Lithium Systems: Theoretical Studies of Hydrogen Storage
Abstract
1. Introduction
2. Carbon-Based Materials Systems

| System | Binding Energy | H2 per Molecule | Storage Capacity | Method | Ref. |
|---|---|---|---|---|---|
| Li12C60 | 0.075 eV/H2 | 120 H2 | DFT/GGA PAW | [41] | |
| Li12C48B12 | 0.135–0.172 eV/H2 | 3H2 | 9 wt % | PW91 | [11] |
| Li6C60H40 | ~0.08 eV/H2 | 30 H2-C and 10 H2-Li | 5 wt % | DFT/LDA GGA | [90] |
| Li/graphene | 0.82–0.84 eV | 4 H2 | 12.8 wt % | Ultrasoft pseudopotentials-LDA | [10] |
| Li-three-dimensional carbon nanostructure | ~0.16 eV | 76–88% | BLYP/SVP GCMC | [49] | |
| Li-doped coronene molecules | DFT-B3LYP DFT-LDA/GGA | [56] | |||
| Li-graphene nanoflakes | 0.16 eV | PW91PW91 | [70] | ||
| Li-Dispersed Carbon Nanotubes | −0.17 eV/H2 | (H2)64 Li8/C64 model | 13.45 wt % | LDA-PWC | [69] |
| Li-decorated porous graphene | 0.25 eV | 3 H2 for each Li | 7–12 wt % | HSE06 functional | [14] |
| Lithium/vacancy inside a graphene layer | 0.875 eV/H | 3 H2 for each Li | 6.2 wt % | DFT-LDA | [91] |
| Prehydrogenated graphene are substituted with Li atom | around 0.1 eV | 1–5 H2 | 3.8 wt % | PW91 | [50] |
| Li-doped graphane (prehydrogenated graphene) | 0.12–0.29 eV | 4 H2 for each Li | 3.23 wt %, 5.56% of Li doping | DFT-PAW LDA-GGA | [61] |
| Lithium-decorated oxidized porous grapheme | 0.2 eV | doped Li atom could hold 5 H2 | 9.43 wt % | DFT-GGA-PBE | [64] |
| Li-decorated B-GOF (nanoporous graphene oxide framework) | 0.2 eV | 3H2 | 5.9 wt % | GGA | [15] |
| Lithium-doped graphane | 0.15 eV–0.20 eV | 4H2 per each Li | 12.12–25 wt % | DFT-VASP LDA-PBE | [66] |
| Li dispersed graphene with StoneeWales defects | 0.20–0.35 eV | Li dispersed grapheme 4 H2 | DFT-VASP GGA-PBE | [58] | |
| Li-decorated double carbon vacancy graphene | 0.26 eV/H2 | 4 hydrogen molecules adsorb on Li-decorated | 7.26 wt % | LDA-PWC | [57] |
| Li-decorated hybrid boron nitride and graphene | 5 H2 | 8.7% | LDA | [67] | |
| Li-decorated benzene complexes | 0.22 eV/H2 and 0.29 eV/H2 | 4H2 | 8.6 wt % and 14.8 wt % | PAW | [73] |
| CMP-1 and HCMP-1 decorated with lithium. | 0.13 eV | 3 H2 | 8.76 wt % | PWA GGA-PBE DFT-D2 | [92] |
| Six metal-decorated two-dimensional carbon allotropes | 0.17 eV | C41 structure 3 H2 per Li | 7.12 wt % | LDA, GGA, vdW-DF | [71] |
| Li-adsorbed acenes | about 0.21 to 0.42 eV | 2H2 per Li | 9.9 to 10.7 wt % | TAO-BLYP-D | [74] |
| Three-dimensional pillared boron nitride and pillared graphene boron nitride, lithium- and oxygen-doped pillared | Li + O 6H2 | 9.1–11.6 wt % | LDA-PBE | [93] | |
| Lithium-decorated Metal-Graphyne | 0.4 eV to 0.20 eV | 3 H2 | 6.4 wt % | GGA-PBE DFT-D | [78] |
| Li-decorated graphyne | −0.27 eV/H2 | 4H2 | 18.6 wt % | LDA PDOS | [76] |
| Li-decorated graphyne | 0.226 eV/H2 | 4H2 | 15.15 wt % | LDA-PWC LDA-MP2 | [77] |
| Calix[4]arene Li metals, CX-Li4 | 0.16 eV | Li atom traps 3 H2 on CX | DFT, M0/6-311G(d,p) | [75] | |
| Li-decorated porous graphene | 0.245 eV and 0.263 eV | 15–16 H2 | 10.89 wt % and 10.79 wt % at T 300 K | PWC-LDA | [94] |
| Li-decorated octagraphene | 0.23 eV/H2 | 4 H2 per each Li | 8 wt % | LDA/PWC | [68] |
| (LiC39H9), lithium-decorated zeolite templated carbon | 0.1250 eV/H2 | 6 of H2 | 6.78 | GGA-PW91 | [80] |
| Li-terminated linear carbon chains (Li2Cn), n = 5–10 | 0.21 to 0.42 eV | 8 H2 | 10.7 to 17.9 wt % | TAO-BLYP-D | [79] |
| CLi4 and OLi2 on graphene sheets (doping graphene with B or Be) | 0.09–0.1 eV | 6–9 H2 | 5–8.5 wt % | PW91 GGA PAW PBE | [95] |
| C30B2Li | 0.13 eV/H2 | 4 H2 | DFT-PBE | [42] | |
| C60(Li2F)12 cluster | 0.12 eV | 68 H2 per cluster | 10.86 wt % | GGA-PBE | [96] |
| [Li g-C3N4]+ | 0.07 eV | 1H2 | PBE0/ def2-TZVP | [84] | |
| [g-C3N4Lin n = 2–6] | 0.10–0.19 eV | 10 H2 | M06-2X-D3/def2-TZVP | [85] | |
| [Li6C54H18] 4H2 | 0.31 eV | 4 H2 | PBE0/ DZP-DKH | [81] | |
| Li2(C8H6) | 0.11 eV | 6H2 | DLPNO-CCSD(T) | [86] | |
| Li-decorated naphthylene | −0.16 eV | 14.9 wt % | DFT-D2 | [87] | |
| [2]paracyclophane-3Li | 0.145 eV/5H2 | 15H2 | wB97Xd | [88] | |
| Li@HZGM-42 Three-Dimensional Graphene Monolith | −0.233 eV/H2 | 6.08 wt % | [89] | ||
| Lithium-Decorated C26 Fullerene | −0.02 eV | 4H2 | PBE DFT-D3 GGA | [72] |
3. Non-Carbon-Based Materials Systems
3.1. Silicon Systems
3.2. Boron Systems
3.3. Phosphorus Systems
4. Metal–Organic Frameworks (MOFs) and COF Systems
5. Other Systems
| System | Binding Energy | H2 Por Molecule | Storage Capacity | Method | Ref. |
|---|---|---|---|---|---|
| 3D-COFs, lithium alkoxide group | 0.13 eV | 5 H2 | 6 wt % | DFT-RI PBE Def2-TZVPP | [122] |
| Li atoms on BDC units of MOF-5 improve | 0.12 eV | 3H2 | 4.3 wt % | PAW | [118] |
| Li+ decorated COF-108s | 0.28 eV | 6.5 wt % | B3LYP, 6–31G * | [119] | |
| Si5Li5−, Si5Li6 and Si5Li7+ | 0.04–0.16 eV | 14–17 H2 | 13.33 wt % and 15.25 wt % | DFT-PW91 MP2-6-31++G(2d,2p) | [99] |
| Si4Lin (n = 1–3) | 0.12–0.17 eV | 5 H2 | 7.8–12% | m06/6-311 + g(d,p) | [101] |
| Li-dispersed boron carbide nanotubes | 0.1 eV | 1H2 | 6.0 wt % | GGA/LDA | [27] |
| Li-decorated B24 clusters | 0.12 eV/H2, | 2 H2 | 9.24 wt % | DFT-PW91 MP2-6-31++G(2d,2p) | [103] |
| BC2NBC–Li and BC2NCN–Li | 0.2 eV | 3 H2 | 9.88 and 9.94 wt % | LAD-CA-P2 GGA-PBE | [107] |
| LiH | ~3.0 eV | LiH with 6 added Hydrogen atoms | FP-LAPW WIENZK GGA | [128] | |
| Li-decorated 1/8-boron monolayer | 0.23 eV/H2 | 4 H2 | 15.26 wt % | GGA-PBE DZP | [104] |
| 3Li/B4C3 monolayer | 0.23 eV | 6H2 | 6.22 wt % | DFT | [110] |
| Li-decorated MoS2 | 0.31 eV | 4H2 | 4.4 wt % | GGA-PBE DFT-D2 | [132] |
| Si20H10(CONHLi)10, Si20H10(CONLi2)10, Si20H10(CN2H2Li)10, and Si20H10(CN2HLi2)10 | 0.132, 0.119, 0.129, 0.128 eV | 70, 60, 80, 80 H2 in system | 11.57 wt %, 12.40 wt %, 10.17 wt %, 12.50 wt % | GGA-PBE LDA-PWC | [100] |
| Li-Decorated Borospherene B40 Li14&B40–42 H2 | 0.12 eV/H2 | 42 H2 | 13.8 wt % | DFT-PAW GGA-PBE DFT-D | [146] |
| Li-decorated phosphorene bi-Li4bP16 | 0.2 eV | 3H2 | 4.4 wt % | GGA-PBE DFT + D2 | [116] |
| Li-doping/(COFs). COF-108 | (45.6 mg/g and 28.6 g/cm3) at 233 K and 100 bar | GCMC | [126] | ||
| Li-decorated defective phosphorene. | 0.48 eV/H2 | 5.3% | DFT-PBE NORMCONS DFT-D | [117] | |
| Li-decorated monolayer black phosphorus | 0.14–0.18 eV | 3H2 | 4.41 wt % | GGA-vdW | [115] |
| Li-β12-borophene | 0.21eV | 7 H2 | 10.85 wt %. | GGA-PBE DFT-D | [60] |
| Hexaborane(6) dianion (B6H6–2) | 0.1 eV | 3 H2 | 12 wt %. | MP2/aug-cc-pVTZ, GGA-PBE, LDA | [61] |
| Li4&B36 cluster | 0.08–0.14 eV | 6 H2 | 10.4% | wB97x/6-31G(d,p) | [105] |
| C24N32Li3 | 0.194 eV | 32H2 | 7.55 wt % | GGA-PBE DFT-D2 | [83] |
| Li-decorated (AlN)n (n = 12, 24, 36) nanocages | 0.145, 0.154, 0.102 eV/H | 2H2 | 7.7 wt %, | GGA-pw91 | [135] |
| B6Li8 complex | 0.095 eV | 24 wt % | B3LYP/6-311 + G(d) | [102] | |
| Li Functionalized BC3 Nanotube | 0.11 eV/H2 | 2 H2 | 6.9% | GGA-PWA PAW | [147] |
| BN–Li complexes | 0.16–0.28 eV/H2 | 8 H2 | 12.2 wt %, | GGA-PBE/DND | [148] |
| Lithium tetrazolide group | 0.05–0.06eV | 14 H2 | 4.9 wt % at 233 K and 10 MPa | RI-MP2/def2-TZVPP | [120] |
| LiF | 0.11 eV | 10 H2 | 43.5 wt % | ωB97X-D | [139] |
| Li-decorated B3S | 0.167–0.208 eV | DFT-D3/PAW | [112] | ||
| Li-Ga4As4-F | 0.272 eV | 4 H2 | B3LYP | [141] | |
| LiCl, LiBr | 10H2 | CAM-B3YP, wB97X-D | [140] | ||
| 3Li/B4C3 | −0.24 eV | 6.22 wt % | DFT-D | [110] | |
| Penta-LiBN2(P-BN2) | 0.158 eV/H2 | 28 H2 | 13.27 wt %. | PBE/GGA | [143] |
| Li-decorated (o)-B2P2 and (o)-B2N2 | 0.18–0.20 eV | 32H2@B2P2 and 24H2@B2N2 | 8.18 and 9.7 wt % | PBE/GGA | [113] |
| Li-B36 | −0.15 eV | 3 H2 | DLPNO-CCSD(T) | [114] | |
| Li/BC4N | −0.27 eV | 4H2 | 12.2% | B3LYP/6–31 g(d, p) | [109] |
| Li–BCN nanochains | −0.14 eV | 4H2 | 18.68% | PBE-GGA | [111] |
| Lithium-decorated diborene (B2H4Li2) and diboryne (B2H2Li2) | −0.101 eV | 3H2 | 24% | HLYP M06-2X | [137] |
| Li-Bi2Se3 | −0.19 eV | 18 H2 | 6.66% | PBE-GGA | [144] |
| Li-GeC5 | −0.25 eV | 3H2 | 7.62% | PBE-GGA | [145] |
6. Challenges in Industrial Applications
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Schüth, F.; Bogdanović, B.; Felderhoff, M. Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. 2004, 20, 2249–2258. [Google Scholar] [CrossRef]
- Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 2015, 89, 205–213. [Google Scholar] [CrossRef]
- Louli, R.; Giurgea, S.; Salhi, I.; Laghrouche, S.; Djerdir, A. A Critical Review of Green Hydrogen Production by Electrolysis: From Technology and Modeling to Performance and Cost. Energies 2026, 19, 59. [Google Scholar] [CrossRef]
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Li, X.; Ye, T.; Meng, X.; He, D.; Li, L.; Song, K.; Jiang, J.; Sun, C. Advances in the Application of Sulfonated Poly(Ether Ether Ketone) (SPEEK) and Its Organic Composite Membranes for Proton Exchange Membrane Fuel Cells (PEMFCs). Polymers 2024, 16, 2840. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Q.; Yang, L.; Huang, H.; Wei, K.; Li, D.; Zhao, C.; Liu, J.; Li, Z. Energy analysis of hydrogen production via fuel-assisted high-temperature solid oxide electrolysis cell via system modelling. Sustain. Energy Res. 2025, 12, 31. [Google Scholar] [CrossRef]
- Jena, P. Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2011, 2, 206–211. [Google Scholar] [CrossRef]
- Ao, Z.M.; Peeters, F.M. High-capacity hydrogen storage in Al-adsorbed graphene. Phys. Rev. B 2010, 81, 205406. [Google Scholar] [CrossRef]
- Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Q.; Jena, P. Functionalized heterofullerenes for hydrogen storage. Appl. Phys. Lett. 2009, 94, 013111. [Google Scholar] [CrossRef]
- Chandrakumar, K.R.S.; Ghosh, S.K. Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett. 2008, 8, 13–19. [Google Scholar] [CrossRef]
- Seenithurai, S.; Pandyan, R.K.; Kumar, S.V.; Saranya, C.; Mahendran, M. Al-decorated carbon nanotube as the molecular hydrogen storage medium. Int. J. Hydrogen Energy 2014, 39, 11990–11998. [Google Scholar] [CrossRef]
- Du, A.; Zhu, Z.; Smith, S.C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: New properties revealed by first principle calculations. J. Am. Chem. Soc. 2010, 132, 2876–2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Meng, Z.; Liu, Y.; You, D.; Wu, K.; Lv, J.; Wang, X.; Deng, K.; Rao, D.; Lu, R. Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage. Appl. Phys. Lett. 2015, 106, 063901. [Google Scholar] [CrossRef]
- Hussain, T.; Pathak, B.; Ramzan, M.; Maark, T.A.; Ahuja, R. Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 2012, 100, 183902. [Google Scholar] [CrossRef]
- Song, N.; Wang, Y.; Zheng, Y.; Zhang, J.; Xu, B.; Sun, Q.; Jia, Y. New template for Li and Ca decoration and hydrogen adsorption on graphene-like SiC: A first-principles study. Comput. Mater. Sci. 2015, 99, 150–155. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, N.; Li, J.; Liu, E.; He, C.; Shi, C. Hydrogen spillover storage on Ca-decorated graphene. Int. J. Hydrogen Energy 2012, 37, 11835–11841. [Google Scholar] [CrossRef]
- Lebon, A.; Carrete, J.; Gallego, L.J.; Vega, A. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. Int. J. Hydrogen Energy 2015, 40, 4960–4968. [Google Scholar] [CrossRef]
- Chu, S.; Hu, L.; Hu, X.; Yang, M.; Deng, J. Titanium-embedded graphene as high-capacity hydrogen-storage media. Int. J. Hydrogen Energy 2011, 36, 12324–12328. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, L.; He, Y.; Cheng, H.P. Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys. Condens. Matter 2010, 22, 445301. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.I.; Leiva, E.P.M. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates. Phys. Rev. B 2007, 76, 155415. [Google Scholar] [CrossRef]
- Kim, G.; Jhi, S.-H.; Park, N.; Louie, S.G.; Cohen, M.L. Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B 2008, 78, 085408. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc. 2005, 127, 14582–14583. [Google Scholar] [CrossRef]
- Krasnov, P.O.; Ding, F.; Singh, A.K.; Yakobson, B.I. Clustering of Sc on SWNT and reduction of hydrogen uptake: ab-Initio all-electron calculations. J. Phys. Chem. C 2007, 111, 17977–17980. [Google Scholar] [CrossRef]
- Li, S.; Jena, P. Comment on “combinatorial search for optimal hydrogen-storage nanomaterials based on polymers”. Phys. Rev. Lett. 2006, 97, 209601. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Zeng, X.C. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 2008, 112, 8458–8463. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Li, X.; Li, Y.; Wang, Z.; Chen, L. Controlled Lithium Deposition. Front. Energy Res. 2022, 10, 837071. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics 2022, 10, 5. [Google Scholar] [CrossRef]
- Ma, L.-P.; Wu, Z.-S.; Li, J.; Wu, E.-D.; Ren, W.-C.; Cheng, H.-M. Hydrogen adsorption behavior of graphene above critical temperature. Int. J. Hydrogen Energy 2009, 34, 2329–2332. [Google Scholar] [CrossRef]
- Goldsmith, J.; Wong-Foy, A.G.; Cafarella, M.J.; Siegel, D.J. Theoretical limits of hydrogen storage in metal–organic frameworks: Opportunities and trade-offs. Chem. Mater. 2013, 25, 3373–3382. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Wu, C.-Z.; Xu, S.-T.; Cheng, H.-M. Hydrogen storage in carbon nanotubes revisited. Carbon 2010, 48, 452–455. [Google Scholar] [CrossRef]
- Venkataramanan, N.S.; Khazaei, M.; Sahara, R.; Mizuseki, H.; Kawazoe, Y. First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem. Phys. 2009, 359, 173–178. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Cheng, X.; Tang, Y. Transition metal atom Fe, Co, Ni decorated B38 fullerene: Potential material for hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 15256–15261. [Google Scholar] [CrossRef]
- Hug, S.; Mesch, M.B.; Oh, H.; Popp, N.; Hirscher, M.; Senker, J.; Lotsch, B.V. A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities. J. Mater. Chem. A 2014, 2, 5928–5936. [Google Scholar] [CrossRef]
- Eletskii, A.V.; Iskandarova, I.M.; Knizhnik, A.A.; Krasikov, D.N. Graphene: Fabrication methods and thermophysical properties. Physics-Uspekhi 2011, 54, 227–258. [Google Scholar] [CrossRef]
- Kaur, H.; Yadav, S.; Srivastava, A.K.; Singh, N.; Schneider, J.J.; Sinha, O.P.; Agrawal, V.V.; Srivastava, R. Large area fabrication of semiconducting phosphorene by langmuir-blodgett assembly. Sci. Rep. 2016, 6, 34095. [Google Scholar] [CrossRef]
- Kukkapalli, V.K.; Kim, S.; Thomas, S.A. Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review. Energies 2023, 16, 3444. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Zhalehrajabi, E. Thermal Management in Hydrogen Storage Tanks Using Metal Hydrides and Phase Change Materials. Ind. Eng. Chem. Res. 2024, 63, 21860–21874. [Google Scholar] [CrossRef]
- Mittal, H.; Kushwaha, O.S.; Nadagouda, M.; Hegde, G.; Allen, S.; Aminabhavi, T.M. Adsorption and storage of hydrogen- A computational model approach. Environ. Res. 2024, 260, 119606. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Jena, P.; Wang, Q.; Marquez, M. First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc. 2006, 128, 9741–9745. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-S.; Zeng, Z. Boron-tuned bonding mechanism of Li-graphene complex for reversible hydrogen storage. Appl. Phys. Lett. 2010, 96, 123101. [Google Scholar] [CrossRef]
- Valencia, F.; Romero, A.H.; Ancilotto, F.; Silvestrelli, P.L. Lithium adsorption on graphite from density functional theory calculations. J. Phys. Chem. B 2006, 110, 14832–14841. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano. Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef]
- Dimitrakakis, G.K.; Tylianakis, E.; Froudakis, G.E. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008, 8, 3166–3170. [Google Scholar] [CrossRef]
- Khazaei, M.; Bahramy, M.S.; Venkataramanan, N.S.; Mizuseki, H.; Kawazoe, Y. Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage. J. Appl. Phys. 2009, 106, 094303. [Google Scholar] [CrossRef]
- Deng, W.-Q.; Xu, X.; Goddard, W.A. New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys. Rev. Lett. 2004, 92, 166103. [Google Scholar] [CrossRef]
- Rao, D.; Wang, Y.; Meng, Z.; Yao, S.; Chen, X.; Shen, X.; Lu, R. Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects. Int. J. Hydrogen Energy 2015, 40, 14154–14162. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Alonso, J.A. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J. Chem. Phys. 2005, 123, 204721. [Google Scholar] [CrossRef]
- Sabir, A.K.; Lu, W.; Roland, C.; Bernholc, J. Ab initiosimulations of H2in Li-doped carbon nanotube systems. J. Phys. Condens. Matter 2007, 19, 086226. [Google Scholar] [CrossRef]
- Meng, J.; Lu, Y.; Zhang, S.; Yuan, X.; Wang, L. Lithium-doped graphene as a potential hydrogen storage material and experimental investigations. J. Energy Storage 2025, 132, 117821. [Google Scholar] [CrossRef]
- Pellenq, R.J.-M.; Marinelli, F.; Fuhr, J.D.; Fernandez-Alonso, F.; Refson, K. Strong physisorption site for H2 in K- and Li-doped porous carbons. J. Chem. Phys. 2008, 129, 224701. [Google Scholar] [CrossRef] [PubMed]
- Seenithurai, S.; Pandyan, R.K.; Kumar, S.V.; Saranya, C.; Mahendran, M. Li-decorated double vacancy graphene for hydrogen storage application: A first principles study. Int. J. Hydrogen Energy 2014, 39, 11016–11026. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Hwang, Y.; Yun, K.-H.; Chung, Y.-C. Hydrogen storage in Li dispersed graphene with Stone–Wales defects: A first-principles study. Int. J. Hydrogen Energy 2014, 39, 13189–13194. [Google Scholar] [CrossRef]
- Liu, Y.; Artyukhov, V.I.; Liu, M.; Harutyunyan, A.R.; Yakobson, B.I. Feasibility of lithium storage on graphene and its derivatives. J. Phys. Chem. Lett. 2013, 4, 1737–1742. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Wang, H.; Zhang, M.; Yuan, L.; Zhang, C. Li-decorated β(12)-borophene as potential candidates for hydrogen storage: A first-principle study. Materials 2017, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Pathak, B.; Adit Maark, T.; Moyses Araujo, C.; Scheicher, R.H.; Ahuja, R. Ab initio study of lithium-doped graphane for hydrogen storage. EPL 2011, 96, 27013. [Google Scholar] [CrossRef]
- Garay-Tapia, A.M.; Romero, A.H.; Barone, V. Lithium adsorption on graphene: From isolated adatoms to metallic sheets. J. Chem. Theory Comput. 2012, 8, 1064–1071. [Google Scholar] [CrossRef]
- Rangel, E.; Vázquez, G.; Magaña, F.; Sansores, E. Interaction between an icosahedron Li13 cluster and a graphene layer doped with a hydrogen atom. J. Mol. Model. 2012, 18, 5029–5033. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Miao, L.; Xiu, Y.-J.; Wen, M.; Li, C.; Zhang, L.; Jiang, J.-J. Lithium-decorated oxidized porous graphene for hydrogen storage by first principles study. J. Appl. Phys. 2012, 112, 124312. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, J.; Shen, J.; Ouyang, C.; Shi, S. First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 2012, 73, 245–251. [Google Scholar] [CrossRef]
- Hussain, T.; Sarkar, A.D.; Ahuja, R. Strain induced lithium functionalized graphane as a high capacity hydrogen storage material. Appl. Phys. Lett. 2012, 101, 103907. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Shao, X.; Wang, D.; Liu, L.-M.; Johnson, J.K. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage. J. Chem. Phys. 2014, 141, 084711. [Google Scholar] [CrossRef] [PubMed]
- Rekha, B.; Seenithurai, S.; Pandyan, R.K.; Kumar, S.V.; Mahendran, M. High capacity hydrogen storage in Li decorated octagraphene—A first principles study. Nano Hybrids Compos. 2017, 17, 131–139. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, Y.H.; Li, Y.; Jiang, Q.; Lavernia, E.J. Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J. Phys. Chem. C 2009, 113, 2028–2033. [Google Scholar] [CrossRef]
- Tachikawa, H.; Iyama, T. Mechanism of hydrogen storage in the graphene nanoflake–lithium–H2 system. J. Phys. Chem. C 2019, 123, 8709–8716. [Google Scholar] [CrossRef]
- Yadav, S.; Tam, J.; Singh, C.V. A first principles study of hydrogen storage on lithium decorated two dimensional carbon allotropes. Int. J. Hydrogen Energy 2015, 40, 6128–6136. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Li, Q.; Xu, Z.; Shi, Y.; Lei, C. Lithium-Decorated C26 Fullerene in DFT Investigation: Tuning Electronic Structures for Enhanced Hydrogen Storage. Molecules 2025, 30, 3223. [Google Scholar] [CrossRef]
- Li, P.; Deng, S.H.; Zhang, L.; Liu, G.H.; Yu, J.Y. Hydrogen storage in lithium-decorated benzene complexes. Int. J. Hydrogen Energy 2012, 37, 17153–17157. [Google Scholar] [CrossRef]
- Seenithurai, S.; Chai, J.-D. Effect of Li adsorption on the electronic and hydrogen storage properties of acenes: A dispersion-corrected TAO-DFT study. Sci. Rep. 2016, 6, 33081. [Google Scholar] [CrossRef]
- Kumar, S.; Dhilip Kumar, T.J. Fundamental study of reversible hydrogen storage in titanium- and lithium-functionalized calix [4]arene. J. Phys. Chem. C 2017, 121, 8703–8710. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, K.; Xu, B.; Xia, Y.; Yin, J.; Liu, Z. Remarkable hydrogen storage capacity in Li-decorated graphyne: Theoretical predication. J. Phys. Chem. C 2012, 116, 13837–13841. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Bu, H.; He, X.; Zhang, M.; Zhao, L.; Luo, Y. Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction. J. Appl. Phys. 2012, 112, 084305. [Google Scholar] [CrossRef]
- Kumar, S.; Dhilip Kumar, T.J. Electronic structure calculations of hydrogen storage in lithium-decorated metal–graphyne framework. ACS Appl. Mater. Interfaces 2017, 9, 28659–28666. [Google Scholar] [CrossRef] [PubMed]
- Seenithurai, S.; Chai, J.-D. Effect of Li termination on the electronic and hydrogen storage properties of linear carbon chains: A TAO-DFT study. Sci. Rep. 2017, 7, 4966. [Google Scholar] [CrossRef]
- Isidro-Ortega, F.J.; Pacheco-Sánchez, J.H.; Desales-Guzmán, L.A. Hydrogen storage on lithium decorated zeolite templated carbon, DFT study. Int. J. Hydrogen Energy 2017, 42, 30704–30717. [Google Scholar] [CrossRef]
- Ibarra-Rodríguez, M.; Sánchez, M. Lithium clusters on graphene surface and their ability to adsorb hydrogen molecules. Int. J. Hydrogen Energy 2021, 46, 21984–21993. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Q.; Sun, Q.; Jena, P. Functionalized graphitic carbon nitride for efficient energy storage. J. Phys. Chem. C 2013, 117, 6055–6059. [Google Scholar] [CrossRef]
- Hussain, T.; Hankel, M.; Searles, D.J. Computational evaluation of lithium-functionalized carbon nitride (g-C6N8) monolayer as an efficient hydrogen storage material. J. Phys. Chem. C 2016, 120, 25180–25188. [Google Scholar] [CrossRef]
- Ibarra-Rodríguez, M.; Sánchez, M. Adsorption of H2, N2, CO, H2S, NH3, SO2 and CH4 on Li-functionalized graphitic carbon nitride investigated by density functional theory. Bull. Mater. Sci. 2020, 43, 144. [Google Scholar] [CrossRef]
- Guardado, A.; Marisol, I.-R.; Mayén-Mondragón, R.; Sánchez, M. Hydrogen adsorption on lithium clusters coordinated to a gC3N4 cavity. J. Mol. Graph. Model. 2023, 122, 108491. [Google Scholar] [CrossRef]
- Morales-Meza, S.; Sánchez-Castro, M.E.; Ibarra-Rodríguez, M.; Sánchez, M. Coordination of molecular hydrogen to alkali metal pentalenide complexes. Chem. Phys. Lett. 2022, 787, 139267. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Q.; Bi, X.; Chen, W.; Huang, X.; Bi, L.; Xu, Y.; Yan, G.; Zhao, H.; Hu, J.; et al. Lithium and potassium decorated naphthylene for high capacity hydrogen storage by DFT and GCMC study. Surf. Interfaces 2022, 34, 102395. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Sahu, S. Reversible hydrogen storage in Li-functionalized [2,2,2]paracyclophane at cryogenic to room temperatures: A computational quest. Energy Storage 2023, 5, e474. [Google Scholar] [CrossRef]
- El Kassaoui, M.; Loulidi, M.; Benyoussef, A.; El Kenz, A.; Mounkachi, O. Lithium functionalization in a three-dimensional graphene monolith for enhanced adsorption–desorption hydrogen storage. J. Phys. Chem. C 2024, 128, 8911–8922. [Google Scholar] [CrossRef]
- Wang, Q.; Jena, P. Density functional theory study of the interaction of hydrogen with Li6C60. J. Phys. Chem. Lett. 2012, 3, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Rangel, E.; Ramírez-Arellano, J.M.; Carrillo, I.; Magana, L.F. Hydrogen adsorption around lithium atoms anchored on graphene vacancies. Int. J. Hydrogen Energy 2011, 36, 13657–13662. [Google Scholar] [CrossRef]
- Srinivasu, K.; Ghosh, S.K. Hydrogen adsorption in lithium decorated conjugated microporous polymers: A DFT investigation. RSC Adv. 2014, 4, 4170–4176. [Google Scholar] [CrossRef]
- Shayeganfar, F.; Shahsavari, R. Oxygen- and lithium-doped hybrid boron-nitride/carbon networks for hydrogen storage. Langmuir 2016, 32, 13313–13321. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, T.; Hou, X.; Zhang, W.; Tang, S.; Sun, H.; Zhang, J. Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. Int. J. Hydrogen Energy 2017, 42, 10099–10108. [Google Scholar] [CrossRef]
- Er, S.; de Wijs, G.A.; Brocks, G. Hydrogen storage by polylithiated molecules and nanostructures. J. Phys. Chem. C 2009, 113, 8997–9002. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Z.; Wang, X.; Cui, X. Enhancement of hydrogen binding affinity with low ionization energy Li2F coating on C60 to improve hydrogen storage capacity. Int. J. Hydrogen Energy 2014, 39, 15639–15645. [Google Scholar] [CrossRef]
- He, N.; Xie, H.B.; Ding, Y.H. Structures and stability of lithium monosilicide clusters SiLi(n) (n = 4–16): What is the maximum number, magic number, and core number for lithium coordination to silicon? J. Comput. Chem. 2008, 29, 1850–1858. [Google Scholar] [CrossRef]
- Yang, J.-C.; Lin, L.; Zhang, Y.; Jalbout, A.F. Lithium–silicon SinLi (n = 2–10) clusters and their anions: Structures, thermochemistry, and electron affinities. Theor. Chem. Account. 2008, 121, 83–90. [Google Scholar] [CrossRef]
- Jena, N.K.; Srinivasu, K.; Ghosh, S.K. Computational investigation of hydrogen adsorption in silicon-lithium binary clusters. J. Chem. Sci. 2012, 124, 255–260. [Google Scholar] [CrossRef]
- Song, B.; Zhang, C.; He, P. Si20H20 cluster modified by small organic molecules and lithium atoms for high-capacity hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 8093–8105. [Google Scholar] [CrossRef]
- Jaiswal, A.; Sahu, S. High capacity H2 adsorption over Si4Lin (n = 1–3) binary clusters: A DFT study. Mater. Today Proc. 2023, 80, 1261–1265. [Google Scholar] [CrossRef]
- Tai, T.B.; Nguyen, M.T. A three-dimensional aromatic B6Li8 complex as a high capacity hydrogen storage material. Chem. Commun. 2013, 49, 913–915. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Lv, J.; Wang, Y. B24 cluster as promising material for lithium storage and hydrogen storage applications. Comput. Mater. Sci. 2013, 77, 31–34. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Yang, G. Ultrahigh-capacity molecular hydrogen storage of a lithium-decorated boron monolayer. J. Phys. Chem. C 2015, 119, 19681–19688. [Google Scholar] [CrossRef]
- Du, J.; Sun, X.; Zhang, L.; Zhang, C.; Jiang, G. Hydrogen storage of Li4&B36 cluster. Sci. Rep. 2018, 8, 1940. [Google Scholar] [CrossRef]
- Cheng, Y.; Fang, L.; Shihai, Y. DFT investigation on characteristics and properties of lithium borohydride clusters. Res. Rev. J. Chem. 2017, 6, 4–9. [Google Scholar]
- Qiu, N.-X.; Zhang, C.-H.; Xue, Y. Tuning hydrogen storage in lithium-functionalized BC2N sheets by doping with boron and carbon. Chem. Phys. Chem. 2014, 15, 3015–3025. [Google Scholar] [CrossRef]
- Haldar, S.; Mukherjee, S.; Singh, C.V. Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study. RSC Adv. 2018, 8, 20748–20757. [Google Scholar] [CrossRef]
- Mostafa, N.N.; Soliman, K.A.; Abd El Haleem, S.M.; Halim, W.S.A. DFT investigation of efficient hydrogen storage utilizing Li and Na decorated co-doped graphene (B/N). Sci. Rep. 2025, 15, 30371. [Google Scholar] [CrossRef]
- Rahimi, R.; Solimannejad, M. Empowering hydrogen storage performance of B4C3 monolayer through decoration with lithium: A DFT study. Surf. Interfaces 2022, 29, 101723. [Google Scholar] [CrossRef]
- Ding, J.; Miao, Z.; Ge, Y.; Liu, Z.; Nie, M.; Zou, J.; Wang, Y.; Yang, Z.; Bi, L. A DFT study of H2 adsorption on Li-decorated C-doped BN nanochains. Diam. Relat. Mater. 2022, 128, 109248. [Google Scholar] [CrossRef]
- Yong, Y.; Hu, S.; Zhao, Z.; Gao, R.; Cui, H.; Lv, Z. Potential reversible and high-capacity hydrogen storage medium: Li-decorated B3S monolayers. Mater. Today Commun. 2021, 29, 102938. [Google Scholar] [CrossRef]
- Benaddi, A.; Elomrani, A.; Lamhani, M.; Oukahou, S.; Maymoun, M.; Fatihi, M.Y.; Hasnaoui, A. Lithium decorated 2D orthorhombic (o)-B2X2 monolayers for hydrogen storage: First principles calculations. Sustain. Energy Fuels 2024, 8, 1719–1729. [Google Scholar] [CrossRef]
- Ibarra-Rodríguez, M.; Horley, P.; Domínguez-García, R.; Sánchez, M. Hydrogen adsorption by borophene-metal (Li–Cs): A DFT study. Mater. Today Commun. 2024, 41, 110631. [Google Scholar] [CrossRef]
- Li, Q.-F.; Wan, X.G.; Duan, C.-G.; Kuo, J.-L. Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 465302. [Google Scholar] [CrossRef]
- Zhiyuan, Y.; Neng, W.; Shuangying, L.; Hong, Y. Enhanced hydrogen storage by using lithium decoration on phosphorene. J. Appl. Phys. 2016, 120, 024305. [Google Scholar] [CrossRef]
- Haldar, S.; Mukherjee, S.; Ahmed, F.; Singh, C.V. A first principles study of hydrogen storage in lithium decorated defective phosphorene. Int. J. Hydrogen Energy 2017, 42, 23018–23027. [Google Scholar] [CrossRef]
- Blomqvist, A.; Araújo, C.M.; Srepusharawoot, P.; Ahuja, R. Li-decorated metal-organic framework 5: A route to achieving a suitable hydrogen storage medium. Proc. Natl. Acad. Sci. USA 2007, 104, 20173–20176. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, J.W.; Choi, J.H.; Kang, J.K. Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage. Appl. Phys. Lett. 2008, 92, 173102. [Google Scholar] [CrossRef]
- Sun, Y.; Ben, T.; Wang, L.; Qiu, S.; Sun, H. Computational design of porous organic frameworks for high-capacity hydrogen storage by incorporating lithium tetrazolide moieties. J. Phys. Chem. Lett. 2010, 1, 2753–2756. [Google Scholar] [CrossRef]
- Han, S.S.; Goddard, W.A. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 2007, 129, 8422–8423. [Google Scholar] [CrossRef]
- Klontzas, E.; Tylianakis, E.; Froudakis, G.E. Hydrogen storage in lithium-functionalized 3-D covalent-organic framework materials. J. Phys. Chem. C 2009, 113, 21253–21257. [Google Scholar] [CrossRef]
- Cao, D.; Lan, J.; Wang, W.; Smit, B. Lithium-doped 3D covalent organic frameworks: High-capacity hydrogen storage materials. Angew. Chem. Int. Ed. 2009, 48, 4730–4733. [Google Scholar] [CrossRef]
- Klontzas, E.; Mavrandonakis, A.; Tylianakis, E.; Froudakis, G.E. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Lett. 2008, 8, 1572–1576. [Google Scholar] [CrossRef]
- Rao, D.; Lu, R.; Meng, Z.; Xu, G.; Kan, E.; Liu, Y.; Xiao, C.; Deng, K. Influences of lithium doping and fullerene impregnation on hydrogen storage in metal organic frameworks. Mol. Simul. 2013, 39, 968–974. [Google Scholar] [CrossRef]
- Ke, Z.; Cheng, Y.; Yang, S.; Li, F.; Ding, L. Modification of COF-108 via impregnation/functionalization and Li-doping for hydrogen storage at ambient temperature. Int. J. Hydrogen Energy 2017, 42, 11461–11468. [Google Scholar] [CrossRef]
- Shen, D.; Liu, Z.; Tu, Z.; Li, S. Understanding hydrogen adsorption performance of lithium-doped MIL-101(Cr) by molecular simulations: Effects of lithium distribution. Int. J. Hydrogen Energy 2023, 48, 18366–18374. [Google Scholar] [CrossRef]
- Banger, S.; Nayak, V.; Verma, U.P. Hydrogen storage in LiH: A first principle study. AIP Conf. Proc. 2014, 1591, 1092–1094. [Google Scholar] [CrossRef]
- Banger, S.; Nayak, V.; Verma, U.P. Hydrogen storage in lithium hydride: A theoretical approach. J. Phys. Chem. Solids 2018, 115, 6–17. [Google Scholar] [CrossRef]
- Chacko, S.; Kanhere, D.G.; Paranjape, V.V. Evolution of the structural and bonding properties of aluminum-lithium clusters. Phys. Rev. A 2004, 70, 023204. [Google Scholar] [CrossRef]
- Pan, S.; Banerjee, S.; Chattaraj, P.K. Role of lithium decoration on hydrogen storage potential. J. Mex. Chem. Soc. 2012, 56, 229–240. [Google Scholar] [CrossRef]
- Putungan, D.B.; Lin, S.-H.; Wei, C.-M.; Kuo, J.-L. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: An ab initio random structure searching approach. Phys. Chem. Chem. Phys. 2015, 17, 11367–11374. [Google Scholar] [CrossRef]
- Raimondi, M.; Tornaghi, E.; Cooper, D.L.; Gerratt, J. Chemical bonding to lithium clusters: Interaction of Li5 with H atoms. J. Chem. Soc. Faraday Trans. 1992, 88, 2309–2314. [Google Scholar] [CrossRef]
- Pan, S.; Merino, G.; Chattaraj, P.K. The hydrogen trapping potential of some Li-doped star-like clusters and super-alkali systems. Phys. Chem. Chem. Phys. 2012, 14, 10345–10350. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yuan, H.; Kuang, A.; Hu, W.; Zhang, G.; Chen, H. High-capacity hydrogen storage in Li-decorated (AlN)n (n = 12, 24, 36) nanocages. Int. J. Hydrogen Energy 2014, 39, 3780–3789. [Google Scholar] [CrossRef]
- Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K.L. Interaction of hydrogen with metal nitrides and imides. Nature 2002, 420, 302–304. [Google Scholar] [CrossRef]
- Srinivasu, K.; Ghosh, S.K. Theoretical studies on hydrogen adsorption properties of lithium decorated diborene (B2H4Li2) and diboryne (B2H2Li2). Int. J. Hydrogen Energy 2011, 36, 15681–15688. [Google Scholar] [CrossRef]
- Miwa, K.; Ohba, N.; Towata, S.-I.; Nakamori, Y.; Orimo, S.-i. First-principles study on lithium amide for hydrogen storage. Phys. Rev. B 2005, 71, 195109. [Google Scholar] [CrossRef]
- Dash, M.K.; Chowdhury, S.D.; Chatterjee, R.; Maity, S.; Roymahapatra, G.; Huang, M.; Bandyopadhyay, M.N.; Guo, Z. Computational investigation on lithium fluoride for efficient hydrogen storage system. Eng. Sci. 2022, 18, 98–104. [Google Scholar]
- Roymahapatra, G.; Dash, M.K.; Ghosh, A.; Bag, A.; Mishra, S.; Maity, S. Hydrogen storage on lithium chloride/lithium bromide surface at cryogenic temperature. ES Energy Environ. 2022, 18, 90–100. [Google Scholar] [CrossRef]
- Kokabi, A.; Touski, S.B. Hydrogen storage performance enhancement and bandgap opening of M-Decorated (M = Li, Na and K) III4–V4 monolayer by fluorine functionalization. Int. J. Hydrogen Energy 2022, 47, 16978–16984. [Google Scholar] [CrossRef]
- R, B. Using density functional theory to analyse hydrogen adsorption onto a lithium decorated BeN2 nanolayer. ChemRxiv 2023, Preprint. [Google Scholar] [CrossRef]
- Yin, Q.; Bi, G.; Wang, R.; Zhao, Z.; Ma, K. High-capacity hydrogen storage in lithium decorated penta-BN2: A first-principles study. J. Power Sources 2024, 591, 233814. [Google Scholar] [CrossRef]
- Kiran, A.; Alarfaji, S.S.; Tahir, M.B.; Khan, M.I. First principles study of alkali metal-decorated bismuth selenide for hydrogen storage applications. Energy Adv. 2025, 4, 1251–1266. [Google Scholar] [CrossRef]
- Zyane, M.S.; Rghioui, H.; Achahbar, A.; Boujibar, O.; Van, F.T.; Zanouni, M.; Marjaoui, A. A novel lithium-decorated GeC5 monolayer for promising hydrogen storage: A DFT study. Int. J. Hydrogen Energy 2025, 114, 131–141. [Google Scholar] [CrossRef]
- Bai, H.; Bai, B.; Zhang, L.; Huang, W.; Mu, Y.-W.; Zhai, H.-J.; Li, S.-D. Lithium-decorated borospherene B40: A promising hydrogen storage medium. Sci. Rep. 2016, 6, 35518. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Q.; Sun, Q.; Jena, P. Enhanced hydrogen storage on Li functionalized BC3 nanotube. J. Phys. Chem. C 2011, 115, 6136–6140. [Google Scholar] [CrossRef]
- Deng, Q.-M.; Zhao, L.; Luo, Y.-H.; Zhang, M.; Zhao, L.-X.; Zhao, Y. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN–Li complexes. Nanoscale 2011, 3, 4824–4829. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ibarra-Rodríguez, M.; Fragoso-Fernández, C.Y.; Rosete-Luna, S.; Sánchez, M. Lithium Systems: Theoretical Studies of Hydrogen Storage. Hydrogen 2026, 7, 9. https://doi.org/10.3390/hydrogen7010009
Ibarra-Rodríguez M, Fragoso-Fernández CY, Rosete-Luna S, Sánchez M. Lithium Systems: Theoretical Studies of Hydrogen Storage. Hydrogen. 2026; 7(1):9. https://doi.org/10.3390/hydrogen7010009
Chicago/Turabian StyleIbarra-Rodríguez, Marisol, Celene Y. Fragoso-Fernández, Sharon Rosete-Luna, and Mario Sánchez. 2026. "Lithium Systems: Theoretical Studies of Hydrogen Storage" Hydrogen 7, no. 1: 9. https://doi.org/10.3390/hydrogen7010009
APA StyleIbarra-Rodríguez, M., Fragoso-Fernández, C. Y., Rosete-Luna, S., & Sánchez, M. (2026). Lithium Systems: Theoretical Studies of Hydrogen Storage. Hydrogen, 7(1), 9. https://doi.org/10.3390/hydrogen7010009

