Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Research Design, and Sampling Design
2.2. Field and Laboratory Work Execution
2.3. Statistical Data Analysis
3. Results
3.1. Characterization of the Sampling Transects
3.2. Population Density, Species Richness, and Distribution of Millipedes
3.3. Species Richness and Population Structure
3.4. Similarity/Dissimilarity Indices and Species Replacement: Beta Diversity
3.5. Analysis of Habitats Based on the Composition of Their Communities with NMDS
3.6. Soil Physicochemical Variables: Characteristics and Correlation with Millipede Density and Richness
3.7. Principal Components Analysis (PCA) and Multidimensional Scaling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Georeferencing of Transects and Their Locations
Transects | Coordinates | Altitude (m a.s.l) | Locations |
---|---|---|---|
Ecoag 1 | 18°40′55.5″ N, 70°35′20.2″ O | 2003 | La Nuez |
Ecoag 2 | 18°47′14.6″ N, 70°38′53.7″ O | 2333 | Rancho en Medio |
Boslat 1 | 18°41′49.7″ N, 70°35′27.6″ O | 2252 | Vuelta de la Culebra |
Boslat 2 | 18°41′47.5″ N, 70°35′32.3″ O | 2243 | Vuelta de la Culebra |
Sabapa 1 | 18°42′24.5″ N, 70°36′08.8″ O | 2375 | Sabana Los Frailes |
Sabapa 2 | 18°45′39.6″ N, 70°38′14.0″ O | 2278 | Sabana Quéliz |
Pinoc 1 | 18°42′31.9″ N, 70°36′04.5″ O | 2384 | North of the Sabana Los Frailes |
Pinoc 2 | 18°45′39.6″ N, 70°38′13.7″ O | 2279 | Sabana Quéliz |
Indices and Estimators | Formulas Formula | Components |
---|---|---|
Margalef diversity index | S = Number of species N = Total number of individuals ln = natural logarithm | |
Simpson index | pi = Proportional abundance of species i in the sample | |
Shannon index | * | pi = as above; ln = natural logarithm |
Chao 2 | Chao 2 = S est = Estimated number of species; S obs = Observed number of species L = Number of species occurring in only one sample (“uniques”); M = Number of species occurring in exactly two samples | |
Jackknife 1 | m = Number of samples; S and L as defined in the Margalef index and Chao 2 estimator, respectively. | |
Jaccard Similarity Coefficient | a = Number of species present at site A; b = Number of species present at site B; c = Number of species shared by both sites A and B | |
Dissimilarity | 1-S | S = Jaccard Coefficient value |
Quantitative Sørensen Similarity Coefficient | aN = Total number of individuals at site A; bN = Total number of individuals at site B; pN = Sum of the lowest abundances for each species shared between both sites | |
Beta Diversity Index (β) | a = Number of species present at site A; b = Number of species present at site B; Ij = Jaccard index value |
Appendix B
Analysis of Variance of the Species and Correlation Coefficient Results
Species | R2 | R2 Aj | CV (%) | F | p-Value |
---|---|---|---|---|---|
Achromoporus andujari | 0.63 | 0.4 | 172.54 | 2.70 | 2Sig: Sabapa |
A. concolor | 0.57 | 0.29 | 330.87 | 2.07 | Sig: Pinoc |
A. occultus | 0.55 | 0.27 | 269.45 | 1.95 | Sig: Sabapa |
A. platyurus | 0.45 | 0.1 | 259.31 | 1.27 | No sig |
A. pallidus | 0.43 | 0.07 | 545.02 | 1.20 | No sig |
A. vallenuevo | 0.42 | 0.06 | 549.87 | 1.15 | No sig |
Chilaphrodesmus sp. | 0.3 | 0 | 337.04 | 0.69 | No sig |
Docodesmus angustus | 0.38 | 0 | 337.55 | 0.99 | No sig |
Siphonophora sp. | 0.62 | 0.38 | 313.2 | 2.58 | Sig: Pinoc |
Spirobolellus sp. | 0.41 | 0.04 | 314.8 | 1.11 | Sig: Boslat |
Prostemmiulus sp. 1 | 0.52 | 0.21 | 196.86 | 1.69 | Sig: Boslat |
Prostemmiulus sp. 2 | 0.55 | 0.27 | 249.53 | 1.96 | Sig: Pinoc |
Response Variable | Soil Variables | Ecoag | Boslat | Pinoc | Sabapa |
---|---|---|---|---|---|
Density (individuals/m2) | Cu | S: 0.756, p-0.0300 | - | - | - |
K | - | P: −0.721, p-0.0435 | S: −0.755, P-0.0305 | - | |
P | - | - | S: −0.805, p-0.0159 | - | |
Ca | - | - | P: −0.781, p-0.0221 | - | |
Mg | - | - | S: −0.766, p-0.0267 | - | |
ECEC 2 | - | - | S: −0.738, P-0.0366 | - | |
Zn | - | - | S: -0.762, p-0.0280 | - | |
Richness (species/m2) | Cu | S: 0.756, p-0.0300 | S: −0.717, p-0.0453 | - | - |
P | - | - | S: −0.823, p-0.0121 | - | |
Ca | - | S: 0.710, p-0.0484 | P: −0.822, p-0.0123 | - | |
ECEC | - | - | S: −0.766, p-0.0267 | - | |
N | - | S: −0.847 **, p-0.0080 | - | S: 0.741, p-0.0356 | |
EC | - | - | - | P: 0.758, p-0.0294 | |
Fe | - | - | - | P: 0.744, p-0.0344 |
References
- Hopkin, S.P.; Read, H.J. The Biology of Millipedes; Reprinted; Oxford University Press: New York, NY, USA, 2002; pp. 158–182. [Google Scholar]
- Bueno-Villegas, J.; Sierwald, P.; Bond, J.E. Diplopoda. In Biodiversidad, Taxonomía y Biogeografía de Artrópodos de México: Hacia una Síntesis de su Conocimiento; Llorente Bousquets, J.E., Morrone, J.J., Yáñez Ordóñez, O., Vargas Fernández, I., Eds.; Conabio: Mexico D.F., Mexico, 2004; Volume IV, pp. 569–599. Available online: https://www.biodiversidad.gob.mx/publicaciones/versiones_digitales/Artropodos4_links.pdf (accessed on 15 July 2024).
- Rodrigues, P.E.; Costa-Schmidt, L.E.; Ott, R.; Rodrigues, E.N.L. Influence of forest structure upon the diversity and composition of edaphic diplopods. J. Insect Conserv. 2017, 21, 297–306. [Google Scholar] [CrossRef]
- Adis, J.; de Morais, J.W.; Ribeiro, E.F. Vertical distribution and abundance of arthropods in the soil of a neotropical secondary forest during the dry season. Trop. Ecol. 1987, 28, 174–181. Available online: https://museum.wa.gov.au/catalogues/pseudoscorpions/bibliography/vertical-distribution-and-abundance-arthropods-soil-neotropical (accessed on 19 April 2025).
- Bogyó, D.; Magura, T.; Nagy, D.D.; Tóthmérész, B. Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior–forest edge–grassland habitat complex. ZooKey 2015, 510, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, F.M.; Bouzan, R.S.; Rodrigues, P.E.S.; Almeida, T.M.; Ott, R.; Brescovit, A.D. Ecological niche modeling predicting the potential invasion of the non-native millipede Oxidus gracilis (C. L. Koch, 1847) (Polydesmida: Paradoxosomatidae) in Brazilian Atlantic Forest. Ann. Soc. Entomol. Fr. 2020, 56, 387–394. [Google Scholar] [CrossRef]
- Gerlach, J.; Samways, M.; Pryke, J. Terrestrial invertebrates as bioindicators: An overview of available taxonomic groups. J. Insect Conserv. 2013, 17, 831–850. [Google Scholar] [CrossRef]
- Velasquez, E.; Lavelle, P. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecol. Int. J. Ecol. 2019, 100, 103446. [Google Scholar] [CrossRef]
- Cabrera-Dávila, G.D.L.C. Evaluación de la Macrofauna Edáfica Como Bioindicador del Impacto del uso y Calidad del Suelo en el Occidente de Cuba. Ph.D. Thesis, Universidad de Alicante-Instituto de Ecología y Sistemática, La Habana, Cuba, 9 January 2019. Available online: https://rua.ua.es/dspace/handle/10045/88889 (accessed on 10 July 2024).
- Pérez-Asso, A.R.; Pérez-Gelabert, D.E. Checklist of the millipeds (Diplopoda) of Hispaniola. Bol. SEA 2001, 28, 67–80. Available online: http://sea-entomologia.org/PDF/BOLETIN_28/B28-009-067.pdf (accessed on 7 February 2023).
- Suriel, C.; Bueno-Villegas, J.; Means, J.C.; Bouzan, R.S. A bibliographic review of the Chelodesmidae of the Antilles and Bahamas (Diplopoda: Polydesmida). Zootaxa 2024, 5538, 247–263. [Google Scholar] [CrossRef]
- Rodríguez-Soto, K.; Suriel, C. Comparative study of millipedes communities (Arthropoda: Diplopoda) present in highland savanna, pine forest, and broadleaf forest of Valle Nuevo National Park, Dominican Republic. Novit. Caribaea 2015, 8, 50–60. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, A.; Suriel, C.; de los Santos, G. Soil arthropods post-fire sampling in pine forests from the National Park José del Carmen Ramírez, Dominican Republic. Novit. Caribaea 2009, 2, 30–39. [Google Scholar] [CrossRef]
- Guittonneau, M. Study of the Soil Macrofauna in Tropical Cacao-Based Agroforestry Systems in the Dominican Republic. Master’s Thesis, Isara, Agro School for Life, Norwegian University of Life Sciences, Ås, Norway, September 2021. Available online: https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/2832359/Master%20thesis_Marie%20Guittonneau_NMBU.pdf?sequence=1&isAllowed=y (accessed on 21 September 2024).
- Núñez, F.; Ramírez, N.; McPherson, M.; Portorreal, F. Conservation Plan for the Juan B. Pérez Rancier National Park (Valle Nuevo); Secretariat of State for the Environment and Natural Resources and the Moscoso Puello Foundation: Santo Domingo, Dominican Republic, 2002; pp. 9–87. Available online: https://bvearmb.do/handle/123456789/5257 (accessed on 5 February 2024).
- Guerrero, A.; Ramírez, N.; Veloz, A.; Peguero, B. Vegetation and Flora of Juan Bautista Pérez Rancier National Park (Valle Nuevo). In Integrated Ecological Assessment of Juan Bautista Pérez Rancier National Park (Valle Nuevo); Núñez, F., Ed.; Secretariat of State for the Environment and Natural Resources and the Moscoso Puello Foundation: Santo Domingo, Dominican Republic, 2002; pp. 34–56. Available online: https://bvearmb.do/handle/123456789/2077 (accessed on 5 February 2024).
- Rivas-Torres, A.; Cordero-Rivera, A. A review of the density, biomass, and secondary production of odonates. Insects 2024, 15, 510. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment and Natural Resources. Atlas de Biodiversidad y Recursos Naturales de la República Dominicana, 2nd ed.; Ministry of Environment and Natural Resources: Santo Domingo, Dominican Republic, 2011. [Google Scholar]
- Cruz Flores, D.D.; Martínez Borrego, D.; Fontenla, J.L.; Mancina, C.A. Inventarios y estimaciones de la biodiversidad. In Diversidad Biológica de Cuba: Métodos de Inventario, Monitoreo y Colecciones Biológicas; Mancina, C.A., Cruz, D.D., Eds.; Editorial AMA, La Habana, Cuba; Instituto de Ecología y Sistemática: La Habana, Cuba, 2017; pp. 26–43. Available online: https://ruffordorg.s3.amazonaws.com/media/project_reports/Cap%C3%ADtulo%2015.%20Invertebrados%20Cavern%C3%ADcolas.pdf (accessed on 24 June 2024).
- De los Santos, G. Araneofauna en Sabanas de Montañas Altas del Valle de Lilís y Sabana de Macutico, República Dominicana. Master’s Thesis, Instituto Tecnológico de Santo Domingo (Intec), Santo Domingo, Dominican Republic, 2019. [Google Scholar]
- Peguero, B. Vegetation Diversity and Structure in the Tussock grass of Valle Nuevo, Central Mountain Range, Dominican Republic. Moscosoa 2013, 18, 137–153. Available online: https://bvearmb.do/handle/123456789/636 (accessed on 5 February 2024).
- Calderón-Medina, C.L.; Bautista-Mantilla, G.P.; Rojas-González, S. Propiedades químicas, físicas y biológicas del suelo, indicadores del estado de diferentes ecosistemas en una terraza alta del departamento del Meta. Orinoquía 2018, 22, 141–157. [Google Scholar] [CrossRef]
- Pérez-Asso, A.R. Colecta y conservación de diplópodos. Cocuyo 1995, 2, 2–3. [Google Scholar]
- Loomis, H.F. Millipeds of the West Indies and Guiana, collected by the Allison V. Armour Expedition in 1932 (with four plates). Smithson. Misc. Collect. 1934, 89, 1–69. Available online: https://repository.si.edu/handle/10088/23919 (accessed on 10 March 2021).
- Loomis, H.F. The millipeds of Hispaniola, with descriptions of a new family, new genera, and new species. Bull. Mus. Comp. Zool. 1936, 80, 3–197. Available online: https://www.biodiversitylibrary.org/part/146395 (accessed on 10 March 2021).
- Loomis, H.F. Millipeds collected in Puerto Rico and the Dominican Republic by Dr. P. J. Darlington in 1938. Bull. Mus. Comp. Zool. 1941, 88, 17–80. Available online: https://www.biodiversitylibrary.org/part/6184 (accessed on 10 March 2021).
- Pérez-Asso, A.R. El género Achromoporus (Diplopoda: Polydesmida: Chelodesmidae) en República Dominicana: Especies nuevas y sinonimias. Solenodon 2009, 8, 33–81. Available online: https://archive.org/details/solenodon-8-033-081 (accessed on 15 March 2021).
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Bakker, J.D. Increasing the utility of Indicator Species Analysis. J. Appl. Ecol. 2008, 45, 1829–1835. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement, 1st ed.; Croom Helm Ltd.: London, UK, 1988; pp. 1–179. Available online: http://www.bio-nica.info/Biblioteca/Magurran2004MeasuringBiological.pdf (accessed on 1 December 2024).
- Moreno, C.E. Métodos Para Medir la Biodiversidad, 1st ed.; Cyted, Orcyt-UNESCO, SEA: Zaragoza, España, 2001; pp. 1–83. Available online: http://entomologia.rediris.es/sea/manytes/metodos.pdf (accessed on 2 September 2024).
- Soil Science Division Staff. Examination and Description of Soil Profiles, Chapter 3. In Soil Survey Manual. USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017; pp. 83–233. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-09/SSM-ch3.pdf (accessed on 27 January 2025).
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016; pp. 374–461. [Google Scholar]
- Galanes, I.T.; Thomlinson, J.R. Soil millipede diversity in tropical forest patches and its relation to landscape structure in northeastern. Biodivers. Conserv. 2011, 20, 2967–2980. [Google Scholar] [CrossRef]
- Vilisics, F.; Bogyó, D.; Sattler, T.; Moretti, M. Occurrence and assemblage composition of millipedes (Myriapoda, Diplopoda) and terrestrial isopods (Crustacea, Isopoda, Oniscidea) in urban areas of Switzerland. ZooKeys 2012, 176, 199–214. [Google Scholar] [CrossRef]
- Ruiz-Cobo, D.H.; Bueno-Villegas, J.; Feijoo-Martinez, A. Uso de la tierra y diversidades alfa, beta y gamma de diplópodos en la cuenca del río Otún, Colombia. Univ. Sci. 2010, 15, 59–67. Available online: https://www.redalyc.org/pdf/499/49913062006.pdf (accessed on 21 June 2024). [CrossRef]
- Carrero-Jiménez, S.; de los Santos, G. Araneofauna (Arachnida: Araneae) de la sabana de pajón en el Parque Nacional Valle Nuevo, República Dominicana y su comparación entre dos temporadas del año. Novit. Caribaea 2014, 7, 61–71. [Google Scholar] [CrossRef]
- Pompozzi, G.; Ferretti, N.; Copperi, S.; Simó, M.; Ferrero, A.A. Arthropod fauna of winter wheat of southwest Buenos Aires province, Argentina. Mun. Ent. Zool. 2014, 9, 182–190. Available online: https://www.munisentzool.org/Issue/2014-vol-9-number-1-18 (accessed on 16 January 2025).
- Nare, R.W.A.; Savadogo, P.W.; Traore, M.; Gountan, A.; Nacro, H.B.; Sedogo, M.P. Soil macrofauna behaviour in the presence of pesticides and organic amendments. J. Geosci. Environ. Prot. 2017, 5, 202–212. [Google Scholar] [CrossRef]
ORDER: FAMILY/Species 1 | ni (%) | Mean ± STD | Median | SE | CV% | Habitats 2 |
---|---|---|---|---|---|---|
POLYDESMIDA: CHELODESMIDAE/ | 305 (84.96) | 9.53 ± 15.3 | 1.5 | 2.7 | 160.55 | B, P, S |
Achromoporus andujari (Aa) | 137 (57.32) | 4.28 ± 9.51 | 0 | 1.7 | 222.2 | P, S |
A. concolor (Ac) | 2 (0.84) | 0.06 ± 0.25 | 0 | 0.04 | 416.67 | P |
A. occultus (Ao) | 28 (11.72) | 0.875 ± 2.76 | 0 | 0.49 | 315.43 | P, S |
A. pallidus (Apall) | 1 (0.004) | 0.03 ± 0.18 | 0 | 0.03 | 600 | B |
A. platyurus (Aplat) | 12 (5.02) | 0.38 ± 1.01 | 0 | 0.18 | 265.79 | B, P, S |
A. vallenuevo (Av) | 5 (2.1) | 0.16 ± 0.88 | 0 | 5.5 | 550 | P |
FUHRMANNODESMIDAE/ | 3 (0.84) | 0.09 ± 0 | 0 | 0 | 0 | B, S |
Chilaphrodesmus sp. (Chilasp) | 3 (1.26) | 0.09 ± 0 | 0 | 0 | 0 | B, S |
PYRGODESMIDAE/ | 4 (1.11) | 0.13 ± 0.42 | 0 | 0.07 | 323.1 | B, S |
Docodesmus angustus (Da) | 4 (1.67) | 0.13 ± 0.42 | 0 | 0.07 | 323.1 | B, S |
SIPHONOPHORIDA: SIPHONOPHORIDAE/ | 7 (1.95) | 0.22 ± 0.87 | 0 | 0.2 | 395.45 | P |
Siphonophora sp. (Sipsp) | 7 (2.93) | 0.22 ± 0.87 | 0 | 0.15 | 395.45 | P |
SPIROBOLIDA: SPIROBOLELLIDAE/ | 8 (2.23) | 0.25 ± 0.8 | 0 | 0.14 | 320 | B |
Spirobolellus sp. (Spirsp) | 8 (3.35) | 0.25 ± 0.80 | 0 | 0.14 | 320 | B |
STEMMIULIDA: STEMMIULIDAE/ | 32 (8.91) | 1 ± 1.7 | 0 | 0.3 | 170 | E, B, P, S |
Prostemmiulus sp. 1 (ProstA) | 19 (7.95) | 0.6 ± 1.32 | 0 | 0.23 | 220 | E, B, S |
Prostemmiulus sp. 2 (ProstB) | 13 (5.44) | 0.41 ± 1.19 | 0 | 0.21 | 290.24 | B, P, S |
HABITAT CLASSES | ||||
---|---|---|---|---|
FAMILY | SABAPA | PINOC | BOSLAT | ECOAG |
Chelodesmidae | 224; 0–54; 28 | 66; 0–30; 8.13 | 15; 0–5; 1.88 | – |
Fuhrmannodesmidae | 2; 0–1; 0.25 | – | 1; 0–1; 0.125 | – |
Pyrgodesmidae | 2; 0–2; 0.25 | – | 2; 0–1; 0.25 | – |
Siphonophoridae | – | 7; 0–4; 0.88 | – | – |
Spirobolellidae | – | – | 8; 0–4; 1 | – |
Stemmiulidae | 2; 0–1; 0.25 | 10; 0–6; 1.25 | 16; 0–5; 2 | 4; 0–4; 0.5 |
Habitat Classes/Species | Specificity | Fidelity | IV 1 | p-Value |
---|---|---|---|---|
BOSLAT Spirobolellus sp. Prostemmiulus sp. 1 | ||||
1 | 0.5 | 0.707 | 0.007 | |
0.7368 | 0.625 | 0.679 | 0.011 | |
SABAPA A. occultus | ||||
0.8571 | 0.5 | 0.655 | 0.03 | |
PINOC + SABAPA A. andujari | ||||
1 | 0.625 | 0.791 | 0.005 | |
Indices and Estimators | Boslat | Sabapa | Pinoc | Ecoag |
---|---|---|---|---|
S | 7 | 7 | 7 | 1 |
Margalef index | 1.72 | 1.19 | 1.55 | 0 |
Simpson’s dominance | 0.273 | 0.643 | 0.202 | 1 |
Shannon index * | 2.22 | 1.05 | 2.53 | 0 |
Chao 2 | 8 | 15 | 7.67 | 0 |
Jackknife 1 | 8.75 | 10.5 | 8.75 | 1.875 |
Habitats Compared | Sabapa | Pinoc |
---|---|---|
Boslat | t calculator = 2.19 | t calculator = −0.81 |
df = 46 | df = 56 | |
t critical = 2.01 | t critical = 2.0 | |
Sig. diff. | Non-Sig. diff. | |
Sabapa | t calculator = 2.98 | |
____ | df = 203 | |
t critical = 1.96 | ||
Sig. diff. |
Habitat Classes | Jaccard Similarity | Dissimilarity | Sørensen Quantitative | Magurran Index |
---|---|---|---|---|
BOSLAT-SABAPA | 0.56 | 0.44 | 0.075 | 6.16 |
BOSLAT-PINOC | 0.17 | 0.83 | 0.148 | 11.62 |
BOSLAT-ECOAG | 0.14 | 0.86 | 0.216 | 6.88 |
SABAPA-PINOC | 0.4 | 0.6 | 0.238 | 8.4 |
SABAPA-ECOAG | 0.14 | 0.86 | 0.013 | 6.88 |
PINOC-ECOAG | 0 | 0 | 0 | 8 |
VARIABLES | ECOAG | BOSLAT | PINOC | SABAPA |
---|---|---|---|---|
Clay | 6.25–1.669–26.70 | 5.5–1.414–25.71 | 7.38–2.56–34.69 | 7–1.927–27.53 |
Silt | 12.75– 3.284–25.76 | 8.25–2.816–34.13 | 11.88–4.42–37.21 | 11.75–5.365–45.7 |
Sand | 81– 4.781–5.90 | 86.25–3.919–4.54 | 80.75–6.756–8.37 | 81.25–7.166–8.82 |
Organic matter | 1.88– 2.292–121.91 | 8.74–0.967–11.1 | 3.41–1.197–35.1 | 4.86–1.888–38.85 |
pH | 4.37–0.08–1.83 | 3.45–0.465–13.48 | 4.29–0.22–5.13 | 4.59–0.347–7.56 |
EC | 10.1– 3.841–38.03 | 16.4–11.485–70.03 | 5.35–0.402–7.51 | 5.68–1.195–21.04 |
N | 0.09–0.055–61.11 | 0.37–0.098–26.49 | 0.14–0.039–27.86 | 0.2–0.101–50.5 |
P | 391.89–313.13–79.9 | 139.69–128.73–92.15 | 57.22–43.74–76.44 | 28.25–22.871–80.96 |
Ca | 0.33–0.116–35.15 | 0.24–0.477–198.8 | 0.09–0.038–42.22 | 0.09–0.055–61.11 |
Mg | 0.14–0.047–33.57 | 0.03–0.007–23.33 | 0.06–0.044–73.33 | 0.09–0.064–71.11 |
K | 7.04–3.564–50.63 | 0.96–0.195–20.31 | 1.16–0.409–35.26 | 1.11–0.369–33.24 |
CEC | 7.96–3.786–47.56 | 1.99–0.519–26.08 | 1.75–0.538–30.74 | 1.57–0.235–14.97 |
EA | 0.45–0.141–31.33 | 0.75–0.334–44.53 | 0.40–0.000–0 | 0.40–0.000–0 |
Pb | 5.71–2.274–39.82 | 4.29–1.945–45.34 | 2.42–0.713–29.46 | 3.09–1.490–48.22 |
Cu | 1.71–0.392–22.92 | 5.0–3.553–71.06 | 4.06–3.286–80.94 | 2.35–1.692–72 |
Mn | 57.06–17.853–31.29 | 52.63–36.386–69.14 | 110.43–41.224–37.33 | 39.53–25.378–64.2 |
Fe | 305.76–175.664–57.45 | 939.97–413.549–44 | 621.83–239.1–385 | 544.9–211.63–38.84 |
Zn | 2.95–0.52–17.63 | 1.97–0.423–21.47 | 3.2–1.377–43.03 | 1.86–0.895–48.12 |
Al saturation | 6.73–2.95–43.83 | 37.99–12.78–33.64 | 26.99–7.4–27.42 | 26.07–3.77–14.46 |
Components | Initial Values | Extraction Sums of Squared Charges | ||||
---|---|---|---|---|---|---|
Total | % Variance | % Accumulated | Total | % Variance | % Accumulated | |
1 | 8.71 | 43.549 | 43.549 | 8.71 | 43.549 | 43.549 |
2 | 4.939 | 24.694 | 68.243 | 4.939 | 24.694 | 68.243 |
3 | 2.558 | 12.791 | 81.034 | 2.558 | 12.791 | 81.034 |
4 | 1.579 | 7.894 | 88.928 | 1.579 | 7.894 | 88.928 |
5 | 1.079 | 5.393 | 94.321 | 1.079 | 5.393 | 94.321 |
6 | 0.79 | 3.948 | 98.269 | |||
7 | 0.346 | 1.731 | 100 | |||
8 | 6.11 × 10−16 | 3.06 × 10−15 | 100 | |||
9 | 4.36 × 10−16 | 2.18 × 10−15 | 100 | |||
10 | 4.29 × 10−16 | 2.15 × 10−15 | 100 | |||
11 | 2.89 × 10−16 | 1.44 × 10−15 | 100 | |||
12 | 1.92 × 10−16 | 9.62 × 10−16 | 100 | |||
13 | 1.29 × 10−16 | 6.44 × 10−16 | 100 | |||
14 | −1.17 × 10−17 | −5.85 × 10−17 | 100 | |||
15 | −2.58 × 10−17 | −1.29 × 10−16 | 100 | |||
16 | −1.64 × 10−16 | −8.19 × 10−16 | 100 | |||
17 | −2.25 × 10−16 | −1.12 × 10−15 | 100 | |||
18 | −4.05 × 10−16 | −2.03 × 10−15 | 100 | |||
19 | −4.78 × 10−16 | −2.39 × 10−15 | 100 | |||
20 | −5.14 × 10−16 | −2.57 × 10−15 | 100 |
Components | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
D | −0.074 | −0.131 | 0.092 | 0 | −0.225 |
S | −0.068 | −0.091 | 0.231 | −0.052 | 0.242 |
St | −0.093 | −0.018 | 0.209 | −0.105 | 0.108 |
C | 0.087 | 0.044 | −0.222 | 0.090 | −0.158 |
OM | 0.102 | −0.013 | −0.116 | −0.055 | 0.126 |
pH | −0.103 | −0.019 | −0.120 | −0.074 | 0.000 |
EC | 0.084 | 0.092 | 0.189 | −0.028 | 0.016 |
N | 0.110 | −0.025 | 0.052 | −0.055 | −0.094 |
P | −0.006 | 0.194 | 0.020 | 0.124 | 0.126 |
EA | 0.099 | 0.053 | 0.147 | −0.067 | 0.108 |
Ca | −0.017 | 0.143 | −0.134 | −0.001 | 0.111 |
Mg | −0.078 | 0.114 | 0.088 | −0.137 | 0.315 |
K | −0.040 | 0.186 | 0.017 | 0.082 | −0.025 |
Al | 0.093 | 0.040 | 0.184 | 0.002 | 0.193 |
CEC | −0.035 | 0.190 | 0.021 | 0.089 | −0.013 |
Pb | 0.003 | 0.085 | 0.181 | −0.017 | −0.717 |
Cu | 0.088 | −0.036 | 0.137 | 0.193 | 0.092 |
Mn | −0.024 | −0.065 | −0.072 | 0.543 | 0.182 |
Fe | 0.102 | −0.080 | 0.065 | 0.036 | 0.099 |
Zn | −0.042 | −0.003 | 0.164 | 0.460 | −0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriel, C.; Bueno-Villegas, J.; Jauregui-Haza, U.J. Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics. Ecologies 2025, 6, 55. https://doi.org/10.3390/ecologies6030055
Suriel C, Bueno-Villegas J, Jauregui-Haza UJ. Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics. Ecologies. 2025; 6(3):55. https://doi.org/10.3390/ecologies6030055
Chicago/Turabian StyleSuriel, Carlos, Julián Bueno-Villegas, and Ulises J. Jauregui-Haza. 2025. "Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics" Ecologies 6, no. 3: 55. https://doi.org/10.3390/ecologies6030055
APA StyleSuriel, C., Bueno-Villegas, J., & Jauregui-Haza, U. J. (2025). Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics. Ecologies, 6(3), 55. https://doi.org/10.3390/ecologies6030055