Pollination Ecology of Rocket (Eruca vesicaria (L.) Cav. ssp. sativa (Mill.) Thell) in the Semi-Arid Environments of Northwest India: Native Bees Are the Major Pollinators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flower Visitors
2.1.1. Assemblage of Flower Visitors
2.1.2. Abundances of Flower Visitors
2.2. Foraging Behavior of Flower Visitors
- (i)
- Foraging modes: Foraging mode is the method of working by a forager on a flower while harvesting pollen and/or nectar reward [1,47,48]. Based on the foraging modes of the insects visiting the blossoms of the rocket flowers, their foraging behavior was characterized following Sihag [1,47] and Sihag and Shivrana [48], as given below:
- (ii)
- Foraging rates: The foraging rate is the number of flowers visited by a forager per minute [1]. The observations on the foraging rates (number of flowers visited per minute) were recorded with the help of a stopwatch (with an accuracy of 0.1 s) on 10 individuals of a species. The observations were recorded five times a day (i.e., at 9:00, 11:00, 13:00, 15:00, and 17:00 h) and were repeated at weekly intervals for five weeks during moderate to peak flowering (total observations, n = (10 individuals × 5 hourly × 5 weekly observations) = 250).
2.3. Loose Pollen Grains Carried by a Flower Visitor and Deposited on the Stigma
2.4. Effect of a Single/Multiple Visit(s) on the Seed Set
2.5. Pollen Transfer Efficiency of Flower Visitors
- 1.
- For foragers showing only one kind of foraging mode:
- 2.
- For foragers showing different (more than one) kinds of foraging modes:
2.6. Derived PTE versus Real PTE
2.7. Statistical Analysis
3. Results
3.1. Flower Visitors of Rocket
3.2. Loose Pollen Grains Carried by a Flower Visitor and Deposited on the Stigma
3.3. Seed Set Resulting from a Single and Multiple Visit(s)
3.4. Pollen Transfer Efficiency of the Flower Visitors of the Rocket
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sihag, R.C. Some unresolved issues of measuring the efficiency of pollinators: Experimentally testing and assessing the predictive power of different methods. Int. J. Ecol. 2018, 2018, 3904973. [Google Scholar] [CrossRef]
- Sihag, R.C.; Rathi, A. Diversity, abundance, foraging behaviour and pollinating efficiency of different bees visiting pigeon pea (Cajanus cajan (L.) Millsp.) blossoms. Indian Bee J. 1994, 56, 187–201. [Google Scholar]
- Sihag, R.C. Effect of competition with Parkinsonia aculeata L. on pollination and seed production in Medicago sativa L. Indian Bee J. 1982, 44, 89–90. [Google Scholar]
- Sihag, R.C. Life cycle pattern, seasonal mortality, problem of parasitization and sex ratio pattern in alfalfa pollinating megachilid bees. Zeit. Angew. Ent. 1983, 96, 368–379. [Google Scholar] [CrossRef]
- Sihag, R.C. Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semi-arid environment of Northwest India. J. Insects 2014, 2014, 639467. [Google Scholar] [CrossRef]
- Sihag, R.C. Crop hosts and pollination potential of the red dwarf honey bee (Apis florea F.) in the semi-arid environment of Northwest India. J. Appl. Sci. 2019, 19, 551–556. [Google Scholar] [CrossRef]
- Arya, D.R.; Sihag, R.C.; Yadav, P.R. Diversity, abundance and foraging activity of insect pollinators of sunflower (Helianthus annuus L.) at Hisar (India). Indian Bee J. 1994, 56, 172–178. [Google Scholar]
- Priti; Sihag, R.C. Diversity, visitation frequency, foraging behaviour and pollinating efficiency of insect pollinators visiting cauliflower (Brassica oleracea L. var botrytis cv. Hazipur Local) blossoms. Indian Bee J. 1997, 59, 230–237. [Google Scholar]
- Chaudhary, N.; Sihag, R.C. Diversity, foraging behavior and foraging efficiency of different pollinators visiting onion (Allium cepa L.) blossoms. J. Apic. 2003, 18, 103–108. [Google Scholar]
- Chaudhary, N.; Sihag, R.C.; Pandey, M.C. Relative abundance, diversity and dominance concentration of two honeybee species on three concurrently flowering crops, onion (Allium cepa L.), carrot (Daucus carota L.) and fennel (Foeniculum vulgare L.). Pestology 2009, XXXIII, 9–13. [Google Scholar]
- Priti; Sihag, R.C. Diversity, visitation frequency, foraging behaviour and pollinating efficiency of different insect pollinators visiting coriander (Coriandrum sativum L.) blossoms. Asian Bee J. 1999, 1, 36–42. [Google Scholar]
- Priti; Sihag, R.C. Diversity, visitation frequency, foraging behaviour and pollinating efficiency of different insect pollinators visiting fennel (Foeniculum vulgare L.) blossoms. Asian Bee J. 2000, 2, 57–64. [Google Scholar]
- Wadhwa, N.; Sihag, R.C. Melittophilous mode of pollination predominates in European plum (Prunus domestica L.) in the semi-arid environment of Northwest India. Asian J. Agric. Res. 2015, 9, 189–207. [Google Scholar] [CrossRef]
- Saini, R.; Sihag, R.C. Abundance, foraging behavior and pollination efficiency of insects visiting the flowers of Aonla (Emblica officinalis). EUREKA Life Sci. 2023, 2023, 40–56. [Google Scholar] [CrossRef]
- Priti; Sihag, R.C. Diversity, visitation frequency, foraging behaviour and pollinating efficiency of insect pollinators visiting carrot (Daucus carota L.var. HC-I) blossoms. Indian Bee J. 1998, 60, 1–8. [Google Scholar]
- Gahlawat, S.K.; Narwania, S.K.; Sihag, R.C. Studies on the diversity, abundance, activity duration and foraging behaviour of insect pollinators of cucumber (Cucumis sativus L.) at Hisar. J. Apic. 2002, 17, 69–76. [Google Scholar]
- Gahlawat, S.K.; Narwania, S.K.; Ombir; Sihag, R.C. Pollination studies on Pracitrullus fistulosus at Hisar, India. Ecoprint 2002, 9, 1–6. [Google Scholar]
- Gahlawat, S.K.; Narwania, S.K.; Ombir; Sihag, R.C. Diversity, abundance, foraging rates and pollinating efficiency of insects visiting wanga (Cucumis melo ssp. melo) blossoms at Hisar (India). J. Apic. 2003, 18, 29–36. [Google Scholar]
- Schemske, D.W.; Horvitz, C.C. Variation among floral visit in pollination ability: A precondition for mutualism specialization. Science 1984, 225, 519–521. [Google Scholar] [CrossRef]
- Primack, R.B.; Silander, J.A. Meesuring the relative importance of different pollinators to plants. Nature 1975, 225, 143–144. [Google Scholar] [CrossRef]
- Motten, A.F. Reproduction of Erythronium umbilicatum (Liliaceae): Pollination success and pollinator effectiveness. Oecologia 1983, 5, 351–359. [Google Scholar] [CrossRef]
- Motten, A.F.; Campbell, D.R.; Alexander, D.E.; Miller, H.L. Pollination effectiveness of specialist and generalist visitors to a North Carolina population of Claytonia virginica. Ecology 1981, 62, 1278–1287. [Google Scholar] [CrossRef]
- Galen, C.; Newport, M.E.A. Bumble bee behavior and selection on flower size in the sky pilot, Polemonium viscosum. Oecologia 1987, 7, 20–23. [Google Scholar] [CrossRef]
- Herrera, C.M. Pollinator abundance, morphology, and flower visitation rate: Analysis of the “quantity” component in a plant-pollinator system. Oecologia 1989, 8, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Macior, L.W. Pollen foraging behavior of Bombus in relation to pollination of nototribic flowers. Am. J. Bot. 1967, 54, 359–364. [Google Scholar] [CrossRef]
- Conner, J.K.; Davis, R.; Rush, S. The effect of wild radish floral morphology on pollination efficiency by four taxa of pollinators. Oecologia 1995, 10, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, M.M.; Waser, N.M.; Price, M.V. Exploring the ‘most effective pollinator principle’ with complex flowers: Bumblebees and Ipomopsis aggregata. Ann. Bot. 2001, 88, 591–596. [Google Scholar] [CrossRef]
- Ivey, C.T.; Martinez, P.; Wyatt, R. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). Am. J. Bot. 2003, 90, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Muchhala, N.; Potts, M.D. Character displacement among bat-pollinated flowers of the genus Burmeistera: Analysis of mechanism, process and pattern. Proc. R. Soc. B Biol. Sci. 2007, 274, 2731–2737. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Pollination of three species of Euphorbia sub-genus Chamaaesyce, with special reference to bees. Am. Midl. Nat. 1979, 101, 87–98. [Google Scholar] [CrossRef]
- Ornduff, R. Complementary roles of halictids and syrphids in pollination of Jepsonia heterandra (Saxifragaceae). Evolution 1975, 29, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Sahli, H.F.; Conner, J.K. Visitation, effectiveness, and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). Am. J. Bot. 2007, 94, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Meerabai, G. Visitation rate, effectiveness and efficiency of pollinators to Cadaba fruiticosa (Linn) Druce. Bioscan 2012, 7, 483–485. [Google Scholar]
- Morse, D.H.; Fritze, R.S. Contribution of diurnal and nocturnal insects to the pollination of common milkweed (Asclapias syriaca L.) in a pollen limited system. Oecologia 1983, 60, 190–197. [Google Scholar] [CrossRef]
- Sampson, B.J.; Cane, J.H. Pollination efficiency of three bee (Hymenoptera, Apidae) species visiting rabbit eye blueberry. J. Econ. Ent. 2000, 93, 1726–1731. [Google Scholar] [CrossRef]
- Spears, E.E. A direct measure of pollinator effectiveness. Oecologia 1983, 5, 196–199. [Google Scholar] [CrossRef]
- Kudo, G.; Hirao, A.S.; Kawai, Y. Pollination efficiency of bumblebee queens and workers in the alpine shrub Rhododendron aureum. Int. J. Plant Sci. 2011, 172, 70–77. [Google Scholar] [CrossRef]
- Primack, R.B.; Silander, J.A. Pollination intensity and seed set in the evening primrose (Oenothera fruticosa). Am. Midl. Nat. 1978, 100, 213–216. [Google Scholar]
- Adlerz, W.C. Honeybee visit numbers and watermelon pollination. J. Econ. Entomol. 1966, 59, 28–30. [Google Scholar] [CrossRef]
- Schemske, D.W. Flowering phenology and seed set in Claytonia virginica (Portulacaeae). Bull. Torrey Bot. Club 1977, 104, 254–263. [Google Scholar] [CrossRef]
- Waser, N.M.; Real, L.A. Effective mutualism between sequentially flowering plant species. Nature 1979, 281, 670–672. [Google Scholar] [CrossRef]
- Sihag, R.C. Floral biology, melittophily and pollination ecology of cultivated cruciferous crops. In Recent Advances in Pollen Research; Varghese, T.M., Ed.; Allied Publishers: New Delhi, India, 1985; pp. 241–268. [Google Scholar]
- Sihag, R.C. Insect pollination increases seed production in cruciferous and umbelliferous crops. J. Apic. Res. 1986, 25, 121–126. [Google Scholar] [CrossRef]
- Sihag, R.C. The red dwarf honey bee (Apis florea F.) faces the threat of extirpation in Northwest India. Ukr. J. Ecol. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sihag, R.C. Ecology of European honey bee (Apis mellifera L.) in semi-arid sub-tropical climates. 1. Melliferous flora and over-seasoning of the colonies. J. Apic. 1990, 5, 31–43. [Google Scholar]
- Sihag, R.C. Nesting behavior and nest site preferences of the giant honey bee (Apis dorsata F.) in the semi-arid environment of north west India. J. Apic. Res. 2017, 56, 452–466. [Google Scholar] [CrossRef]
- Sihag, R.C. Characterization of the pollinators of cultivated cruciferous and leguminous crops of sub-tropical, Hisar, India. Bee World 1988, 69, 153–158. [Google Scholar] [CrossRef]
- Sihag, R.C.; Shivrana, S. Foraging behaviour and strategies of the flower visitors. In Pollination Biology: Basic and Applied Principles; Sihag, R.C., Ed.; Rajendra Scientific Publishers: Hisar, India, 1997; pp. 53–73. [Google Scholar]
- Bertin, R.I. Floral biology, humming bird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniacea). Am. J. Bot. 1982, 69, 122–134. [Google Scholar] [CrossRef]
- Donovan, B.J.; Read, P.E.C. Efficacy of honeybees as pollinators of kiwifruit. Acta Hort. 1991, 288, 220–224. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Oxford and IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 1967; 593p. [Google Scholar]
- Sihag, R.C. Effect of pesticides and bee pollination on seed yield of some crops in India. J. Apic. Res. 1988, 27, 49–54. [Google Scholar] [CrossRef]
- Free, J.B. Insect Pollination of Crops; Academic Press: London, UK, 1993. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Powney, G.D.; Carvell, C.; Edwards, M.; Roger, K.A.; Morris, R.K.A.; Roy, H.E.; Woodcock, B.A.; Isaac, N.B.J. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1018. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Oholemuller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R. Recent Honey Bee Declines; Congressional Research Service: Washington, DC, USA, 2007; 14p, Available online: https://apps.dtic.mil/sti/pdfs/ADA469929.pdf (accessed on 15 July 2023).
- National Research Council. Status of Pollinators in North America; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A.; Carvalheiro, L.G.; Chacoff, N.P.; Dudenhöffer, J.H.; Greenleaf, S.S.; et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011, 14, 1062. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, L.G.; Kunin, W.E.; Keil, P.; Aguirre-Gutiérrez, J.; Ellis, W.N.; Fox, R.; Groom, Q.; Hennekens, S.; Van Landuyt, W.; Maes, D.; et al. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 2013, 16, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.H.; Osborne, J.L. Bumblebee vulnerability and conservation world-wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecol. Lett. 2004, 7, 1109–1119. [Google Scholar] [CrossRef]
- Kluser, S.; Peduzzi, P. Global Pollinator Decline: A literature Review; UNEP/GRID: Geneva, Switzerland, 2007; Available online: http://journal.bee.or.kr/xml/06492/06492.pdf (accessed on 15 July 2023).
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Grixti, J.C.; Wong, L.T.; Cameron, S.A.; Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 2009, 142, 75–84. [Google Scholar] [CrossRef]
- Sihag, R.C. Population dynamics of andrenid pollinators at sub-tropical Hisar (India). In Pollination in Tropics; Veeresh, G.K., Shankar, R.U., Ganeshaiah, K., Eds.; IUSSI-Indian Chapter: Bangalore, India, 1993; pp. 270–273. [Google Scholar]
- Sihag, R.C. Two native andrenid bee pollinators face severe population declines in the semi-arid environments of Northwest India. EUREKA Life Sci. 2023; 5, in press. [Google Scholar]
- Tonhasca, A.; Blackmer, J.; Albuquerque, G.S. Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 2002, 34, 416–422. [Google Scholar] [CrossRef]
- Banaszak, J. Strategy for conservation of wild bees in an agricultural landscape. Agric. Ecosyst. Environ. 1992, 4, 179–192. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Munzenberg, U.; Burger, C.; Thies, C.; Tscharntke, T. Scale-dependent effects of landscape structure on three pollinator guilds. Ecology 2002, 83, 1421–1432. [Google Scholar] [CrossRef]
- Kraus, B.; Page, R.E. Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environ. Entomol. 1995, 24, 1473–1480. [Google Scholar] [CrossRef]
- Le Conte, Y.; Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008, 27, 499–510. [Google Scholar]
- Schneider, S.S.; DeGrandi-Hoffman, G.; Smith, D.R. The African honey bee: Factors contributing to a successful biological invasion. Annu. Rev. Entomol. 2004, 49, 351–376. [Google Scholar] [CrossRef]
- Kevan, P.G. Forest application of the insecticide Fenitrothion and its effects on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in southern New Brunswick, Canada. Biol. Conserv. 1975, 7, 301–309. [Google Scholar] [CrossRef]
- Brittain, C.A.; Vighi, M.; Bommarco, R.; Settele, J. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 2010, 11, 106–115. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.L.; Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef]
- Kearns, C.A.; Inouye, D.W.; Waser, N.M. Endangered mutualisms: The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 1998, 29, 83–112. [Google Scholar] [CrossRef]
- Pauw, A. Collapse of a pollination web in small conservation areas. Ecology 2007, 88, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Burkle, L.A.; Marlin, J.C.; Knight, T.M. Plant-pollinator interactions over 120 Years: Loss of species, co-occurrence and function. Science 2013, 339, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A.; Buchmann, S.; Cane, J.; Cox, P.A.; Dalton, V.; Feinsinger, P.; Ingram, M.; et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 1998, 12, 8–17. [Google Scholar]
- Kremen, C.; Ricketts, T. Global perspectives on pollination disruptions. Conserv. Biol. 2000, 14, 1226–1228. [Google Scholar] [CrossRef]
- Richards, A.J. Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Ann. Bot. 2001, 88, 165–172. [Google Scholar] [CrossRef]
- Westerkamp, C.; Gottsberger, G. The costly crop pollination crisis. In Pollinating Bees—The Conservation Link between Agriculture and Nature; Kevan, P., Imperatriz Fonseca, V., Eds.; Brasilia Ministry of Environment: Brasilia, Brazil, 2002; pp. 51–56. Available online: http://www.webbee.org.br/bpi/pdfs/livro_01_westerkamp.pdf (accessed on 15 July 2023).
- Steffan-Dewenter, I.; Potts, S.G.; Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 2005, 20, 651–652. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Bio. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Sihag, R.C. Bee diversity for floral diversity. J. Nat. Sci. Sustain. Technol. 2012, 6, 271–276. [Google Scholar]
Sr. No. | Insect Species | Insect Type | Order | Family |
---|---|---|---|---|
1. | Andrena savignyi Spinola | Solitary Bee | Hymenoptera | Andenidae |
2. | Andrena leaena Cameron | Solitary Bee | Hymenoptera | Andenidae |
3. | Apis dorsata F. | Social Bee | Hymenoptera | Apidae |
4. | Apis florea F. | Social Bee | Hymenoptera | Apidae |
5. | Apis mellifera L. | Social Bee | Hymenoptera | Apidae |
6. | Eristalis sp. | Fly | Diptera | Syrphidae |
9. | Syrphus sp. | Fly | Diptera | Syrphidae |
7. | Sarcophaga sp. | Fly | Diptera | Sarcophagidae |
8. | Chrysoma bezziana V. | Fly | Diptera | Calliphoridae |
9. | Danaus genutia (Cramer) | Butterfly | Lepidoptera | Nymphalidae |
10. | Coccinella septempunctata (L.) | Beetle | Coleoptera | Coccinellidae |
Visitor Species | Number of Loose Pollen Grains | |
---|---|---|
Carried on the Body of a Forager While Foraging on the Plant a | Deposited on the Stigma in a Single Visit b | |
Andrena savignyi Spinola | 1340 ± 21.2 | 63 ± 10.2 |
Andrena leaena Cameron | 1315 ± 22.8 | 55 ± 8.6 |
Apis dorsata F. | 1660 ± 15.8 | 85 ± 12.8 |
Apis florea F. | 1235 ± 10.3 | 45 ± 8.2 |
Apis mellifera L. | 1570 ± 15.5 | 68 ± 12.2 |
Flies | 240 ± 7.6 | 30 ± 5.3 |
C.D. (p < 0.05) | 22.6 | 6.8 |
Visitor Species | Number of Seeds Set in the Siliqua of Rocket Due to a Single Visit of Different Foraging Modes of Flower Visitors (Figures in Parentheses Are Percent Siliqua Setting Seeds) a | ||
---|---|---|---|
Only Nectar Foraging (N) | Only Pollen Foraging (P) | Nectar and Pollen Foraging (NP) | |
Andrena savignyi Spinola | ba | ba | 24.0 ± 0.0 (100) |
Andrena leaena Cameron | ba | ba | 24.0 ± 0.0 (100) |
Apis dorsata F. | ba | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Apis florea F. | 0 (0) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Apis mellifera L. | 0 (0) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Flies | 0 (0) | - | - |
Visitor Species | Number of Seeds Set in the Siliqua of Rocket Due to Multiple Visits of Flower Visitors (Figures in Parentheses Are Percent Siliqua Setting Seeds) a | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Andrena savignyi Spinola | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Andrena leaena Cameron | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Apis dorsata F. | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Apis florea F. | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Apis mellifera L. | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) | 24.0 ± 0.0 (100) |
Flies | 2.5 ± 0.02 (6.5) | 4.0 ± 0.03 (10.0) | 6.5 ± 0.05 (16.25) | 8.5 ± 0.07 (21.25) |
Parameter | Foraging Mode | Visitor Species | |||||
---|---|---|---|---|---|---|---|
Andrenasavignyi | Andrena leaena | Apisdorsata | Apis florea | Apis mellifera | Flies | ||
Abundance (No. of foragers Per m2) * | N | 0 | 0 | 0 | 3.75 ± 0.25 | 0.90 ± 0.07 | ba |
P | 0 | 0 | 0.25 ± 0.02 | 1.05 ± 0.07 | 0.60 ± 0.04 | 4.32 ± 0.02 | |
NP | 1.65 ± 0.15 | 1.50 ± 0.14 | 1.55 ± 0.14 | 0.35 ± 0.02 | 2.10 ± 0.14 | ba | |
N + P + NP | 1.65 ± 0.15 | 1.50 ± 0.14 | 1.80 ± 0.24 | 5.15 ± 0.80 | 3.60 ± 0.25 | 4.32 ± 0.02 | |
Foraging rate (No. of flowers visited per minute) ** | N | 0 | 0 | 0 | nt | nt | ba |
P | 0 | 0 | 7.35 ± 1.6 | 3.30 ± 0.45 | 4.55 ± 0.45 | 0.15 ± 0.001 | |
NP | 8.85 ± 1.5 | 8.35 ± 1.4 | 5.5 ± 0.7 | 1.35 ± 0.13 | 3.15 ± 0.69 | ba | |
DerivedPTE | 14.6 | 12.5 | 1.8 + 8.5 = 10.3 | 3.4 + 0.5 = 3.9 | 2.7 + 6.6 = 9.3 | 0.65 | |
Real PTE | 14.6 | 12.5 | 10.3 | 3.9 | 9.3 | 0.03 | |
Percent pollination by a species | 28.84 | 24.69 | 20.34 | 7.70 | 18.37 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sihag, R.C. Pollination Ecology of Rocket (Eruca vesicaria (L.) Cav. ssp. sativa (Mill.) Thell) in the Semi-Arid Environments of Northwest India: Native Bees Are the Major Pollinators. Ecologies 2023, 4, 580-594. https://doi.org/10.3390/ecologies4030038
Sihag RC. Pollination Ecology of Rocket (Eruca vesicaria (L.) Cav. ssp. sativa (Mill.) Thell) in the Semi-Arid Environments of Northwest India: Native Bees Are the Major Pollinators. Ecologies. 2023; 4(3):580-594. https://doi.org/10.3390/ecologies4030038
Chicago/Turabian StyleSihag, Ram Chander. 2023. "Pollination Ecology of Rocket (Eruca vesicaria (L.) Cav. ssp. sativa (Mill.) Thell) in the Semi-Arid Environments of Northwest India: Native Bees Are the Major Pollinators" Ecologies 4, no. 3: 580-594. https://doi.org/10.3390/ecologies4030038
APA StyleSihag, R. C. (2023). Pollination Ecology of Rocket (Eruca vesicaria (L.) Cav. ssp. sativa (Mill.) Thell) in the Semi-Arid Environments of Northwest India: Native Bees Are the Major Pollinators. Ecologies, 4(3), 580-594. https://doi.org/10.3390/ecologies4030038