A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems
Abstract
1. Introduction
2. Systematic Literature Analysis Results
2.1. Goal and Scope Definition
2.2. Life Cycle Inventory Analysis
2.3. Life Cycle Impact Assessment
2.4. Overview of the Main Results Obtained
3. Discussion
3.1. Main Findings and Literature Gaps
3.2. Comparison with Past Studies
3.3. Existing Harmonization Frameworks and Protocols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AEL | Alkaline Water Electrolysis |
| CCS | Carbon Capture and Storage |
| CG | Coal Gasification |
| CML | Centrum Voor Milieukunde Leiden |
| CO2 | Carbon Dioxide |
| COP | Conference of the Parties |
| GHG | Greenhouse Gas |
| IEA | International Energy Agency |
| IPCC | Intergovernmental Panel on Climate Change |
| IRENA | International Renewable Energy Agency |
| LCA | Life Cycle Assessment |
| LCC | Life Cycle Costing |
| LCIA | Life Cycle Impact Assessment |
| LCSA | Life Cycle Sustainability Assessment |
| LCOH | Levelized Cost of Hydrogen |
| LOHC | Liquid Organic Hydrogen Carrier |
| PEMEL | Polymer Electrolyte Membrane Water Electrolysis |
| PEM | Proton Exchange Membrane |
| S-LCA | Social Life Cycle Assessment |
| SMR | Steam Methane Reforming |
| SOEL | Solid Oxide Water Electrolysis |
| TRL | Technology Readiness Level |
Appendix A
| Article | Value Chain Phases Considered | Impacts Dimensions Considered | |||
|---|---|---|---|---|---|
| Production | Storage | Transportation | End-Use | ||
| [24] | X | Environmental | |||
| [37] | X | X | X | X | Environmental |
| [69] | X | Environmental | |||
| [70] | X | X | X | X | Environmental/Economic |
| [71] | X | Environmental | |||
| [72] | X | X | Environmental | ||
| [73] | X | Environmental/Economic | |||
| [74] | X | X | Environmental | ||
| [75] | X | X | X | Environmental | |
| [19] | X | Environmental | |||
| [76] | X | Environmental | |||
| [25] | X | Environmental | |||
| [35] | X | Environmental | |||
| [77] | X | X | Environmental | ||
| [78] | X | X | X | Environmental | |
| [17] | X | Environmental | |||
| [79] | X | X | Environmental | ||
| [47] | X | X | X | Environmental/Economic/Social | |
| [54] | X | Environmental/Economic | |||
| [80] | X | Environmental | |||
| [81] | X | Environmental/Economic | |||
| [82] | X | X | X | X | Environmental |
| [52] | X | X | X | X | Environmental |
| [83] | X | Environmental | |||
| [48] | X | Environmental | |||
| [84] | X | Environmental | |||
| [34] | X | X | X | Environmental | |
| [32] | X | X | X | X | Environmental |
| [26] | X | Environmental | |||
| [27] | X | X | Environmental | ||
| [85] | X | Environmental | |||
| [23] | X | X | X | Environmental/Economic | |
| [44] | X | X | X | X | Environmental/Economic |
| [20] | X | X | X | Environmental | |
| [86] | X | Environmental/Economic | |||
| [56] | X | X | X | X | Environmental |
| [87] | X | Environmental | |||
| [88] | X | X | Environmental/Economic | ||
| [89] | X | X | Environmental | ||
| [46] | X | X | X | X | Environmental/Economic/Social |
| [90] | X | Environmental | |||
| [91] | X | X | X | X | Environmental |
| [92] | X | Environmental | |||
| [18] | X | Environmental | |||
| [28] | X | X | Environmental | ||
| [93] | X | X | X | X | Environmental |
| [29] | X | Environmental | |||
| [21] | X | X | Environmental/Economic | ||
| [22] | X | X | X | Environmental | |
| [94] | X | X | X | X | Environmental |
| [95] | X | X | X | Environmental | |
| [96] | X | X | X | X | Environmental |
| [97] | X | X | X | Environmental | |
| [33] | X | Environmental | |||
| [49] | X | X | Environmental/Economic/Social | ||
| [36] | X | X | Environmental | ||
| [38] | X | X | Environmental | ||
| [98] | X | X | X | Environmental | |
| [99] | X | X | X | X | Environmental |
| [53] | X | X | X | Environmental | |
| [57] | X | Environmental | |||
| [100] | X | X | Environmental | ||
| [51] | X | X | X | Environmental | |
| [101] | X | X | X | X | Environmental |
| [30] | X | Environmental | |||
| [45] | X | X | X | X | Environmental/Economic |
| [31] | X | Environmental | |||
| [55] | X | Environmental/Economic | |||
| [50] | X | X | X | Environmental | |
| [39] | X | X | X | Environmental/Economic | |
References
- United Nations. Paris Agreement to the United Nations Framework Convention on Climate Change; T.I.A.S. No. 16-1104; United Nations: Paris, France, 2015. [Google Scholar]
- International Renewable Energy Agency. World Energy Transitions Outlook: 1.5 °C Pathway; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2021; pp. 1–54. ISBN 978-92-9260-334-2. [Google Scholar]
- International Renewable Energy Agency (IRENA). Global Hydrogen Trade to Meet the 1.5 °C Climate Goal: Part II—Technology Review of Hydrogen Carriers; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2022; ISBN 978-92-9260-431-8. [Google Scholar]
- International Renewable Energy Agency (IRENA). World Energy Transitions Outlook 2022; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2022; pp. 1–54. ISBN 978-92-9260-429-5. [Google Scholar]
- International Energy Agency (IEA). Global Hydrogen Review 2022; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar] [CrossRef]
- Elegbeleye, I.; Oguntona, O.; Elegbeleye, F. Green Hydrogen: Pathway to Net Zero Greenhouse Gas Emission and Global Climate Change. Clean Energy 2025, 6, 29. [Google Scholar] [CrossRef]
- Zun, M.T.; McLellan, B.C. Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen 2023, 4, 932–960. [Google Scholar] [CrossRef]
- Coelho, M.S.; Gaspar, G.; Surra, E.; Coelho, P.J.; Ferreira, A.F. Systematic Analysis of the Hydrogen Value Chain from Production to Utilization. Appl. Sci. 2025, 15, 8242. [Google Scholar] [CrossRef]
- Uzoagba, C.E.J.; Ikpeka, P.M.; Nnabuife, S.G.; Onwualu, P.A.; Ngasoh, F.O.; Kuang, B. Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa. Hydrogen 2025, 6, 43. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Thangaraja, J.; Rajkumar, S.; Denis Ashok, S.; Sivaramakrishna, A.; Shamim, T. A Review on Green Hydrogen Production Pathways and Optimization Techniques. Process Saf. Environ. Prot. 2025, 197, 107070. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Martín-Gamboa, M.; Campos-Carriedo, F.; Iribarren, D.; Dufour, J.; Wulf, C.; Schreiber, A.; Springer, S.; Ishimoto, Y.; Mizuno, Y.; Hamed, A.; et al. D5.1 SH2E Guidebook for Life Cycle Sustainability Assessment; SH2E: Brussels, Belgium, 2023; Available online: https://www.researchgate.net/publication/380896818_D51_SH2E_guidebook_for_Life_Cycle_Sustainability_Assessment (accessed on 1 March 2025).
- European Commission—Joint Research Centre (EC-JRC). ILCD Handbook: General Guide on LCA—Detailed Guidance; Publications Office of the European Union: Luxembourg, 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Longo, S.; Cellura, M.; Miccichè, G.; Ferraro, M. Critical Review of Life Cycle Assessment of Hydrogen Production Pathways. Environments 2024, 11, 108. [Google Scholar] [CrossRef]
- Puig-Samper, G.; Bargiacchi, E.; Iribarren, D.; Dufour, J. Life-Cycle Assessment of Hydrogen Systems: A Systematic Review and Meta-Regression Analysis. J. Clean. Prod. 2024, 470, 143330. [Google Scholar] [CrossRef]
- Antonini, C.; Treyer, K.; Streb, A.; van der Spek, M.; Bauer, C.; Mazzotti, M. Hydrogen Production from Natural Gas and Biomethane with Carbon Capture and Storage—A Techno-Environmental Analysis. Sustain. Energy Fuels 2020, 4, 2967–2986. [Google Scholar] [CrossRef]
- Diab, J.; Fulcheri, L.; Hessel, V.; Rohani, V.; Frenklach, M. Why Turquoise Hydrogen Will Be a Game Changer for the Energy Transition. Int. J. Hydrogen Energy 2022, 47, 25831–25848. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I.; Gu, J. Life Cycle Assessment Study on Nuclear-Based Sustainable Hydrogen Production Options. Int. J. Hydrogen Energy 2020, 45, 22148–22159. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Dickson, R.; Liu, J.J. Life Cycle Assessment of Inland Green Hydrogen Supply Chain Networks with Current Challenges and Future Prospects. ACS Sustain. Chem. Eng. 2021, 9, 17152–17163. [Google Scholar] [CrossRef]
- Costamagna, M.; Barale, J.; Carbone, C.; Luetto, C.; Agostini, A.; Baricco, M.; Rizzi, P. Environmental and Economic Assessment of Hydrogen Compression with the Metal Hydride Technology. Int. J. Hydrogen Energy 2022, 47, 10122–10136. [Google Scholar] [CrossRef]
- Gandiglio, M.; Marocco, P.; Bianco, I.; Lovera, D.; Blengini, G.A.; Santarelli, M. Life Cycle Assessment of a Renewable Energy System with Hydrogen-Battery Storage for a Remote Off-Grid Community. Int. J. Hydrogen Energy 2022, 47, 32822–32834. [Google Scholar] [CrossRef]
- Mori, M.; Gutiérrez, M.; Casero, P. Micro-Grid Design and Life-Cycle Assessment of a Mountain Hut’s Stand-Alone Energy System with Hydrogen Used for Seasonal Storage. Int. J. Hydrogen Energy 2021, 46, 29706–29723. [Google Scholar] [CrossRef]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Prospective Carbon Footprint Comparison of Hydrogen Options. Sci. Total Environ. 2020, 728, 138212. [Google Scholar] [CrossRef]
- Amaya-Santos, G.; Chari, S.; Sebastiani, A.; Grimaldi, F.; Lettieri, P.; Materazzi, M. Biohydrogen: A Life Cycle Assessment and Comparison with Alternative Low-Carbon Production Routes in UK. J. Clean. Prod. 2021, 319, 128886. [Google Scholar] [CrossRef]
- Sanchez, N.; Ruiz, R.; Rödl, A.; Cobo, M. Technical and Environmental Analysis on the Power Production from Residual Biomass Using Hydrogen as Energy Vector. Renew. Energy 2021, 175, 825–839. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Santos, G.; Pinedo, J.; Santos, E.; Ruiz-Salmón, I.; Laso, J.; Lyne, A.; Ortiz, A.; Ortiz, I.; Irabien, Á.; et al. Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen—A Life Cycle Assessment Approach. Sci. Total Environ. 2022, 820, 153189. [Google Scholar] [CrossRef]
- Rumayor, M.; Corredor, J.; Rivero, M.J.; Ortiz, I. Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming. J. Clean. Prod. 2022, 336, 130430. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Z.; Lv, W.; Ye, H.; Dong, H. The Upper Thermal Efficiency and Life-Cycle Environmental Assessment of Nuclear-Based Hydrogen Production via Splitting H2S and CO2. Int. J. Hydrogen Energy 2023, 48, 9185–9197. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I. Development of a New Photoelectrochemical System for Clean Hydrogen Production and a Comparative Environmental Impact Assessment with Other Production Methods. Chemosphere 2023, 337, 139367. [Google Scholar] [CrossRef]
- Peppas, A.; Kollias, K.; Politis, A.; Karalis, L.; Taxiarchou, M.; Paspaliaris, I. Performance Evaluation and Life Cycle Analysis of RES-Hydrogen Hybrid Energy System for Office Building. Int. J. Hydrogen Energy 2021, 46, 6286–6298. [Google Scholar] [CrossRef]
- Barghash, H.; AlRashdi, Z.; Okedu, K.E.; Desmond, P. Life-Cycle Assessment Study for Bio-Hydrogen Gas Production from Sewage Treatment Plants Using Solar PVs. Energies 2022, 15, 8056. [Google Scholar] [CrossRef]
- Di Lullo, G.; Oni, A.O.; Kumar, A. Blending Blue Hydrogen with Natural Gas for Direct Consumption: Examining the Effect of Hydrogen Concentration on Transportation and Well-to-Combustion Greenhouse Gas Emissions. Int. J. Hydrogen Energy 2021, 46, 19202–19216. [Google Scholar] [CrossRef]
- Ozturk, M.; Dincer, I. Life Cycle Assessment of Hydrogen-Based Electricity Generation in Place of Conventional Fuels for Residential Buildings. Int. J. Hydrogen Energy 2020, 45, 26536–26544. [Google Scholar] [CrossRef]
- Suer, J.; Traverso, M.; Jäger, N. Carbon Footprint Assessment of Hydrogen and Steel. Energies 2022, 15, 9468. [Google Scholar] [CrossRef]
- Wulf, C.; Reuß, M.; Grube, T.; Zapp, P.; Robinius, M.; Hake, J.; Stolten, D. Life Cycle Assessment of Hydrogen Transport and Distribution Options. J. Clean. Prod. 2018, 199, 431–443. [Google Scholar] [CrossRef]
- Tsiklios, C.; Hermesmann, M.; Müller, T.E. Hydrogen Transport in Large-Scale Transmission Pipeline Networks: Thermodynamic and Environmental Assessment of Repurposed and New Pipeline Configurations. Appl. Energy 2022, 327, 120097. [Google Scholar] [CrossRef]
- Kim, C.; Lee, Y.; Lee, H.; Lee, U.; Kim, K. Economic and Environmental Potential of Green Hydrogen Carriers (GHCs) Produced via Reduction of Amine-Captured CO2. Energy Convers. Manag. 2023, 291, 117302. [Google Scholar] [CrossRef]
- Elhaus, N.; Sharma, A.; Weitzer, M.; Herkendell, K.; Karl, J. Life Cycle Greenhouse Gas Emissions of Imported Renewable Hydrogen and Hydrogen Carriers—A Comparative Review. Renew. Sustain. Energy Rev. 2026, 226, 116275. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre (EC-JRC). ILCD Handbook: Framework and Requirements for LCIA Models and Indicators, 1st ed.; Publications Office of the European Union: Luxembourg, 2010; p. 102. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre (EC-JRC). International Reference Life Cycle Data System (ILCD) Handbook: Analysing of Existing Environmental Impact Assessment Methodologies for Use in Life Cycle Assessment; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar] [CrossRef]
- Wu, Y.; Su, D. Review of Life Cycle Impact Assessment (LCIA) Methods and Inventory Databases. In Sustainable Production and Development; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 39–55. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Dickson, R.; Niaz, H.; Hwang, D.W.; Liu, J.J. Comparative Sustainability Assessment of a Hydrogen Supply Network for Hydrogen Refueling Stations in Korea—A Techno-Economic and Lifecycle Assessment Perspective. Green Chem. 2021, 23, 9625–9639. [Google Scholar] [CrossRef]
- Mio, A.; Barbera, E.; Pavan, A.M.; Danielis, R.; Bertucco, A.; Fermeglia, M. Analysis of the Energetic, Economic, and Environmental Performance of Hydrogen Utilization for Port Logistic Activities. Appl. Energy 2023, 347, 121431. [Google Scholar] [CrossRef]
- Masilela, P.; Pradhan, A. A Life Cycle Sustainability Assessment of Biomethane versus Biohydrogen—For Application in Electricity or Vehicle Fuel? Case Studies for African Context. J. Clean. Prod. 2021, 328, 129567. [Google Scholar] [CrossRef]
- Hoque, N.; Biswas, W.; Mazhar, I.; Howard, I. Life Cycle Sustainability Assessment of Alternative Energy Sources for the Western Australian Transport Sector. Sustainability 2020, 12, 5565. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Comparative Life Cycle Sustainability Assessment of Renewable and Conventional Hydrogen. Sci. Total Environ. 2021, 756, 144132. [Google Scholar] [CrossRef]
- Wijayasekera, S.C.; Hewage, K.; Hettiaratchi, P.; Siddiqui, O.; Razi, F.; Pokhrel, D.; Sadiq, R. Sustainability of Waste-to-Hydrogen Conversion Pathways: A Life Cycle Thinking-Based Assessment. Energy Convers. Manag. 2022, 270, 116218. [Google Scholar] [CrossRef]
- Vilbergsson, K.V.; Dillman, K.; Emami, N.; Ásbjörnsson, E.J.; Heinonen, J.; Finger, D.C. Can Remote Green Hydrogen Production Play a Key Role in Decarbonizing Europe in the Future? A Cradle-to-Gate LCA of Hydrogen Production in Austria, Belgium, and Iceland. Int. J. Hydrogen Energy 2023, 48, 17711–17728. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen Production, Storage and Transport for Renewable Energy and Chemicals: An Environmental Footprint Assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Al-Breiki, M.; Bicer, Y. Comparative Life Cycle Assessment of Sustainable Energy Carriers Including Production, Storage, Overseas Transport and Utilization. J. Clean. Prod. 2021, 279, 123481. [Google Scholar] [CrossRef]
- Noh, H.; Kang, K.; Seo, Y. Environmental and Energy Efficiency Assessments of Offshore Hydrogen Supply Chains Utilizing Compressed Gaseous Hydrogen, Liquefied Hydrogen, Liquid Organic Hydrogen Carriers and Ammonia. Int. J. Hydrogen Energy 2023, 48, 7515–7532. [Google Scholar] [CrossRef]
- Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation. Appl. Energy 2021, 281, 115958. [Google Scholar] [CrossRef]
- Arfan, M.; Eriksson, O.; Wang, Z.; Soam, S. Life Cycle Assessment and Life Cycle Costing of Hydrogen Production from Biowaste and Biomass in Sweden. Energy Convers. Manag. 2023, 291, 117262. [Google Scholar] [CrossRef]
- Booto, G.K.; Aamodt Espegren, K.; Hancke, R. Comparative Life Cycle Assessment of Heavy-Duty Drivetrains: A Norwegian Study Case. Transp. Res. Part D Transp. Environ. 2021, 95, 102836. [Google Scholar] [CrossRef]
- Weidner, T.; Tulus, V.; Guillén-Gosálbez, G. Environmental Sustainability Assessment of Large-Scale Hydrogen Production Using Prospective Life Cycle Analysis. Int. J. Hydrogen Energy 2023, 48, 8310–8327. [Google Scholar] [CrossRef]
- Martinez, G.E.; Degens, R.; Espadas-Aldana, G.; Costa, D.; Cardellini, G. Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices. Energies 2024, 17, 4297. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Life Cycle Assessment of Hydrogen Energy Systems: A Review of Methodological Choices. Int. J. Life Cycle Assess. 2017, 22, 346–363. [Google Scholar] [CrossRef]
- Fuel Ceslls and Hydrogen Joint Undertaking. FC-HyGuide Manual: Guidance Document for Performing LCAs on Fuel Cell Technologies and Hydrogen Technologies; Project No. 256850, FC-Hy Guide. 2011. Available online: https://fc-hyguide.eu/ (accessed on 25 October 2025).
- Sustainability Assessment of Harmonised Hydrogen Energy Systems (SH2E). Guidelines for Life Cycle Sustainability Assessment and Prospective Benchmarking; European Commission, Horizon 2020 Project SH2E, Grant Agreement No. 101007163; Fuel Cells and Hydrogen Joint Undertaking (FCH JU): Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Iribarren, D.; Valente, A.; Dufour, J. IEA HIA Task 36 Final Report—Life Cycle Sustainability Assessment of Hydrogen Energy Systems; International Energy Agency: Paris, France, 2019; ISBN 978-1-945951-09-1. [Google Scholar]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised life-cycle global warming impact of renewable hydrogen. J. Clean. Prod. 2017, 149, 762–772. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonising the cumulative energy demand of renewable hydrogen for robust comparative life-cycle studies. J. Clean. Prod. 2018, 175, 384–393. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonising methodological choices in life cycle assessment of hydrogen: A focus on acidification and renewable hydrogen. Int. J. Hydrogen Energy 2019, 44, 19426–19433. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised carbon and energy footprints of fossil hydrogen. Int. J. Hydrogen Energy 2021, 46, 17587–17594. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Candelaresi, D.; Spazzafumo, G.; Dufour, J. Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. Int. J. Hydrogen Energy 2020, 45, 25758–25765. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised life-cycle indicators of nuclear-based hydrogen. Int. J. Hydrogen Energy 2021, 46, 29724–29731. [Google Scholar] [CrossRef]
- Siddiqui, O.; Dincer, I. A well to pump life cycle environmental impact assessment of some hydrogen production routes. Int. J. Hydrogen Energy 2019, 44, 5773–5786. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Fan, A. Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia. Appl. Energy 2020, 279, 115848. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ghandehariun, S.; Rosen, M.A. Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries. Energy 2020, 208, 118347. [Google Scholar] [CrossRef]
- Li, G.; Cui, P.; Wang, Y.; Liu, Z.; Zhu, Z.; Yang, S. Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy 2020, 191, 116588. [Google Scholar] [CrossRef]
- Li, G.; Cui, P.; Wang, Y.; Liu, Z.; Zhu, Z.; Yang, S. Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming. Energy 2020, 199, 117488. [Google Scholar] [CrossRef]
- Bicer, Y.; Khalid, F. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. Int. J. Hydrogen Energy 2020, 45, 3670–3685. [Google Scholar] [CrossRef]
- Eggemann, L.; Escobar, N.; Peters, R.; Burauel, P.; Stolten, D. Life cycle assessment of a small-scale methanol production system: A power-to-fuel strategy for biogas plants. J. Clean. Prod. 2020, 271, 122476. [Google Scholar] [CrossRef]
- Zhao, G.; Kraglund, M.R.; Frandsen, H.L.; Wulff, A.C.; Jensen, S.H.; Chen, M.; Graves, C.R. Life cycle assessment of H2O electrolysis technologies. Int. J. Hydrogen Energy 2020, 45, 23765–23781. [Google Scholar] [CrossRef]
- Partidário, P.; Aguiar, R.; Martins, P.; Rangel, C.M.; Cabrita, I. The hydrogen roadmap in the Portuguese energy system—Developing the P2G case. Int. J. Hydrogen Energy 2020, 45, 25646–25657. [Google Scholar] [CrossRef]
- Shimizu, T.; Hasegawa, K.; Ihara, M.; Kikuchi, Y. A region-specific environmental analysis of technology implementation of hydrogen energy in Japan based on life cycle assessment. J. Ind. Ecol. 2020, 24, 217–233. [Google Scholar] [CrossRef]
- Chisalita, D.A.; Petrescu, L.; Cormos, C.C. Environmental evaluation of European ammonia production considering various hydrogen supply chains. Renew. Sustain. Energy Rev. 2020, 130, 109964. [Google Scholar] [CrossRef]
- Sarkar, O.; Katakojwala, R.; Venkata Mohan, S. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem. 2021, 23, 561–574. [Google Scholar] [CrossRef]
- Gholkar, P.; Shastri, Y.; Tanksale, A. Renewable hydrogen and methane production from microalgae: A techno-economic and life cycle assessment study. J. Clean. Prod. 2021, 279, 123726. [Google Scholar] [CrossRef]
- Candelaresi, D.; Valente, A.; Iribarren, D.; Dufour, J.; Spazzafumo, G. Comparative life cycle assessment of hydrogen-fuelled passenger cars. Int. J. Hydrogen Energy 2021, 46, 35961–35973. [Google Scholar] [CrossRef]
- Lotrič, A.; Sekavčnik, M.; Kuštrin, I.; Mori, M. Life-cycle assessment of hydrogen technologies with the focus on EU critical raw materials and end-of-life strategies. Int. J. Hydrogen Energy 2021, 46, 10143–10160. [Google Scholar] [CrossRef]
- Delpierre, M.; Quist, J.; Mertens, J.; Prieur-Vernat, A.; Cucurachi, S. Assessing the environmental impacts of wind-based hydrogen production in the Netherlands using ex-ante LCA and scenarios analysis. J. Clean. Prod. 2021, 299, 126866. [Google Scholar] [CrossRef]
- Gerloff, N. Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 2021, 43, 102759. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, X.; Li, G.; Qiu, X.; Yao, D.; Zhu, Z.; Wang, Y.; Gao, J.; Cui, P. Energy consumption, environmental performance, and techno-economic feasibility analysis of the biomass-to-hydrogen process with and without carbon capture and storage. J. Environ. Chem. Eng. 2021, 9, 106752. [Google Scholar] [CrossRef]
- Loy, A.C.M.; Alhazmi, H.; Lock, S.S.M.; Yin, C.L.; Cheah, K.W.; Chin, B.L.F.; How, B.S.; Yusup, S. Life-cycle assessment of hydrogen production via catalytic gasification of wheat straw in the presence of straw derived biochar catalyst. Bioresour. Technol. 2021, 341, 125796. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Roberts, A.; Hoadley, A.; Dargaville, R.; Honnery, D. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ. Sci. 2021, 14, 5113–5131. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Candelaresi, D.; Valente, A.; Spazzafumo, G.; Frigo, S. Life Cycle Assessment of Substitute Natural Gas production from biomass and electrolytic hydrogen. Int. J. Hydrogen Energy 2021, 46, 35974–35984. [Google Scholar] [CrossRef]
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Aydin, M.I.; Dincer, I. An Assessment Study on Various Clean Hydrogen Production Methods. Energy 2022, 245, 123090. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, B.; He, Y.; Zhu, Y.; Wang, Z. Life Cycle Assessment of Three Types of Hydrogen Production Methods Using Solar Energy. Int. J. Hydrogen Energy 2022, 47, 14158–14168. [Google Scholar] [CrossRef]
- Rüdisüli, M.; Bach, C.; Bauer, C.; Beloin-Saint-Pierre, D.; Elber, U.; Georges, G.; Limpach, R.; Pareschi, G.; Kannan, R.; Teske, S.L. Prospective Life-Cycle Assessment of Greenhouse Gas Emissions of Electricity-Based Mobility Options. Appl. Energy 2022, 306, 118065. [Google Scholar] [CrossRef]
- Aydin, M.I.; Dincer, I. A Life Cycle Impact Analysis of Various Hydrogen Production Methods for Public Transportation Sector. Int. J. Hydrogen Energy 2022, 47, 39666–39677. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Z.; He, Y.; Zhu, Y.; Cen, K. LCA Comparison Analysis for Two Types of H2 Carriers: Methanol and Ammonia. Int. J. Energy Res. 2022, 46, 11818–11833. [Google Scholar] [CrossRef]
- Li, L.; Feng, L.; Manier, H.; Manier, M.A. Life Cycle Optimization for Hydrogen Supply Chain Network Design. Int. J. Hydrogen Energy 2022, 52, 491–520. [Google Scholar] [CrossRef]
- Kolb, S.; Müller, J.; Luna-Jaspe, N.; Karl, J. Renewable Hydrogen Imports for the German Energy Transition—A Comparative Life Cycle Assessment. J. Clean. Prod. 2022, 373, 133289. [Google Scholar] [CrossRef]
- Ahmadi, P.; Khoshnevisan, A. Dynamic Simulation and Lifecycle Assessment of Hydrogen Fuel Cell Electric Vehicles Considering Various Hydrogen Production Methods. Int. J. Hydrogen Energy 2022, 47, 26758–26769. [Google Scholar] [CrossRef]
- Lui, J.; Sloan, W.; Paul, M.C.; Flynn, D.; You, S. Life Cycle Assessment of Waste-to-Hydrogen Systems for Fuel Cell Electric Buses in Glasgow, Scotland. Bioresour. Technol. 2022, 359, 127464. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Månsson, D. Greenhouse Gas Emissions from Hybrid Energy Storage Systems in Future 100% Renewable Power Systems—A Swedish Case Based on Consequential Life Cycle Assessment. J. Energy Storage 2023, 57, 106167. [Google Scholar] [CrossRef]
- Burchart, D.; Gazda-Grzywacz, M.; Grzywacz, P.; Burmistrz, P.; Zarębska, K. Life Cycle Assessment of Hydrogen Production from Coal Gasification as an Alternative Transport Fuel. Energies 2023, 16, 383. [Google Scholar] [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, M.S.; Coelho, P.J.; Ferreira, A.F.; Surra, E. A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems. Hydrogen 2025, 6, 96. https://doi.org/10.3390/hydrogen6040096
Coelho MS, Coelho PJ, Ferreira AF, Surra E. A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems. Hydrogen. 2025; 6(4):96. https://doi.org/10.3390/hydrogen6040096
Chicago/Turabian StyleCoelho, Miguel Simão, Pedro Jorge Coelho, Ana Filipa Ferreira, and Elena Surra. 2025. "A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems" Hydrogen 6, no. 4: 96. https://doi.org/10.3390/hydrogen6040096
APA StyleCoelho, M. S., Coelho, P. J., Ferreira, A. F., & Surra, E. (2025). A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems. Hydrogen, 6(4), 96. https://doi.org/10.3390/hydrogen6040096

