Temporal Trend of Severe Obesity in Brazilian State Capitals (2006–2021)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. Available online: http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 February 2023).
- Lonstein, T.; Brinsden, H.; Neveux, M. World Obesity Atlas 2022 [Internet]; World Obesity Federation: London, UK, 2022; p. 289. Available online: http://www.worldobesity.org (accessed on 15 February 2023).
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation [Internet]; World Health Organization: Geneva, Switzerland, 2000; Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 15 February 2023).
- Jacobsen, E.; Boyers, D.; Manson, P.; Avenell, A. Uma revisão sistemática das evidências para controle de peso não cirúrgico para adultos com obesidade grave: O que é custo-efetivo e quais são as implicações para o design dos serviços de saúde? Curr. Obes. Rep. 2022, 11, 356–385. [Google Scholar] [CrossRef]
- Robertson, C.; Aceves-Martins, M.; Cruickshank, M.; Imamura, M.; Avenell, A. Does weight management research for adults with severe obesity represent them? Analysis of systematic review data. BMJ Open 2022, 12, e054459. [Google Scholar] [CrossRef]
- Figueiredo, B.Q.; Souto, B.O.V.; Nogueira, C.F.R.; Silva, I.T.; Bernardes, L.B.R.; Peres, M.L.A.; Oliveira, R.C. O enorme custo da obesidade para a saúde pública brasileira: Uma breve revisão de literatura. Res. Soc. Dev. 2021, 10, e33610918276. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Santos, L.M.P.; Silva, E.N. Bases metodológicas para estudos de custos da doença no Brasil. Rev. Nutr. 2014, 27, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Ministério da Saúde. Manual de Atenção às Pessoas com Sobrepeso e Obesidade no âMbito da Atenção Primária à Saúde (APS) do Sistema Único de Saúde [Electronic Resource] [Internet]; Ministério da Saúde: Brasília, Brasil, 2022; p. 55. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/manual_atencao_pessoas_sobrepeso_obesidade.pdf (accessed on 16 February 2023).
- Wu, Y.K.; Berry, D.C. Impact of weight stigma on physiological and psychological health outcomes for overweight and obese adults: A systematic review. J. Adv. Nurs. 2018, 74, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Puhl, R.M.; Cummings, D.E.; Eckel, R.H.; Ryan, D.H.; Mechanick, J.I.; Nadglowski, J.; Salas, X.R.; Schauer, P.R.; Twenefour, D.; et al. Joint international consensus statement for ending stigma of obesity. Nat. Med. 2020, 26, 485–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Xu, Y.; Xu, J.; Pan, X.; Song, X.; Shan, L.; Zhao, Y.; Shan, P.F. Global burden of noncommunicable disease attributable to high body mass index in 195 countries and territories, 1990–2017. Endocrine 2020, 69, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Nilson, E.A.F.; Andrade, R.C.S.; Brito, D.A.; Oliveira, M.L. Custos atribuíveis a obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018. Rev. Panam. De Salud Pública 2020, 44, e32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, G.; Kovalskys, I.; Leme, A.C.B.; Quesada, D.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Liria-Domínguez, M.R.; Herrera-Cuenca, M.; Fisberg, R.M.; et al. Socioeconomic Status Impact on Diet Quality and Body Mass Index in Eight Latin American Countries: ELANS Study Results. Nutrients 2021, 13, 2404. [Google Scholar] [CrossRef]
- Brasil. Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saúde: 2019. Atenção Primária à Saúde e Informações Antropométricas: Brasil; IBGE, Coordenação de Trabalho e Rendimento: Rio de Janeiro, Brasil, 2020. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101758.pdf (accessed on 12 February 2023).
- Tavares, T.B.; Nunes, S.M.; Santos, M.O. Obesidade e qualidade de vida: Revisão da literatura. Rev. méd. Minas Gerais. 2010, 20, 359–366. [Google Scholar]
- Graham, K. Compensating for Missing Survey Data; Institute for Social Research, The University of Michigan: Ann Arbor, MI, USA, 1983. [Google Scholar]
- Battaglia, M.P.; Hoaglin, D.C.; Frankel, M.R. Practical considerations in raking survey data. Surv. Pract. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Ministério da Saúde. Vigitel Brasil 2006–2020: Estado Nutricional e Consumo Alimentar. Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico: Estimativas Sobre Frequência e Distribuição Sociodemográfica do Estado Nutricional e Consumo Alimentar nas Capitais dos 26 Estados Brasileiros e No Distrito Federal Entre 2006 e 2020; Ministério da Saúde: Brasília, Brasil, 2022. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/publicacoes-svs/vigitel/vigitel-brasil-2006-2020-estado-nutricional-e-consumo-alimentar.pdf/view (accessed on 2 February 2023).
- Flores-Ortiz, R.; Malta, D.C.; Velasquez-Melendez, G. Adult body weight trends in 27 urban populations of Brazil from 2006 to 2016: A population-based study. PLoS ONE 2019, 14, e0213254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, M.C.; Moura, A.L.S.P.; Bortolini, G.A.; Coutinho, J.G.; Rahal, L.S.; Bandeira, L.M.; Oliveira, M.L.; Gentil, P.C. Abordagem intersetorial para prevenção e controle da obesidade: A experiência brasileira de 2014 a 2018. Rev. Panam. De Salud Pública 2019, 43, e58. [Google Scholar] [CrossRef] [PubMed]
- Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update 2017, 23, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef]
- Silva, L.E.S.; Oliveira, M.M.; Stopa, S.R.; Gouvea, E.C.D.P.; Ferreira, K.R.D.; Santos, R.O.; Neto, P.F.V.; Macário, E.M.; Sardinha, L.M.V. Tendência temporal da prevalência do excesso de peso e obesidade na população adulta brasileira, segundo características sociodemográficas, 2006–2019. Epidemiol. E Serviços Saúde 2021, 30, e2020294. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Dias, F.S.B.; Lima, Y.M.M.; Martins, F.A.; Silva-Nunes, M.; Andrade, A.M.; Ramalho, A.A. Time Trend of Overweight and Obesity in Adults from Rio Branco, Acre, Western Brazilian Amazon (2006–2020). Nutrients 2022, 14, 742. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Guia Alimentar Para a População Brasileira; Ministério da Saúde: Brasília, Brasil, 2014. [Google Scholar]
- Fernandes, A.C.; Rieger, D.K.; Proença, R.P.C. Perspective: Public Health Nutrition Policies Should Focus on Healthy Eating, Not on Calorie Counting, Even to Decrease Obesity. Adv. Nutr. 2019, 10, 549–556. [Google Scholar] [CrossRef]
- Watanabe, L.M.; Delfino, H.B.P.; Pinhel, M.A.S.; Noronha, N.Y.; Diani, L.M.; Assumpção, L.C.P.; Nicoletti, C.F.; Nonino, C.B. Food and Nutrition Public Policies in Brazil: From Malnutrition to Obesity. Nutrients 2022, 14, 2472. [Google Scholar] [CrossRef]
- Malta, D.C.; Campos, M.O.; Oliveira, M.M.; Iser, B.P.M.; Bernal, R.T.I.; Claro, R.M.; Monteiro, C.A.; Junior, J.B.S.; Reis, A.A.C. Prevalência de fatores de risco e proteção para doenças crônicas não transmissíveis em adultos residentes em capitais brasileiras, 2013. Epidemiol. E Serviços Saúde 2015, 24, 373–387. [Google Scholar] [CrossRef]
- Passos, C.M.D.; Maia, E.G.; Levy, R.B.; Martins, A.P.B.; Claro, R.M. Association between the price of ultra-processed foods and obesity in Brazil. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Lima, Y.M.M.; Martins, F.A.; Ramalho, A.A. Factors Associated with Overweight and Obesity in Adults from Rio Branco, Acre in the Western Brazilian Amazon. Nutrients 2022, 14, 1079. [Google Scholar] [CrossRef]
- Turri, J.A.O.; Anokye, N.K.; Santos, L.L.; Júnior, J.M.S.; Baracat, E.C.; Santo, M.A.; Sarti, F.M. Impacts of bariatric surgery in health outcomes and health care costs in Brazil: Interrupted time series analysis of multi-panel data. BMC Health Serv. Res. 2022, 22, 41. [Google Scholar] [CrossRef]
- Dias, P.C.; Henriques, P.; Anjos, L.A.; Burlandy, L. Obesity and public policies: The Brazilian government’s definitions and strategies. Cad. De Saude Publica 2017, 33, e00006016. [Google Scholar] [CrossRef] [Green Version]
- Reis, E.C.; Passos, S.R.L.; Santos, M.A.B.; Silva, L.M.L.; Oliveira, R.V.C.; Camara, A.P.S.; Goulart, J.Z. Características de adultos com obesidade grave em tratamento ambulatorial no Rio de Janeiro e fatores associados à perda de peso. Cad. Saúde Coletiva 2022, 30, 201–214. [Google Scholar] [CrossRef]
- Lopes, M.S.; Freitas, P.P.; Carvalho, M.C.R.; Ferreira, N.L.; Menezes, M.C.; Lopes, A.C.S. O manejo da obesidade na atenção primária à saúde no Brasil é adequado? Cad. Saúde Pública 2021, 37, e00051620. [Google Scholar] [CrossRef]
- Lima, Y.M.M.; Martins, F.A.; Ramalho, A.A. Prevalência de consumo de alimentos ultraprocessados, álcool, tabaco e doenças crônicas não transmissíveis em Rio Branco, Acre, 2019: Análise comparativa de dois inquéritos epidemiológicos. Epidemiol. E Serviços Saúde 2022, 31, e2021607. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.D.; César, C.C.; Malta, D.C.; Andrade, A.C.S.; Ramos, C.G.C.; Proietti, F.A.; Bernal, R.T.I.; Caiaffa, W.T. Validade de estimativas obtidas por inquérito telefônico: Comparação entre VIGITEL 2008 e inquérito Saúde em Beagá. Rev. Bras. Epidemiol. 2011, 14, 16–30. [Google Scholar] [CrossRef] [Green Version]
Variables | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | AAPC | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOTAL | 1.1 | 1.0 | 0.9 | 1.2 | 1.2 | 1.2 | 1.5 | 1.5 | 1.6 | 1.7 | 1.6 | 1.7 | 1.8 | 1.8 | 2.0 | 1.9 | 4.7 | 3.8; 5.7 | <0.001 |
Sex | |||||||||||||||||||
Male | 0.9 | 0.8 | 0.5 | 0.7 | 0.8 | 1.1 | 1.0 | 1.2 | 1.2 | 1.1 | 1.2 | 1.4 | 1.4 | 1.3 | 1.6 | 1.6 | 3.5 | −2.7; 10.0 | 0.274 |
Female | 1.3 | 1.2 | 1.3 | 1.6 | 1.6 | 2.3 | 2.0 | 1.8 | 1.9 | 2.3 | 2.0 | 1.9 | 1.9 | 2.2 | 2.4 | 2.1 | 4.3 | 1.9; 6.8 | <0.001 |
Age group (in years) | |||||||||||||||||||
18–34 | 0.6 | 0.7 | 0.7 | 0.8 | 0.6 | 1.5 | 1.0 | 0.8 | 1.3 | 1.5 | 1.3 | 1.2 | 1.2 | 1.3 | 1.6 | 1.1 | 4.7 | 1.7; 7.8 | 0.004 |
35–59 | 1.3 | 1.4 | 1.1 | 1.4 | 1.7 | 2.0 | 1.9 | 1.9 | 1.6 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.4 | 2.3 | 3.7 | 2.4; 5.0 | <0.001 |
60 or more | 1.7 | 0.9 | 1.2 | 1.6 | 1.6 | 1.6 | 2.0 | 2.1 | 2.1 | 1.6 | 1.5 | 1.9 | 1.9 | 2.1 | 2.1 | 2.5 | 3.2 | 1.3; 5.3 | 0.003 |
Skin color | |||||||||||||||||||
White | 1.2 | 0.9 | 0.8 | 1.0 | 0.9 | 1.1 | 1.8 | 1.4 | 1.3 | 1.2 | 1.4 | 1.6 | 1.6 | 1.5 | 1.6 | 1.8 | 3.9 | 1.9; 5.9 | 0.001 |
Non-white | 1.0 | 1.1 | 1.0 | 1.3 | 1.4 | 1.2 | 1.3 | 1.4 | 1.5 | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 2.4 | 1.9 | 5.2 | 4.1; 6.3 | <0.001 |
Level of schooling (by years of studying) | |||||||||||||||||||
0–8 | 1.8 | 1.6 | 1.2 | 1.8 | 2.0 | 2.3 | 2.2 | 2.3 | 2.6 | 2.3 | 2.7 | 2.8 | 2.8 | 2.5 | 3.4 | 2.9 | 4.6 | 3.2; 6.0 | <0.001 |
9–11 | 0.5 | 0.5 | 0.8 | 0.9 | 0.7 | 1.6 | 1.4 | 0.9 | 1.3 | 1.6 | 1.3 | 1.4 | 1.4 | 1.8 | 1.4 | 1.7 | 5.9 | 2.8; 9.1 | 0.001 |
12 or more | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 | 1.0 | 0.9 | 1.2 | 0.6 | 1.0 | 1.0 | 0.9 | 0.9 | 1.1 | 1.7 | 1.3 | 6.0 | 3.4; 8.7 | <0.001 |
Geographic region | |||||||||||||||||||
North | 1.3 | 1.1 | 1.2 | 1.4 | 1.4 | 2.3 | 1.8 | 1.3 | 1.7 | 2.3 | 1.6 | 1.8 | 1.8 | 1.8 | 1.9 | 1.5 | 2.2 | −0.3; 4.7 | 0.080 |
Northeast | 0.9 | 1.2 | 1.2 | 1.4 | 1.4 | 1.4 | 1.3 | 1.5 | 1.8 | 1.4 | 1.8 | 1.8 | 1.8 | 1.8 | 2.0 | 2.2 | 4.4 | 3.3; 5.5 | <0.001 |
Midwest | 0.6 | 0.8 | 0.9 | 0.8 | 0.8 | 1.0 | 1.3 | 1.2 | 1.9 | 1.0 | 1.3 | 1.2 | 1.2 | 1.2 | 1.3 | 1.5 | 4.0 | 1.3; 6.9 | 0.007 |
Southeast | 1.3 | 1.0 | 0.6 | 1.1 | 1.2 | 2.0 | 1.7 | 1.7 | 1.4 | 2.0 | 1.7 | 1.8 | 1.8 | 2.0 | 2.4 | 1.9 | 4.6 | 2.1; 7.2 | 0.001 |
South | 1.1 | 0.8 | 1.2 | 0.9 | 1.1 | 1.5 | 1.3 | 1.3 | 1.5 | 1.5 | 1.4 | 1.5 | 1.5 | 1.4 | 1.2 | 1.9 | 3.2 | 1.4; 5.0 | 0.002 |
Capitals | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | AAPC | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aracaju | 1.4 | 1.5 | 1.0 | 1.4 | 2.0 | 1.4 | 2.4 | 1.4 | 1.0 | 1.6 | 2.4 | 2.1 | 1.5 | 1.7 | 2.1 | 3.8 | 4.9 | 1.4; 8.5 | 0.009 |
Belém | 1.5 | 1.0 | 1.0 | 1.4 | 1.0 | 0.8 | 1.8 | 1.1 | 1.6 | 2.0 | 1.6 | 1.1 | 1.8 | 1.3 | 2.1 | 1.0 | 2.3 | −1.1; 5.7 | 0.169 |
Belo Horizonte | 0.7 | 1.0 | 1.0 | 1.4 | 1.1 | 0.9 | 1.2 | 1.3 | 1.2 | 1.4 | 1.2 | 1.8 | 1.5 | 1.9 | 1.4 | 2.4 | 5.6 | 3.4; 7.7 | <0.001 |
Boa Vista | 0.9 | 1.0 | 1.5 | 0.9 | 1.2 | 0.6 | 1.2 | 1.0 | 1.8 | 1.0 | 0.5 | 1.6 | 1.5 | 2.7 | 1.9 | 2.2 | 5.9 | 2.1; 9.9 | 0.004 |
Campo Grande | 0.8 | 1.1 | 0.9 | 1.4 | 1.6 | 1.4 | 1.4 | 1.2 | 2.1 | 2.4 | 2.1 | 2.5 | 1.9 | 1.1 | 1.8 | 1.3 | 2.0 | −3.3; 7.6 | 0.47 |
Cuiabá | 1.2 | 1.1 | 0.7 | 1.1 | 1.5 | 1.9 | 1.6 | 2.4 | 2.9 | 1.0 | 1.3 | 1.6 | 1.8 | 1.7 | 1.1 | 1.5 | 1.6 | −2.9; 6.3 | 0.471 |
Curitiba | 1.0 | 0.8 | 1.2 | 0.6 | 1.0 | 0.9 | 1.5 | 1.1 | 1.4 | 1.2 | 1.3 | 1.5 | 1.0 | 1.2 | 1.0 | 1.7 | 2.8 | 0.2; 5.4 | 0.038 |
Florianópolis | 0.6 | 0.9 | 0.8 | 0.9 | 0.8 | 0.8 | 1.7 | 0.8 | 1.9 | 1.6 | 0.9 | 0.8 | 1.3 | 1.2 | 1.5 | 1.3 | 3.6 | −0.4; 7.7 | 0.073 |
Fortaleza | 0.7 | 0.9 | 1.3 | 1.1 | 1.2 | 1.3 | 0.7 | 1.5 | 2.9 | 1.4 | 1.8 | 1.7 | 1.6 | 1.4 | 1.6 | 1.8 | 4.1 | 0.1; 8.3 | 0.048 |
Goiânia | 0.7 | 0.8 | 0.6 | 0.8 | 0.9 | 0.7 | 1.0 | 0.9 | 1.0 | 0.8 | 1.6 | 0.9 | 1.7 | 1.2 | 1.4 | 1.3 | 5.4 | 2.9; 8.0 | <0.001 |
João Pessoa | 1.1 | 0.8 | 2.0 | 1.4 | 1.2 | 1.5 | 1.3 | 1.5 | 1.1 | 1.1 | 2.0 | 1.6 | 1.6 | 1.2 | 2.5 | 2.2 | 3.5 | 0.5; 6.6 | 0.027 |
Macapá | 1.0 | 1.5 | 1.2 | 1.7 | 2.8 | 1.4 | 1.6 | 1.3 | 2.1 | 2.2 | 1.9 | 3.4 | 2.0 | 2.9 | 1.9 | 1.0 | 3.3 | −1.0; 7.8 | 0.123 |
Maceió | 0.5 | 1.3 | 2.2 | 2.8 | 1.0 | 1.6 | 1.0 | 2.2 | 1.3 | 1.9 | 2.4 | 2.2 | 2.0 | 1.6 | 3.8 | 3.9 | 5.7 | 1.3; 10.4 | 0.015 |
Manaus | 1.4 | 1.1 | 1.1 | 1.5 | 1.4 | 1.6 | 1.9 | 1.5 | 1.7 | 3.2 | 1.6 | 1.7 | 2.0 | 2.0 | 1.7 | 1.2 | 2.5 | −1.0; 6.2 | 0.147 |
Natal | 1.3 | 1.5 | 0.7 | 1.4 | 1.4 | 1.8 | 1.9 | 1.4 | 2.1 | 2.1 | 1.9 | 1.6 | 1.4 | 3.8 | 2.1 | 2.4 | 5.4 | 2.0; 8.9 | 0.004 |
Palmas | 0.9 | 0.5 | 0.7 | 0.7 | 1.1 | 0.9 | 1.9 | 1.1 | 1.5 | 0.5 | 1.3 | 1.2 | 0.7 | 0.9 | 1.3 | 3.0 | 6.5 | 1.3; 11.9 | 0.017 |
Porto Alegre | 1.3 | 0.7 | 1.4 | 1.3 | 1.4 | 1.0 | 0.9 | 1.6 | 1.4 | 1.9 | 1.8 | 1.7 | 2.3 | 1.6 | 1.4 | 2.3 | 4.4 | 1.7; 7.1 | 0.003 |
Porto Velho | 0.6 | 1.4 | 1.6 | 1.6 | 1.9 | 2.0 | 1.7 | 1.7 | 1.6 | 2.0 | 1.6 | 2.5 | 1.3 | 0.9 | 2.0 | 2.7 | 2.9 | −0.5; 6.4 | 0.085 |
Recife | 1.0 | 1.2 | 1.2 | 1.6 | 1.6 | 1.3 | 1.7 | 1.8 | 1.5 | 1.5 | 1.9 | 2.0 | 2.2 | 2.5 | 3.1 | 3.2 | 6.9 | 5.3; 8.6 | <0.001 |
Rio Branco | 0.9 | 1.5 | 2.1 | 1.5 | 2.1 | 1.8 | 1.5 | 1.1 | 1.9 | 2.5 | 2.4 | 2.7 | 1.9 | 2.6 | 2.5 | 3.1 | 4.8 | 2.2; 7.3 | 0.001 |
Rio de Janeiro | 1.0 | 1.1 | 1.0 | 1.4 | 1.5 | 1.3 | 1.8 | 1.9 | 1.7 | 1.8 | 2.4 | 1.7 | 2.4 | 1.7 | 1.4 | 2.1 | 4.2 | 1.7; 6.7 | 0.003 |
Salvador | 0.8 | 1.7 | 1.4 | 1.5 | 1.9 | 1.2 | 1.4 | 1.5 | 1.7 | 1.1 | 1.9 | 1.9 | 1.8 | 1.9 | 1.0 | 2.0 | 1.9 | −0.8; 4.7 | 0.155 |
São Luís | 0.9 | 1.1 | 0.3 | 1.1 | 1.0 | 1.2 | 1.2 | 1.0 | 1.0 | 0.8 | 0.9 | 1.0 | 1.7 | 0.8 | 1.3 | 1.0 | 1.5 | −1.7; 4.8 | 0.333 |
São Paulo | 1.6 | 0.9 | 0.3 | 0.9 | 1.0 | 1.0 | 1.8 | 1.6 | 1.2 | 2.2 | 1.5 | 1.8 | 1.7 | 2.1 | 3.3 | 1.7 | 6.3 | 2.3; 10.4 | 0.004 |
Teresina | 0.6 | 0.8 | 0.5 | 0.6 | 1.2 | 0.8 | 0.6 | 1.4 | 1.7 | 1.3 | 1.2 | 1.8 | 2.6 | 1.3 | 2.3 | 1.0 | 8.3 | 3.6; 13.1 | 0.002 |
Vitória | 0.8 | 0.6 | 0.7 | 1.1 | 1.3 | 1.2 | 1.0 | 1.2 | 2.0 | 1.4 | 0.6 | 1.6 | 1.7 | 2.3 | 1.6 | 1.9 | 6.3 | 3.2; 9.4 | 0.001 |
Federal District | 0.4 | 0.6 | 1.0 | 0.7 | 0.4 | 0.9 | 1.3 | 1.0 | 2.1 | 0.6 | 0.9 | 0.8 | 1.1 | 1.2 | 1.2 | 1.6 | 4.5 | 0.4; 8.8 | 0.034 |
Capitals | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | AAPC | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aracaju | 1.3 | 0.5 | 0.4 | 1.1 | 1.9 | 0.9 | 2.2 | 0.9 | 1.2 | 1.1 | 2.1 | 2.8 | 1.4 | 0.5 | 1.8 | 5.2 | 9.7 | 3.2; 16.5 | 0.005 |
Belém | 1.4 | 1.1 | 0.5 | 0.8 | 1.1 | 0.4 | 0.7 | 0.5 | 0.9 | 1.5 | 0.9 | 0.8 | 2.1 | 0.8 | 2.7 | 0.2 | 5.0 | −1.2; 11.6 | 0.106 |
Belo Horizonte | 0.4 | 0.9 | 0.5 | 1.1 | 0.6 | 0.6 | 0.7 | 1.1 | 1.1 | 0.5 | 0.3 | 1.6 | 1.2 | 1.7 | 0.7 | 2.5 | 8.2 | 3.1; 13.5 | 0.004 |
Boa Vista | 0.6 | 0.9 | 1.3 | 0.6 | 0.7 | 0.4 | 0.9 | 0.7 | 2.5 | 0.8 | 0.8 | 1.3 | 1.5 | 3.5 | 1.1 | 1.6 | 7.8 | 1.2; 14.8 | 0.024 |
Campo Grande | 0.7 | 0.4 | 0.5 | 0.5 | 1.4 | 0.6 | 0.8 | 0.9 | 1.5 | 1.8 | 2.0 | 2.5 | 2.6 | 0.5 | 1.6 | 0.7 | 3.5 | −10.7; 20.0 | 0.650 |
Cuiabá | 0.6 | 0.6 | 0.7 | 0.7 | 1.1 | 1.3 | 1.0 | 2.1 | 2.4 | 0.5 | 0.4 | 1.2 | 2.0 | 1.3 | 1.4 | 0.2 | 4.2 | −2.9; 11.9 | 0.232 |
Curitiba | 0.9 | 0.4 | 0.6 | 0.3 | 0.9 | 0.5 | 1.4 | 1.5 | 1.5 | 0.7 | 1.8 | 1.2 | 1.0 | 0.9 | 1.0 | 1.9 | 5.2 | 0.2; 10.5 | 0.042 |
Florianópolis | 0.2 | 0.9 | 0.9 | 0.4 | 0.6 | 0.7 | 1.6 | 0.6 | 2.8 | 1.5 | 1.3 | 0.7 | 1.8 | 0.5 | 0.8 | 1.3 | 3.6 | −4.2; 12.0 | 0.346 |
Fortaleza | 0.6 | 0.3 | 0.9 | 0.4 | 1.5 | 0.4 | 0.5 | 1.1 | 2.2 | 1.2 | 1.3 | 1.6 | 1.4 | 0.4 | 1.7 | 1.8 | 6.3 | 0.3; 12.5 | 0.039 |
Goiânia | 0.4 | 0.6 | 0.4 | 0.7 | 0.6 | 0.5 | 1.3 | 0.6 | 0.2 | 0.3 | 1.9 | 0.6 | 0.9 | 1.1 | 0.9 | 2.0 | 8.0 | 1.9; 14.4 | 0.013 |
João Pessoa | 1.1 | 0.9 | 1.6 | 0.6 | 0.8 | 1.4 | 1.1 | 1.0 | 1.1 | 0.8 | 2.6 | 0.8 | 0.9 | 0.6 | 4.9 | 2.0 | 8.8 | 2.0; 16.1 | 0.014 |
Macapá | 0.5 | 0.8 | 0.5 | 0.9 | 0.7 | 0.3 | 0.9 | 1.4 | 1.1 | 2.2 | 1.7 | 5.1 | 0.9 | 2.4 | 1.6 | 0.6 | 6.8 | −5.8; 21.1 | 0.311 |
Maceió | 0.3 | 0.8 | 1.2 | 2.3 | 0.8 | 1.1 | 0.6 | 0.8 | 0.5 | 1.3 | 1.5 | 1.7 | 1.6 | 0.6 | 2.1 | 3.9 | 7.6 | 1.5; 14.1 | 0.018 |
Manaus | 0.8 | 1.0 | 0.6 | 0.7 | 1.3 | 1.3 | 0.7 | 1.2 | 1.6 | 2.4 | 1.7 | 1.1 | 1.9 | 1.5 | 1.5 | 1.2 | 4.6 | 0.5; 8.9 | 0.030 |
Natal | 1.4 | 0.9 | 0.5 | 0.8 | 0.8 | 1.9 | 2.0 | 1.4 | 1.8 | 1.6 | 1.4 | 1.4 | 0.8 | 5.6 | 2.5 | 3.2 | 10.1 | 3.9; 16.5 | 0.003 |
Palmas | 0.5 | 0.2 | 0.1 | 0.8 | 0.8 | 0.4 | 1.3 | 0.9 | 1.4 | 0.6 | 1.1 | 1.1 | 0.8 | 1.3 | 1.8 | 5.4 | 15.5 | 3.9; 28.3 | 0.007 |
Porto Alegre | 1.2 | 0.6 | 0.9 | 0.3 | 1.2 | 0.8 | 0.5 | 2.3 | 1.2 | 1.7 | 1.1 | 1.0 | 2.7 | 1.8 | 2.0 | 1.6 | 6.1 | 1.0; 11.5 | 0.021 |
Porto Velho | 0.2 | 0.9 | 2.0 | 0.9 | 0.8 | 1.0 | 1.2 | 1.8 | 1.7 | 1.2 | 1.7 | 3.3 | 1.0 | 0.7 | 2.1 | 2.2 | 5.2 | −0.6; 11.3 | 0.077 |
Recife | 0.6 | 0.3 | 0.3 | 2.1 | 0.8 | 1.1 | 0.5 | 1.4 | 0.5 | 1.0 | 1.1 | 2.2 | 0.6 | 2.2 | 2.9 | 0.9 | 6.9 | −0.2; 14.5 | 0.056 |
Rio Branco | 0.3 | 1.4 | 1.7 | 0.6 | 1.0 | 0.9 | 1.2 | 0.8 | 2.8 | 1.7 | 2.4 | 3.4 | 1.2 | 2.1 | 1.3 | 2.6 | 6.2 | 0.4; 12.4 | 0.038 |
Rio de Janeiro | 0.9 | 0.9 | 0.4 | 1.0 | 1.0 | 1.2 | 1.2 | 0.6 | 1.0 | 0.4 | 1.7 | 1.3 | 1.4 | 0.9 | 0.2 | 2.4 | 5.3 | 0.3; 10.6 | 0.039 |
Salvador | 0.4 | 1.6 | 0.4 | 0.9 | 0.9 | 0.8 | 0.6 | 0.5 | 0.5 | 0.6 | 1.2 | 1.5 | 1.3 | 2.1 | 0.5 | 2.8 | 7.3 | 1.3; 13.5 | 0.019 |
São Luís | 0.9 | 0.2 | 0.1 | 0.8 | 0.5 | 0.7 | 0.9 | 0.5 | 0.2 | 0.6 | 1.0 | 0.7 | 2.0 | 0.7 | 1.0 | 0.8 | 4.8 | −1.4; 11.4 | 0.123 |
São Paulo | 1.4 | 0.9 | 0.3 | 0.2 | 0.5 | 0.9 | 1.4 | 1.8 | 1.1 | 1.6 | 0.8 | 1.7 | 1.7 | 1.3 | 2.4 | 0.7 | 4.6 | −0.9; 10.3 | 0.097 |
Teresina | 0.2 | 0.4 | 0.4 | 0.3 | 0.4 | 1.0 | 0.2 | 0.9 | 0.4 | 0.7 | 0.7 | 0.9 | 2.6 | 0.8 | 3.1 | 0.2 | 16.7 | 7.7; 26.4 | 0.001 |
Vitória | 0.3 | 0.6 | 0.1 | 0.6 | 1.1 | 1.0 | 0.5 | 0.7 | 2.2 | 0.6 | 0.3 | 1.5 | 0.7 | 2.8 | 1.8 | 2.3 | 10.8 | 4.0; 18.1 | 0.004 |
Federal District | 0.2 | 0.2 | 0.7 | 0.3 | 0.5 | 0.1 | 0.6 | 0.6 | 1.4 | 0.5 | 0.9 | 0.1 | 1.7 | 1.2 | 0.5 | 1.1 | 8.7 | 1.4; 16.6 | 0.022 |
Capitals | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | AAPC | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aracaju | 1.5 | 2.3 | 1.5 | 1.6 | 2.0 | 1.8 | 2.5 | 1.8 | 0.9 | 2.0 | 2.6 | 1.5 | 1.6 | 2.7 | 2.3 | 2.6 | 2.1 | −0.7; 5.0 | 0.127 |
Belém | 1.7 | 0.9 | 1.4 | 1.9 | 0.9 | 1.1 | 2.8 | 1.6 | 2.3 | 2.4 | 2.3 | 1.3 | 1.6 | 1.7 | 1.6 | 1.8 | 1.3 | −2.5; 5.3 | 0.487 |
Belo Horizonte | 1.0 | 1.0 | 1.3 | 1.6 | 1.5 | 1.2 | 1.6 | 1.5 | 1.4 | 2.2 | 2.0 | 2.0 | 1.7 | 2.1 | 2.0 | 2.4 | 4.8 | 3.1; 6.5 | <0.001 |
Boa Vista | 1.1 | 1.2 | 1.6 | 1.2 | 1.7 | 0.8 | 1.4 | 1.3 | 1.0 | 1.1 | 0.3 | 1.8 | 1.5 | 1.9 | 2.6 | 2.8 | 5.1 | 1.4; 8.9 | 0.010 |
Campo Grande | 1.0 | 1.8 | 1.3 | 2.2 | 1.8 | 2.1 | 2.0 | 1.4 | 2.7 | 2.9 | 2.1 | 2.4 | 1.3 | 1.6 | 2.0 | 2.0 | 1.5 | −1.8; 4.9 | 0.341 |
Cuiabá | 1.7 | 1.7 | 0.7 | 1.5 | 1.9 | 2.4 | 2.2 | 2.7 | 3.3 | 1.6 | 2.0 | 2.0 | 1.5 | 2.1 | 0.8 | 2.8 | 1.6 | −2.6; 6.0 | 0.432 |
Curitiba | 1.1 | 1.1 | 1.6 | 0.9 | 1.0 | 1.3 | 1.6 | 0.8 | 1.4 | 1.6 | 0.8 | 1.9 | 1.1 | 1.4 | 1.0 | 1.5 | 1.1 | −2.0; 4.2 | 0.457 |
Florianópolis | 0.9 | 0.9 | 0.8 | 1.4 | 1.0 | 0.9 | 1.7 | 0.9 | 1.0 | 1.7 | 0.5 | 0.8 | 0.8 | 1.8 | 2.0 | 1.3 | 3.4 | −0.7; 7.6 | 0.100 |
Fortaleza | 0.9 | 1.5 | 1.6 | 1.7 | 0.9 | 2.0 | 0.8 | 1.9 | 3.6 | 1.6 | 2.2 | 1.8 | 1.7 | 2.4 | 1.6 | 1.7 | 2.6 | −1.9; 7.3 | 0.239 |
Goiânia | 1.0 | 1.0 | 0.8 | 0.9 | 1.1 | 0.9 | 0.9 | 1.2 | 1.6 | 1.2 | 1.4 | 1.1 | 2.4 | 1.3 | 1.8 | 0.7 | 4.4 | 0.7; 8.2 | 0.022 |
João Pessoa | 1.1 | 0.7 | 2.3 | 2.0 | 1.5 | 1.5 | 1.5 | 1.9 | 1.0 | 1.4 | 1.5 | 2.3 | 2.2 | 1.7 | 0.5 | 2.4 | 1.9 | −2.2; 6.1 | 0.349 |
Macapá | 1.4 | 2.1 | 1.9 | 2.4 | 4.9 | 2.5 | 2.2 | 1.3 | 3.0 | 2.2 | 2.1 | 1.7 | 3.0 | 3.3 | 2.3 | 1.4 | −0.3 | −4.8; 4.4 | 0.896 |
Maceió | 0.6 | 1.7 | 3.1 | 3.3 | 1.3 | 2.0 | 1.3 | 3.3 | 1.9 | 2.3 | 3.0 | 2.6 | 2.4 | 2.4 | 5.1 | 3.9 | 4.8 | 0.4; 9.3 | 0.033 |
Manaus | 2.0 | 1.3 | 1.6 | 2.2 | 1.5 | 2.0 | 3 | 1.8 | 1.9 | 4.0 | 1.6 | 2.3 | 2.2 | 2.6 | 1.8 | 1.2 | 1.2 | −3.0; 5.5 | 0.558 |
Natal | 1.2 | 2.1 | 0.9 | 1.9 | 2.0 | 1.8 | 1.8 | 1.3 | 2.3 | 2.5 | 2.2 | 1.7 | 1.9 | 2.2 | 1.9 | 1.6 | 1.4 | −1.3; 4.2 | 0.295 |
Palmas | 1.3 | 0.9 | 1.3 | 0.5 | 1.4 | 1.5 | 2.4 | 1.3 | 1.6 | 0.4 | 1.5 | 1.2 | 0.7 | 0.6 | 0.8 | 0.8 | −2.9 | −8.0; 2.5 | 0.262 |
Porto Alegre | 1.4 | 0.9 | 1.9 | 2.2 | 1.6 | 1.2 | 1.3 | 0.9 | 1.5 | 2.0 | 2.4 | 2.2 | 2.0 | 1.5 | 1.0 | 2.9 | 2.9 | −0.8; 6.8 | 0.115 |
Porto Velho | 1.0 | 1.9 | 1.2 | 2.4 | 3.0 | 3.1 | 2.3 | 1.6 | 1.5 | 2.9 | 1.5 | 1.7 | 1.6 | 1.2 | 1.9 | 3.2 | 6.9 | −6.5; 22.2 | 0.329 |
Recife | 1.3 | 2.0 | 1.9 | 1.2 | 2.3 | 1.5 | 2.7 | 2.1 | 2.4 | 1.9 | 2.6 | 1.8 | 3.5 | 2.7 | 3.2 | 5.0 | 6.5 | 3.6; 9.5 | <0.001 |
Rio Branco | 1.4 | 1.6 | 2.6 | 2.5 | 3.1 | 2.6 | 1.8 | 1.3 | 1.1 | 3.3 | 2.4 | 2.0 | 2.6 | 3.0 | 3.7 | 3.5 | 3.5 | 0.1; 7.0 | 0.044 |
Rio de Janeiro | 1.0 | 1.3 | 1.6 | 1.7 | 1.9 | 1.4 | 2.4 | 3.0 | 2.3 | 3.0 | 2.9 | 2.1 | 3.3 | 2.4 | 2.3 | 1.9 | 4.1 | −0.5; 9.0 | 0.082 |
Salvador | 1.2 | 1.7 | 2.3 | 2.0 | 2.7 | 1.5 | 2.0 | 2.3 | 2.7 | 1.5 | 2.5 | 2.2 | 2.3 | 1.7 | 1.3 | 1.3 | −0.6 | −3.8; 2.8 | 0.712 |
São Luís | 0.9 | 2.0 | 0.4 | 1.3 | 1.4 | 1.6 | 1.5 | 1.4 | 1.6 | 0.9 | 0.8 | 1.2 | 1.3 | 1.0 | 1.5 | 1.2 | −1.1 | −4.5; 2.5 | 0.526 |
São Paulo | 1.7 | 1.0 | 0.3 | 1.6 | 1.4 | 1.2 | 2.2 | 1.5 | 1.2 | 2.7 | 2.0 | 1.9 | 1.8 | 2.8 | 4.1 | 2.5 | 6.9 | 2.9; 11.0 | 0.002 |
Teresina | 1.0 | 1.1 | 0.6 | 1.0 | 1.8 | 0.6 | 0.9 | 1.8 | 2.9 | 1.9 | 1.7 | 2.5 | 2.7 | 1.7 | 1.5 | 1.7 | 5.3 | 0.4; 10.4 | 0.035 |
Vitória | 1.2 | 0.6 | 1.3 | 1.5 | 1.4 | 1.4 | 1.5 | 1.6 | 1.8 | 2.1 | 1.0 | 1.6 | 2.5 | 1.9 | 1.5 | 1.5 | 3.3 | 0.2; 6.4 | 0.038 |
Federal District | 0.6 | 0.9 | 1.3 | 1.0 | 0.3 | 1.7 | 2.0 | 1.4 | 2.7 | 0.7 | 0.8 | 1.4 | 0.6 | 1.2 | 1.8 | 2.0 | 3.0 | −2.7; 9.0 | 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, F.S.B.; Silva, T.F.d.; Lima, Y.d.M.M.; Farias, L.S.d.; Gadelha, J.G.; Ramalho, A.A. Temporal Trend of Severe Obesity in Brazilian State Capitals (2006–2021). Obesities 2023, 3, 119-131. https://doi.org/10.3390/obesities3020010
Dias FSB, Silva TFd, Lima YdMM, Farias LSd, Gadelha JG, Ramalho AA. Temporal Trend of Severe Obesity in Brazilian State Capitals (2006–2021). Obesities. 2023; 3(2):119-131. https://doi.org/10.3390/obesities3020010
Chicago/Turabian StyleDias, Flávia Santos Batista, Tiago Feitosa da Silva, Yara de Moura Magalhães Lima, Luana Silva de Farias, Jhonatan Gomes Gadelha, and Alanderson Alves Ramalho. 2023. "Temporal Trend of Severe Obesity in Brazilian State Capitals (2006–2021)" Obesities 3, no. 2: 119-131. https://doi.org/10.3390/obesities3020010
APA StyleDias, F. S. B., Silva, T. F. d., Lima, Y. d. M. M., Farias, L. S. d., Gadelha, J. G., & Ramalho, A. A. (2023). Temporal Trend of Severe Obesity in Brazilian State Capitals (2006–2021). Obesities, 3(2), 119-131. https://doi.org/10.3390/obesities3020010