Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD
Abstract
:1. Introduction
2. Methodology
2.1. Participants
2.2. Study Design
2.3. Anthropometric Assessment
2.4. Blood Pressure Assessment
2.5. Biochemical Assessment
2.6. Imaging Exams
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Betancourt-Nunez, A.; Márquez Sandoval, F.; Babio, N.; Vizmanos, B. Componentes da síndrome metabólica em jovens profissionais de saúde; Síndrome Metabólica da América Latina (LATINMETS) Estudo do México. Nutr. Hosp. 2018, 35, 864–873. [Google Scholar]
- Ansarimoghaddam, A.; Adineh, H.A.; Zareban, I.; Iranpour, S.; HosseinZadeh, A.; Kh, F. Prevalence of metabolic syndrome in Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab. Syndr. 2018, 12, 195–201. [Google Scholar] [CrossRef]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, 160–187. [Google Scholar] [CrossRef]
- Subramani, S.K.; Mahajan, S.; Chauhan, P.; Yadav, D.; Mishra, M.; Pakkirisamy, U.; Prasad, G.B.K.S. Prevalence of metabolic syndrome in Gwalior region of Central India: A comparative study using NCEP ATP III, IDF and Harmonized criteria. Diabetes Metab. Syndr. 2019, 13, 816–821. [Google Scholar] [CrossRef]
- Oliveira, L.V.A.; Santos, B.N.S.D.; Machado, Í.E.; Malta, D.C.; Velasquez-Melendez, G.; Felisbino-Mendes, M.S. Prevalência da Síndrome Metabólica e seus componentes na população adulta Brasileira. Cien. Saude Colet. 2020, 25, 4269–4280. [Google Scholar] [CrossRef]
- ABESO. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Mapa da Obesidade. Available online: https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/ (accessed on 10 July 2020).
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 14, 60. [Google Scholar] [CrossRef]
- Zhao, Y.-C.; Zhao, G.J.; Chen, Z.; Ela, Z.G.; Cai, J.; Li, H. Doença hepática gordurosa não alcoólica. Hipertensão 2020, 75, 275–284. [Google Scholar] [CrossRef]
- Méndez-Sánchez, N.; Díaz-Orozco, L.E. Editorial: International Consensus Recommendations to Replace the Terminology of Non-Alcoholic Fatty Liver Disease (NAFLD) with Metabolic-Associated Fatty Liver Disease (MAFLD). Med. Sci. Monit. 2021, 27, e933860. [Google Scholar] [CrossRef]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global perspectives on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 8, 223–238. [Google Scholar] [CrossRef]
- Hernandez-Camacho, J.D.; Bernier, M.; Lopez-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Moradi, M.; Haghighatdoost, F.; Feizi, A.; Larijani, B.; Azadbakht, L. Effect of coenzyme Q10 supplementation on diabetes biomarkers: A systematic review and meta-analysis of randomized controlled clinical trials. Arch. Iran. Med. 2016, 19, 588–596. [Google Scholar]
- Jorat, M.V.; Tabrizi, R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Mottaghi, R.; Asemi, Z. The effects of coenzyme Q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2018, 17, 230. [Google Scholar] [CrossRef]
- Farsi, F.; Mohammadshahi, M.; Alavinejad, P.; Rezazadeh, A.; Zarei, M.; Engali, K.A. Functions of coenzyme Q10 supplementation on liver enzymes, markers of systemic inflammation, and adipokines in patients affected by nonalcoholic fatty liver disease: A double-blind, placebo-controlled, randomized clinical trial. J. Am. Coll. Nutr. 2016, 35, 346–353. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight; Who Tecnical Report Serie, 311; WHO: Geneva, Switzerland, 2016.
- Fishbein, M.; Castro, F.; Cheruku, S.; Jain, S.; Webb, B.; Gleason, T.; Stevens, W.R. Hepatic MRI for fat quantitation: Its relationship to fat morphology, diagnosis, and ultrasound. J. Clin. Gastroenterol. 2005, 39, 619–625. [Google Scholar] [CrossRef]
- Sposito, A.C.; Caramelli, B.; Fonseca, F.A.; Bertolami, M.C.; Afiune Neto, A.; Souza, A.D.; Lottenberg, A.M.P.; Chacra, A.P.; Faludi, A.A.; Loures-Vale, A.A.; et al. IV Diretriz Brasileira sobre Dislipidemias e Prevenção da Aterosclerose: Departamento de Aterosclerose da Sociedade Brasileira de Cardiologia. Arq. Bras. Cardiol. São Paulo 2007, 88 (Suppl. S1), 2–19. [Google Scholar] [CrossRef]
- Gholnari, T.; Aghadavod, E.; Soleimani, A.; Hamidi, G.A.; Sharifi, N.; Asemi, Z. The Effects of Coenzyme Q10 Supplementation on Glucose Metabolism, Lipid Profiles, Inflammation, and Oxidative Stress in Patients With Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Nutr. 2018, 37, 188–193. [Google Scholar] [CrossRef]
- Raygan, F.; Rezavandi, Z.; Dadkhah Tehrani, S.; Farrokhian, A.; Asemi, Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur. J. Nutr. 2016, 55, 2357–2364. [Google Scholar] [CrossRef]
- Fallah, M.; Askari, G.; Soleimani, A.; Feizi, A.; Asemi, Z. Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patients. Int. Urol. Nephrol. 2018, 50, 2073–2079. [Google Scholar] [CrossRef]
- Zahedi, H.; Eghtesadi, S.; Seifirad, S.; Rezaee, N.; Shidfar, F.; Heydari, I.; Golestan, B.; Jazayeri, S. Effects of CoQ10 supplementation on lipid profiles and glycemic control in patients with type 2 diabetes. J. Diabetes Metab. Disord. 2014, 13, 81–89. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yang, K.L.; Zeng, L.T.; Wu, X.H.; Huang, H.Y. Effectiveness of Coenzyme Q10 Supplementation for Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2018, 2018, 6484839. [Google Scholar] [CrossRef]
- Samimi, F.; Namiranian, N.; Sharifi-Rigi, A.; Siri, M.; Abazari, O.; Dastghaib, S. Coenzyme Q10: A Key Antioxidant in the Management of Diabetes-Induced Cardiovascular Complications-An Overview of Mechanisms and Clinical Evidence. Int. J. Endocrinol. 2024, 2024, 2247748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alam, M.A.; Rahman, M.M. Mitochondrial dysfunction in obesity: Potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J. Diabetes Metab. Disord. 2014, 23, 16–60. [Google Scholar] [CrossRef]
- Dludla, P.V.; Orlando, P.; Silvestri, S.; Marcheggiani, F.; Cirilli, I.; Nyambuya, T.M.; Mxinwa, V.; Mokgalaboni, K.; Nkambule, B.B.; Johnson, R.; et al. Coenzyme Q10 Supplementation Improves Adipokine Levels and Alleviates Inflammation and Lipid Peroxidation in Conditions of Metabolic Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int. J. Mol. Sci. 2020, 21, 3247. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X.; Xue, H.; Zhang, P.; Fang, W.; Chen, X.; Ling, W. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct. 2019, 10, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, A.; Tabrizi, R.; Maleki, E.; Bagheri Lankarani, K.; Heydari, S.T.; Moradinazar, M.; Akbari, M. Effects of coenzyme Q10 supplementation on lipid profiles and liver enzymes of nonalcoholic fatty liver disease (NAFLD) patients: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2023, 11, 2580–2588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yen, C.H.; Chu, Y.J.; Lee, B.J.; Lin, Y.C.; Lin, P.T. Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: A double-blind, randomised, placebo-controlled trial. Br. J. Nutr. 2018, 120, 57–63. [Google Scholar] [CrossRef]
- Tabrizi, R.; Akbari, M.; Sharifi, N.; Lankarani, K.B.; Moosazadeh, M.; Kolahdooz, F.; Taghizadeh, M.; Asemi, Z. The Effects of Coenzyme Q10 Supplementation on Blood Pressures Among Patients with Metabolic Diseases: A Systematic Review and Meta-analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev. 2018, 25, 41–50. [Google Scholar] [CrossRef]
- Young, J.M.; Florkowski, C.M.; Molyneux, S.L.; McEwan, R.G.; Frampton, C.M.; Nicholls, M.G.; Scott, R.S.; George, P.M. randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the metabolic syndrome. Am. J. Hypertens. 2012, 25, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liang, Y.; Dai, S.; Hou, S.; Liu, Z.; Liu, M.; Dong, X.; Zhan, Y.; Tian, Z.; Yang, Y. Dose-Response Effect of Coenzyme Q10 Supplementation on Blood Pressure among Patients with Cardiometabolic Disorders: A Grading of Recommendations Assessment, Development, and Evaluation (GRADE)-Assessed Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 2180–2194. [Google Scholar] [PubMed]
- Ho, M.J.; Li, E.C.K.; Wright, J.M. Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension. Cochrane Database Syst. Rev. 2016, 3, CD007435. [Google Scholar] [CrossRef] [PubMed]
- Saboori, S.; Rad, E.Y.; Mardani, M.; Khosroshahi, M.Z.; Nouri, Y.; Falahi, E. Effect of Q10 supplementation on body weight and body mass index: A systematic review and meta-analysis of randomized controlled clinical trials. Diabetes Metab. Syndr. 2019, 13, 1179–1185. [Google Scholar] [CrossRef]
- Del Pozo-Cruz, J.; Rodríguez-Bies, E.; Ballesteros-Simarro, M.; Navas-Enamorado, I.; Tung, B.T.; Navas, P.; López-Lluch, G. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 2014, 15, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Sangouni, A.A.; Taghdir, M.; Mirahmadi, J.; Sepandi, M.; Parastouei, K. Effects of curcumin and/or coenzyme Q10 suplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial. Nutr. J. 2022, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh-Attar, M.; Kolahdouz Mohammadi, R.; Eshraghian, M.; Nakhjavani, M.; Khorrami, E.; Ebadi, M.; Esteghamati, A. Reduction in asymmetric dimethylarginine plasma levels by coenzyme Q10 supplementation in patients with type 2 diabetes mellitus. Minerva Endocrinol. 2015, 40, 259–266. [Google Scholar] [PubMed]
- Mehrdadi, P.; Kolahdouz Mohammadi, R.; Alipoor, E.; Eshraghian, M.R.; Esteghamati, A.; Hosseinzadeh-Attar, M.J. The Effect of Coenzyme Q10 Supplementation on Circulating Levels of Novel Adipokine Adipolin/CTRP12 in Overweight and Obese Patients with Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2017, 125, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lee, J.O.; Kim, J.H.; Kim, N.; You, G.Y.; Moon, J.W.; Sha, J.; Kim, S.J.; Lee, Y.W.; Kang, H.J.; et al. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3T3-L1 pre. Coenzyme Q10 increases the fatty acid oxidation through AMPKmediated PPARa induction in 3T3-L1 preadipocytes. Cell. Signal. 2012, 24, 232–236. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bellentani, S. Nutraceutical Approach to Non-Alcoholic Fatty Liver Disease (NAFLD): The Available Clinical Evidence. Nutrients 2018, 10, 1153. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Fernandez-Twinn, D.S.; Hargreaves, I.P.; Neergheen, V.; Aiken, C.E.; Martin-Gronert, M.S.; McConnell, J.M.; Ozanne, S.E. CoQ10 prevents hepatic fibrosis, inflammation and oxidative stress in a rat model of poor maternal nutrition. Am. J. Clin. Nutr. 2016, 103, 579–588. [Google Scholar] [CrossRef]
- Mohammadshahi, M.; Farsi, F.; Nejad, P.A.; Hajiani, E.; Zarei, M.; Engali, K.A. The coenzyme Q10 supplementation effects on lipid profile, fasting blood sugar, blood pressure and oxidative stress status among non-alcoholic fatty liver disease patients: A randomized, placebo-controlled, pilot study. J. Gastroentrol. Hepatic Res. 2014, 3, 1103–1108. [Google Scholar]
- Sharifi, N.; Tabrizi, R.; Moosazadeh, M.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Chamani, M.; Kolahdooz, F.; Asemi, Z. The Effects of Coenzyme Q10 Supplementation on Lipid Profiles Among Patients with Metabolic Diseases: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr. Pharm. Des. 2018, 24, 2729–2742. [Google Scholar] [CrossRef]
- Lederman, H.M. Gordura visceral e subcutânea. Radiol. Bras. São Paulo 2014, 47, IX. [Google Scholar] [CrossRef] [PubMed]
- London, A.; Lundsgaard, A.-M.; Kiens, B.; Bojsen-Møller, K.N. The Role of Hepatic Fat Accumulation in Glucose and Insulin Homeostasis—Dysregulation by the Liver. J. Clin. Med. 2021, 10, 390. [Google Scholar] [CrossRef] [PubMed]
Coenzyme Q10 | Placebo | p-Value 3 | |
---|---|---|---|
Weight (kg)—Baseline | 90.82 (12.75) | 93.09 (13.73) | |
Weight (kg)—12 weeks | 90.17 (18.62) | 93.37 (19.13) | 0.49 |
p-value 2 | 0.39 | 0.50 | |
BMI (kg/m2)—Baseline | 32.88 (5.50) | 36.93 (7.20) | |
BMI (kg/m2)—12 weeks | 32.48 (5.52) | 36.82 (7.68) | 0.16 |
p-value 2 | 0.44 | 0.48 | |
Waist Circumference (cm)—Baseline | 107.55 (10.32) | 108.73 (8.85) | |
Waist Circumference (cm)—12 weeks | 105.55 (11.12) | 108.91 (9.07) | 0.09 |
p-value 2 | 0.03 | 0.66 | |
SBP (mmHg)—Baseline | 126.18 (13.26) | 129.09 (11.91) | |
SBP (mmHg)—12 weeks | 127.27 (10.67) | 126.09 (12.34) | 0.73 |
p-value 2 | 0.69 | 0.21 | |
DBP (mmHg)—Baseline | 84.00 (5.5) | 80.00 (11.32) | |
DBP (mmHg)—12 weeks | 80.00 (11.32) | 80.00 (9.32) | 0.26 |
p-value 2 | 0.82 | 0.86 | |
Blood Glucose (mg/dL)—Baseline | 103.55 (25.22) | 106.68 (58.86) | |
Blood Glucose (mg/dL)—12 weeks | 95.22 (18.98) | 103.83 (54.5) | 0.56 |
p-value 2 | 0.06 | 0.85 | |
HDL-cholesterol (mg/dL)—Baseline | 32.10 (7.30) | 35.64 (7.89) | |
HDL-cholesterol (mg/dL)—12 weeks | 37.73 (7.34) | 39.89 (3.97) | 0.69 |
p-value 2 | 0.01 | 0.12 | |
Triglycerides (mg/dL)—Baseline | 133.80 (52.64) | 165.32 (79.35) | |
Triglycerides (mg/dL)—12 weeks | 166.13 (64.05) | 193.45 (83.69) | 0.45 |
p-value2 | 0.15 | 0.27 |
Coenzyme Q10 | Placebo | p-Value 3 | |
---|---|---|---|
% Liver Fat Fraction—Baseline | 17.14 (8.75) | 16.34 (13.52) | |
% Liver Fat Fraction—12 weeks | 14.89 (11.87) | 16.43 (13.40) | 0.77 |
p-value 2 | 0.10 | 0.96 | |
Subcutaneous Fat Volume (cm2)—Baseline | 44.82 (13.54) | 46.56 (21.64) | |
Subcutaneous Fat Volume (cm2)—12 weeks | 42.21 (7.98) | 49.11 (14.44) | 0.52 |
p-value 2 | 0.28 | 0.95 | |
Visceral Fat Volume (cm2)—Baseline | 14.20 (3.40) | 11.86 (1.32) | |
Visceral Fat Volume (cm2)—12 weeks | 11.23 (4.32) | 11.94 (3.25) | 0.10 |
p-value 2 | 0.02 | 0.83 | |
Total Abdominal Area (cm3)—Baseline | 418.72 (114.41) | 416.81 (99.87) | |
Total Abdominal Area (cm3)—12 weeks | 390.05 (82.32) | 418.82 (104.11) | 0.56 |
p-value 2 | 0.13 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casagrande, D.; Waib, F.F.; Júnior, J.E.; Jordão Júnior, A.A. Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD. Obesities 2024, 4, 106-117. https://doi.org/10.3390/obesities4020011
Casagrande D, Waib FF, Júnior JE, Jordão Júnior AA. Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD. Obesities. 2024; 4(2):106-117. https://doi.org/10.3390/obesities4020011
Chicago/Turabian StyleCasagrande, Daniela, Fernando Figueiredo Waib, Jorge Elias Júnior, and Alceu Afonso Jordão Júnior. 2024. "Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD" Obesities 4, no. 2: 106-117. https://doi.org/10.3390/obesities4020011
APA StyleCasagrande, D., Waib, F. F., Júnior, J. E., & Jordão Júnior, A. A. (2024). Effects of Coenzyme Q10 Supplementation in Women with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease Evaluated by Magnetic Resonance Imaging—Coenzyme Q10 in Metabolic Syndrome and NAFLD. Obesities, 4(2), 106-117. https://doi.org/10.3390/obesities4020011