The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice
Abstract
:1. Introduction
2. Methods
2.1. Animal Study and Diets
2.2. Histology
2.3. Statistical Analysis
3. Results
3.1. Weekly Change in Total Mass
3.2. Kaplan–Meier Analysis of Male and Female C3H Mice Maintained on Control and High-Fat Diets over Time
3.3. Analysis of Mass Composition Compared with T0
3.4. Quarter Rule (Fat-Free Mass (FFM) Lost)
3.5. Analysis of Mass Composition
3.6. Tumor Incidence and Type
3.7. Mouse Appearance and Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericsson, A.C.; Crim, M.J.; Franklin, C.L. A brief history of animal modeling. Mo. Med. 2013, 110, 201–205. [Google Scholar]
- Carbone, L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Sci. Rep. 2021, 11, 493. [Google Scholar] [CrossRef]
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly Used Animal Models. Principles of Animal Research for Graduate and Undergraduate Students 2017. pp. 117–175. Available online: https://www.sciencedirect.com/science/article/pii/B9780128021514000074?via%3Dihub (accessed on 8 August 2024). [CrossRef]
- Surwit, R.S.; Seldin, M.F.; Kuhn, C.M.; Cochrane, C.; Feinglos, M.N. Control of Expression of Insulin Resistance and Hyperglycemia by Different Genetic Factors in Diabetic C57BL/6J Mice. Diabetes 1991, 40, 82–87. [Google Scholar] [CrossRef]
- Paigen, B.; Morrow, A.; Brandon, C.; Mitchell, D.; Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985, 57, 65–73. [Google Scholar] [CrossRef]
- Lê, A.; Ko, J.; Chow, S.; Quan, B. Alcohol consumption by C57BL/6, BALB/c, and DBA/2 mice in a limited access paradigm. Pharmacol. Biochem. Behav. 1994, 47, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Menikdiwela, K.R.; Guimarães, J.P.T.; Scoggin, S.; Gollahon, L.S.; Moustaid-Moussa, N. Dietary pH Enhancement Improves Metabolic Outcomes in Diet-Induced Obese Male and Female Mice: Effects of Beef vs. Casein Proteins. Nutrients 2022, 14, 2583. [Google Scholar] [CrossRef]
- Cooper, M.A.; O’Meara, B.; Jack, M.M.; Elliot, D.; Lamb, B.; Khan, Z.W.; Menta, B.W.; Ryals, J.M.; Winter, M.K.; Wright, D.E. Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. J. Pain 2018, 19, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, S.; Welch, G.; DiBerardo, L.; Freeman, L.R. Sex differences in a mouse model of diet-induced obesity: The role of the gut microbiome. Biol. Sex Differ. 2024, 15, 5. [Google Scholar] [CrossRef]
- Outzen, H.C.; Corrow, D.; Shultz, L.D. Attenuation of Exogenous Murine Mammary Tumor Virus Virulence in the C3H/HeJ Mouse Substrain Bearing the Lps Mutation2. JNCI J. Natl. Cancer Inst. 1985, 75, 917–923. [Google Scholar] [CrossRef]
- Yuan, R.; Tsaih, S.; Petkova, S.B.; De Evsikova, C.M.; Xing, S.; Marion, M.A.; Bogue, M.A.; Mills, K.D.; Peters, L.L.; Bult, C.J.; et al. Aging in inbred strains of mice: Study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 2009, 8, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Poggi, M.; Bastelica, D.; Gual, P.; Iglesias, M.A.; Gremeaux, T.; Knauf, C.; Peiretti, F.; Verdier, M.; Juhan-Vague, I.; Tanti, J.F.; et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 2007, 50, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- VerHague, M.; Albright, J.; Barron, K.; Kim, M.; Bennett, B.J. Obesogenic and diabetic effects of CD44 in mice are sexually dimorphic and dependent on genetic background. Biol. Sex Differ. 2022, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Rendina-Ruedy, E.; Hembree, K.D.; Sasaki, A.; Davis, M.R.; Lightfoot, S.A.; Clarke, S.L.; Lucas, E.A.; Smith, B.J. A Comparative Study of the Metabolic and Skeletal Response of C57BL/6J and C57BL/6N Mice in a Diet-Induced Model of Type 2 Diabetes. J. Nutr. Metab. 2015, 2015, 758080. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernandez, M.E.; Sharma, V.; Stankiewicz, T.E.; Oates, J.R.; Doll, J.R.; Damen, M.S.M.A.; Almanan, M.A.T.A.; Chougnet, C.A.; Hildeman, D.A.; Divanovic, S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr. Diabetes 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Siersbæk, M.S.; Ditzel, N.; Hejbøl, E.K.; Præstholm, S.M.; Markussen, L.K.; Avolio, F.; Li, L.; Lehtonen, L.; Hansen, A.K.; Schrøder, H.D.; et al. C57BL/6J substrain differences in response to high-fat diet intervention. Sci. Rep. 2020, 10, 14052. [Google Scholar] [CrossRef] [PubMed]
- Wahlsten, D.; Metten, P.; Crabbe, J.C. A rating scale for wildness and ease of handling laboratory mice: Results for 21 inbred strains tested in two laboratories. Genes Brain Behav. 2003, 2, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Sampias, C.; Rolls, G. An Intro to H&E Staining: Protocol, Best Practices, Steps & More. Available online: https://www.leicabiosystems.com/us/knowledge-pathway/he-staining-overview-a-guide-to-best-practices/ (accessed on 8 August 2024).
- Team, R.C. R: A Language and Environment for Statistical Computing. (v4.3.1) 2023. Available online: https://www.R-project.org/ (accessed on 8 August 2024).
- Sjoberg, D.D.; Baillie, M.; Fruechtenicht, C.; Haesendonckx, S.; Treis, T. ggsurvfit: Flexible Time-to-Event Figures. (v1.1.0). 2024. Available online: https://CRAN.R-project.org/package=ggsurvfit (accessed on 8 August 2024).
- Therneau, T.M. A Package for Survival Analysis in R. (v3.6-4) 2024. Available online: https://CRAN.R-project.org/package=survival (accessed on 8 August 2024).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. (v1.10.2) 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 August 2024).
- Heymsfield, S.B.; Gonzalez, M.C.C.; Shen, W.; Redman, L.; Thomas, D. Weight loss composition is one-fourth fat-free mass: A critical review and critique of this widely cited rule. Obes. Rev. 2014, 15, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.; Minasyan, A.; Keisala, T.; Shah, Z.; Tuohimaa, P. Hair barbering in mice: Implications for neurobehavioural research. Behav. Process. 2006, 71, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Bechard, A.; Meagher, R.; Mason, G. Environmental enrichment reduces the likelihood of alopecia in adult C57BL/6J mice. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 171–174. [Google Scholar]
- Reed, D.R.; Bachmanov, A.A.; Tordoff, M.G. Forty mouse strain survey of body composition. Physiol. Behav. 2007, 91, 593–600. [Google Scholar] [CrossRef]
- Lempesis, I.G.; Tsilingiris, D.; Liu, J.; Dalamaga, M. Of mice and men: Considerations on adipose tissue physiology in animal models of obesity and human studies. Metab. Open 2022, 15, 100208. [Google Scholar] [CrossRef]
- Berben, L.; Floris, G.; Wildiers, H.; Hatse, S. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers 2021, 13, 1400. [Google Scholar] [CrossRef]
- Reynolds, T.H.; Dalton, A.; Calzini, L.; Tuluca, A.; Hoyte, D.; Ives, S.J. The impact of age and sex on body composition and glucose sensitivity in C57BL/6J mice. Physiol. Rep. 2019, 7, e13995. [Google Scholar] [CrossRef] [PubMed]
- The Jackson Laboratory C3H/HeJ—000659. 2024. Available online: https://www.jax.org/strain/000659 (accessed on 21 May 2024).
- Jackson, E.E.; Rendina-Ruedy, E.; Smith, B.J.; Lacombe, V.A. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet. PLoS ONE 2015, 10, e0142077. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, P.N.; Cornejo, M.P.; Barrile, F.; Romero, G.G.; Valdivia, S.; Andreoli, M.F.; Perello, M. Inter-individual Variability for High Fat Diet Consumption in Inbred C57BL/6 Mice. Front. Nutr. 2019, 6, 67. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Dziubek, W.; Wolny-Rokicka, E.; Dabrowska, G.; Wozniewski, M. The Relation of Inflammaging with Skeletal Muscle Properties in Elderly Men. Am. J. Men’s Health 2019, 13, 1557988319841934. [Google Scholar] [CrossRef]
- Santos, C.A.F.; Amirato, G.R.; Paixão, V.; Almeida, E.B.; Amaral, J.B.D.; Monteiro, F.R.; Roseira, T.; Juliano, Y.; Novo, N.F.; Rossi, M.; et al. Association among inflammaging, body composition, physical activity, and physical function tests in physically active women. Front. Med. 2023, 10, 1206989. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Blomberg, B.B.; Paganelli, R. Aging, Obesity, and Inflammatory Age-Related Diseases. Front. Immunol. 2017, 8, 1745. [Google Scholar] [CrossRef]
- Pappas, L.E.; Nagy, T.R. The translation of age-related body composition findings from rodents to humans. Eur. J. Clin. Nutr. 2019, 73, 172–178. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cao, M.; Lei, L.; Yang, F.; Li, H.; Yan, X.; He, S.; Zhang, S.; Teng, Y.; Xia, C.; et al. Burden of liver cancer: From epidemiology to prevention. Chin. J. Cancer Res. 2022, 34, 554–566. [Google Scholar] [CrossRef] [PubMed]
- White, M.C.; Holman, D.M.; Boehm, J.E.; Peipins, L.A.; Grossman, M.; Henley, S.J. Age and cancer risk: A potentially modifiable relationship. Am. J. Prev. Med. 2014, 46 (Suppl. S1), S7–S15. [Google Scholar] [CrossRef] [PubMed]
Females | (n) | Fat +± SE | % Fat Comp | % ∆ Fat | Lean ± SE | % Lean Comp | % ∆ Lean | Mass ± SE | % ∆ Total | |
---|---|---|---|---|---|---|---|---|---|---|
Control T0 | 8 | 1.19 ± 0.24 | 6.90 | 15.31 ± 0.68 | 88.99 | 17.2 ± 0.59 | ||||
CC | 6 Months | 19 | 1.53 ± 0.17 | 6.62 | 28.57 | 19.59 ± 0.42 | 84.81 | 27.96 | 23.1 ± 0.47 | 34.3 |
12 Months | 13 | 2.27 ± 0.26 | 9.04 | 90.76 | 17.41 ± 0.65 | 69.36 | 13.72 | 25.1 ± 0.55 | 45.93 | |
18 Months | 7 | 1.45 ± 0.11 | 6.27 | 21.85 | 16.73 ± 0.99 | 72.33 | 9.27 | 23.13 ± 0.58 | 34.48 | |
HF | 6 Months | 19 | 6.4 ± 0.56 | 21.11 | 437.82 | 15.92 ± 0.43 | 52.51 | 3.98 | 30.32 ± 1.11 | 76.28 |
12 Months | 13 | 13.85 ± 2.02 | 35.47 | 1063.87 | 23.45 ± 0.56 | 60.05 | 53.17 | 39.05 ± 2.37 | 127.03 | |
18 Months | 8 | 7.83 ± 2.23 | 24.43 | 557.98 | 22.09 ± 0.68 | 68.92 | 44.28 | 32.05 ± 2.77 | 86.34 |
Males | (n) | Fat ± SE | % Fat Comp | % ∆ Fat | Lean ± SE | % Lean Comp | % ∆ Lean | Mass ± SE | % ∆ Total | |
---|---|---|---|---|---|---|---|---|---|---|
Control T0 | 8 | 1.44 ± 0.58 | 6.60 | 19.09 ± 2.14 | 87.65 | 21.78 ± 2.61 | ||||
CC | 6 Months | 23 | 2.87 ± 0.27 | 9.38 | 99.31 | 23.45 ± 0.53 | 76.66 | 22.84 | 30.59 ± 0.44 | 40.45 |
12 Months | 13 | 3.28 ± 0.49 | 9.69 | 127.78 | 18.74 ± 0.92 | 55.36 | −1.83 | 33.85 ± 0.86 | 55.42 | |
18 Months | 7 | 2.41 ± 0.47 | 8.41 | 67.36 | 23.93 ± 0.43 | 83.47 | 25.35 | 28.67 ± 0.76 | 31.63 | |
HF | 6 Months | 24 | 11.05 ± 0.48 | 26.63 | 667.36 | 28.58 ± 0.47 | 68.88 | 49.71 | 41.49 ± 0.91 | 90.5 |
12 Months | 15 | 9.35 ± 0.91 | 24.22 | 549.31 | 29.52 ± 0.59 | 76.46 | 54.64 | 38.61 ± 1.79 | 77.27 | |
18 Months | 11 | 7.52 ± 1.21 | 20.91 | 422.22 | 27.27 ± 0.62 | 75.83 | 42.85 | 35.96 ± 1.76 | 65.11 |
Age (Months) | Fat (g) | Lean (g) | Lean Mass Lost (g)/ Fat Mass Lost (g) | |
---|---|---|---|---|
CC Females | 12 | 2.27 | 17.41 | 0.83 |
18 | 1.45 | 16.73 | ||
∆ * | −0.82 | −0.68 | ||
HF Females | 12 | 13.85 | 23.45 | 0.23 |
18 | 7.83 | 22.09 | ||
∆ | −6.02 | −1.36 | ||
CC Males | 12 | 3.28 | 18.74 | −5.97 |
18 | 2.41 | 23.93 | ||
∆ | −0.87 | +5.19 | ||
HF Males | 12 | 9.35 | 29.52 | 1.23 |
18 | 7.52 | 27.27 | ||
∆ | −1.83 | −2.25 |
Main Effects | Interaction | ||||
---|---|---|---|---|---|
Variables | Statistic | Diet (D) | Sex (S) | D × S | |
Mass Type | Age (Months) | ||||
Total Mass | 6 | p | 1.47 × 10−19 | 2.07 × 10−19 | 0.0219091 |
F (1,81) | 142.7823833 | 140.905 | 5.4615844 | ||
12 | p | 3.59 × 10−07 | 0.01532 | 0.0058408 | |
F (1,50) | 34.3595713 | 6.30414 | 8.2943852 | ||
18 | p | 9.42 × 10−05 | 0.01861 | 0.6661748 | |
F (1,29) | 20.49481634 | 6.21704 | 0.1899629 | ||
Lean Mass | 6 | p | 0.008240705 | 3.78 × 10−29 | 2.65 × 10−14 |
F (1,81) | 7.336790276 | 304.022 | 85.393789 | ||
12 | p | 5.37 × 10−17 | 1.41 × 10−06 | 0.0012293 | |
F (1,50) | 156.1053448 | 29.9894 | 11.744174 | ||
18 | p | 2.18 × 10−07 | 1.81 × 10−09 | 0.1642051 | |
F (1,29) | 45.33583833 | 73.9177 | 2.0368672 | ||
Fat Mass | 6 | p | 4.32 × 10−28 | 8.74 × 10−11 | 9.73 × 10−05 |
F (1,81) | 281.6304954 | 55.6062 | 16.81712 | ||
12 | p | 5.44 × 10−10 | 0.10973 | 0.0182934 | |
F (1,50) | 58.79890654 | 2.65158 | 5.9516639 | ||
18 | p | 0.000286303 | 0.86753 | 0.652502 | |
F (1,29) | 16.99795447 | 0.02832 | 0.207019 |
Diet and Sex | ||||
---|---|---|---|---|
Tissue of Tumor Origin | CC Females | CC Males | HF Females | HF Males |
Liver | 1 | 2 (1) | 2 (1) | 13 (7) |
Lung | 2 | 5 (1) | 4 (3) | 1 |
Mammary | 1 | 0 | ||
Ovary | 4 (4) | 5 (3) | ||
Total | 9 | 7 | 11 | 14 |
C3H | C57 [7] | ||
---|---|---|---|
Male | Total mass @ 12 weeks (control diet) | 30.1 g | ~25 g |
Total mass @ 12 weeks (high-fat) | 37.8 g | ~35 g | |
Median life span * | 25 months (714 days) | 32 months (901 days) | |
Female | Total mass @ 12 weeks (control diet) | 21.8 g | ~23 g |
Total mass @ 12 weeks (high-fat) | 26.6 g | ~23 g | |
Median life span | 28 months (777 days) | 31 months (866 days) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barr, B.; Gollahon, L. The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice. Obesities 2024, 4, 314-328. https://doi.org/10.3390/obesities4030025
Barr B, Gollahon L. The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice. Obesities. 2024; 4(3):314-328. https://doi.org/10.3390/obesities4030025
Chicago/Turabian StyleBarr, Benjamin, and Lauren Gollahon. 2024. "The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice" Obesities 4, no. 3: 314-328. https://doi.org/10.3390/obesities4030025
APA StyleBarr, B., & Gollahon, L. (2024). The Effects of Obesity on Sex, Aging, and Cancer Development in a Longitudinal Study of High-Fat-Diet-Fed C3H/HeJ Mice. Obesities, 4(3), 314-328. https://doi.org/10.3390/obesities4030025