (8.2%) | 10 (11.8%) | 8 (9.4%) | 25 (29.4%) | 0.672 |
No | 16 (18.8%) | 19 (22.4%) | 25 (29.4%) | 60 (70.6%) | |
WC | |||||
Without risk | 21 (24.7%) | 9 (10.6%) | - | 30 (35.3%) | <0.001 |
At risk/high-risk | 2 (2.4%) | 20 (23.5%) | 33 (38.8.0%) | 55 (64.7%) | |
WHR Rating | |||||
Low | 2 (2.4%) | 1 (1.2%) | 4 (4.7%) | 7 (8.2%) | <0.001 |
Moderate | 16 (18.8%) | 10 (11.8%) | 4 (4.7%) | 30 (35.3%) | |
High/very high | 5 (5.9%) | 18 (21.2%) | 25 (29.4%) | 48 (56.5%) | |
%BF Rating * | |||||
Adequate | 1 (1.2%) | - | - | 1 (1.2%) | <0.001 |
Raised to very high | 17 (21.0%) | 8 (9.4%) | 5 (5.9%) | 30 (35.3%) | |
Excessively high | 4 (4.7%) | 21 (24.7%) | 26 (30.6%) | 51 (60.0%) | |
Blood Pressure | |||||
Normotensive | 22 (25.9%) | 26 (30.6%) | 22 (25.9%) | 70 (82.4%) | 0.042 |
Prehypertensive/ hypertensive | 1 (1.2%) | 3 (3.6%) | 11 (13.0%) | 15 (17.7) |
Parameters | Normal Weight (n = 23) | Overweight (n = 29) | Obesity (n = 33) | p Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Age (Years) 2 | 35.48 ± 7.36 | 37.37 ± 8.0 | 39.36 ± 8.80 | 0.233 |
WC (cm) 1 | 73.5 ± 4.91 | 84.21 ± 6.55 a | 100.71 ± 10.84 ab | <0.001 |
WHR 1 | 0.77 ± 0.03 | 0.81 ± 0.05 a | 0.84 ± 0.76 a | <0.001 |
BF (%) 1 | 30.33 ± 3.91 | 36.79 ± 3.88 a | 40.29 ± 3.84 ab | <0.001 |
SBP (mmHg) 2 | 106.55 ± 11.65 | 111.60 ± 11.85 a | 123.63 ± 14.04 ab | <0.001 |
DBP (mmHg) 2 | 66.52 ± 9.91 | 70.28 ± 8.78 a | 80.6 ± 11.03 ab | <0.001 |
Without Adjustment 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Degree of food processing | Age | BMI | %BF | WHR | SBP | DBP | ||||||
R | P | r | p | r | p | R | p | r | p | r | p | |
MPF | −0.21 | 0.05 | −0.23 | 0.03 | −0.20 | 0.07 | −0.18 | 0.09 | −0.15 | 0.15 | −0.36 | 0.001 |
PF | −0.04 | 0.69 | −0.05 | 0.61 | −0.01 | 0.88 | −0.08 | 0.37 | −0.08 | 0.45 | −0.10 | 0.33 |
UPF | −0.24 | 0.02 | −0.17 | 0.12 | −0.15 | 0.17 | −0.11 | 0.28 | −0.09 | 0.37 | −0.23 | 0.03 |
Cooking ingredients | −0.12 | 0.24 | −0.09 | 0.39 | −0.04 | 0.66 | 0.07 | 0.48 | 0.04 | 0.69 | −0.02 | 0.05 |
With Adjustement 2 | ||||||||||||
Degree of food processing | BMI | %BF | WHR | SBP | DBP | |||||||
r | p | r | p | R | p | r | p | r | p | |||
MPF | −0.29 | 0.009 | −0.27 | 0.01 | −0.16 | 0.13 | −0.13 | 0.24 | −0.29 | 0.01 | ||
PF | −0.01 | 0.89 | 0.53 | 0.63 | −0.06 | 0.56 | −0.009 | 0.93 | −0.10 | 0.35 | ||
UPF | −0.88 | 0.43 | −0.09 | 0.38 | 0.03 | 0.74 | 0.08 | 0.46 | −0.08 | 0.45 | ||
Cooking ingredients | −0.10 | 0.36 | −0.01 | 0.89 | 0.09 | 0.38 | 0.07 | 0.53 | −0.19 | 0.09 |
MPF | PF | UPF | Cooking Ingredients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Β | IC (95%) | p | Β | IC (95%) | p | Β | IC (95%) | p | β | IC (95%) | p | |
SBP | −0.15 | −60.39–12.22 | 0.19 | −0.04 | −38.87–26.43 | 0.70 | 0.02 | −30.29–37.18 | 0.84 | 0.06 | −6.96–12.12 | 0.59 |
DBP | −0.26 | −60.43–5.00 | 0.02 | −0.005 | −25.44–24.41 | 0.96 | −0.034 | −29.54–21.96 | 0.77 | 0.15 | −12.30–2.26 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.F.d.; Campos, J.d.O.; Oliveira, D.K.d.S.; Pereira, J.G.; Santo, M.J.d.E.; Souza, V.d.O.N.; Simões-Alves, A.C.; Costa-Silva, J.H. Degree of Food Processing (NOVA Classification) and Blood Pressure in Women with Overweight and Obesity. Obesities 2024, 4, 353-364. https://doi.org/10.3390/obesities4030028
Sousa AFd, Campos JdO, Oliveira DKdS, Pereira JG, Santo MJdE, Souza VdON, Simões-Alves AC, Costa-Silva JH. Degree of Food Processing (NOVA Classification) and Blood Pressure in Women with Overweight and Obesity. Obesities. 2024; 4(3):353-364. https://doi.org/10.3390/obesities4030028
Chicago/Turabian StyleSousa, Amanda F. de, Jéssica de O. Campos, Débora K. da S. Oliveira, Jéssica G. Pereira, Márcia J. do E. Santo, Viviane de O. N. Souza, Aiany C. Simões-Alves, and João H. Costa-Silva. 2024. "Degree of Food Processing (NOVA Classification) and Blood Pressure in Women with Overweight and Obesity" Obesities 4, no. 3: 353-364. https://doi.org/10.3390/obesities4030028
APA StyleSousa, A. F. d., Campos, J. d. O., Oliveira, D. K. d. S., Pereira, J. G., Santo, M. J. d. E., Souza, V. d. O. N., Simões-Alves, A. C., & Costa-Silva, J. H. (2024). Degree of Food Processing (NOVA Classification) and Blood Pressure in Women with Overweight and Obesity. Obesities, 4(3), 353-364. https://doi.org/10.3390/obesities4030028