Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterson, G.W. Diplodia Blight of Pines; Forest Insect & Disease Leaflet 161; US Forest Service: Lincoln, NE, USA, 1997. Available online: http://www.na.fs.fed.us/spfo/pubs/fidls/diplodia/diplodiafidl.htm (accessed on 5 April 2017).
- Chou, C.K.S. Crown wilt of Pinus radiata associated with Diplodia pinea infection of woody stems. Eur. J. For. Pathol. 1987, 17, 398–411. [Google Scholar]
- Hanso, M.; Drenkhan, R. Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol. 2009, 58, 797. [Google Scholar] [CrossRef]
- Wallis, C.; Eyles, A.; Chorbadjian, R.A.; Riedl, K.; Schwartz, S.; Hansen, R.; Cipollini, D.; Herms, D.A.; Bonello, P. Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. For. Pathol. 2011, 45, 52–58. [Google Scholar] [CrossRef]
- Mohali, S.; Encinas, O. Association of Diplodia mutila with blue stain of Caribbean pine in Venezuela. For. Pathol. 2001, 31, 187–189. [Google Scholar] [CrossRef]
- Munck, I.A.; Smith, D.R.; Sickley, T.; Stanosz, G.R. Site-related influences on cone-borne inoculum and asymptomatic persistence of Diplodia shoot blight fungi on or in mature red pines. For. Ecol. Manag. 2009, 257, 812–819. [Google Scholar] [CrossRef]
- Stanosz, G.R.; Smith, D.R.; Leisso, R. Diplodia shoot blight and asymptomatic persistence of Diplodia pinea on or in stems of jack pine nursery seedlings. For. Pathol. 2007, 37, 145–154. [Google Scholar] [CrossRef]
- Kashian, D.M.; Barnes, B.V.; Walker, W.S. Landscape ecosystems of northern lower Michigan and the occurrence and management of the Kirtland’s warbler. For. Sci. 2003, 49, 140–159. [Google Scholar]
- Rudolf, P.O.; Laidly, P.R. Pinus banksiana Lamb. (Jack Pine). In Silvics of North America: 1. Softwoods; Burns, R.M., Honkala, B.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Gilmore, D.W.; Palik, B. A Revised Managers Handbook for Red Pine in the North Central Region; General Technical Report NC-264; North Central Research Station, US Forest Service: St. Paul, MI, USA, 2005.
- Rudolf, P.O. Pinus resinosa Ait. (Red Pine). In Silvics of North America: 1. Softwoods; Burns, R.M., Honkala, B.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Magruder, M.; Chhin, S.; Monks, D.; O’Brien, J. Effects of initial stand density and climate on red pine productivity within Huron National Forest, Michigan. Forests 2012, 3, 1086–1103. [Google Scholar] [CrossRef] [Green Version]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Chhin, S.; O’Brien, J. Dendroclimatic analysis of red pine affected by Diplodia shoot blight in different latitudinal regions in Michigan. Can. J. For. Res. 2015, 45, 1757–1767. [Google Scholar] [CrossRef]
- Bucur, V. Techniques for high resolution imaging of wood structure: A review. Meas. Sci. Technol. 2003, 14, R91–R98. [Google Scholar] [CrossRef]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 47, 965–975. [Google Scholar] [CrossRef]
- Wang, X.; Ross, R.J.; Carter, P. Acoustic evaluation of wood quality in standing trees. Part I. Acoustic wave behavior. Wood Fiber Sci. 2007, 39, 28–38. [Google Scholar]
- Dahle, G.A.; Carpenter, A.; DeVallance, D. Non-destructive Measurement of the Flexural Modulus of Elasticity of Wood Using Acoustical Stress Waves. Arboric. Urban For. 2016, 42, 227–233. [Google Scholar]
- Persad, A.; Rocha, O.; Dahle, G.A.; Grabosky, J.; DeVallance, D. Optical, acoustical and fine root analyses of emerald ash borer infested ash trees. Arboric. Urban For. 2019, 45, 211–220. [Google Scholar] [CrossRef]
- Nicolotti, G.; Socco, L.V.; Martinis, R.; Godio, A.; Sambuelli, L. Application and comparison of three tomographic techniques for detection of decay in trees. J. Arboric. 2003, 29, 66–78. [Google Scholar] [CrossRef]
- Gilbert, E.A.; Smiley, E.T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and Hickory (Carya spp.). J. Arboric. 2004, 30, 277–281. [Google Scholar] [CrossRef]
- Burcham, D.C.; Brazee, N.J.; Marra, R.E.; Kane, B. Geometry matters for sonic tomography of trees. Trees 2023, 34, 837–848. [Google Scholar] [CrossRef]
- Newton, P.F. Acoustic-based non-destructive estimation of wood quality attributes within standing red pine trees. Forests 2017, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Acoustic-based prediction of end-product-based fibre determinates within standing jack pine trees. Forests 2019, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Divos, F.; Pilon, C.; Brashaw, B.K.; Ross, R.J.; Pellerin, R.F. Assessment of Decay in Standing Timber Using Stress Wave Timing Nondestructive Evaluation Tools; General Technical Report FPL-GTR-147; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2004.
- Carter, P.; Briggs, D.; Ross, R.J.; Wang, X. Acoustic testing to enhance western forest values and meet customer wood quality needs. In Productivity of Western Forests: A Forest Products Focus; Gen. Tech. Rep., P.NW-GTR-642; Harrington, C.A., Schoenholtz, S.H., Eds.; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; pp. 121–129. [Google Scholar]
- Zhang, H.; Wang, X.; Su, J. Experimental investigation of stress wave propagation in standing trees. Holzforschung 2011, 65, 743–748. [Google Scholar] [CrossRef]
- Mattheck, C.G.; Bethge, K.A. Detection of decay in trees with the Metriguard Stress Wave Timer. J. Abroriculture 1993, 19, 374–378. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as An Engineering Material; General Technical Report FPL-GTR-190; USDA, Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Li, L.; Wang, X.P.; Wang, L.; Allison, R.B. Acoustic tomograph in relation to 2D ultrasonic velocity and hardness mappings. Wood Sci. Technol. 2012, 46, 551–561. [Google Scholar] [CrossRef]
- Wang, X.; Wiedenbeck, J.; Lian, S. Acoustic tomography for decay detection in black cherry trees. Wood Fiber Sci. 2009, 41, 127–137. [Google Scholar]
Site Number | Latitudinal Region | Forest Health | Initial Stand Density | Longitude (o) | Latitude (o) | Elevation (m) | Group Abbreviation |
---|---|---|---|---|---|---|---|
RPC51 | UP | Control | Low | −84.7852 | 46.1877 | 221 | UP-C-L |
RPC64 | UP | Control | Low | −86.9458 | 45.8471 | 206 | UP-C-L |
RPC59 | UP | Control | High | −84.9909 | 46.3153 | 335 | UP-C-H |
RPC65 | UP | Control | High | −86.9545 | 45.8392 | 179 | UP-C-H |
RPD62 | UP | Diplodia | Low | −85.0323 | 46.3185 | 298 | UP-D-L |
RPD67 | UP | Diplodia | Low | −86.9610 | 45.8018 | 200 | UP-D-L |
RPD60 | UP | Diplodia | High | −84.9994 | 46.3113 | 296 | UP-D-H |
RPD66 | UP | Diplodia | High | −86.9475 | 45.8270 | 188 | UP-D-H |
RPC03 | LP | Control | Low | −83.9673 | 44.5715 | 355 | LP-C-L |
RPC04 | LP | Control | Low | −84.0781 | 44.6589 | 295 | LP-C-L |
RPC06 | LP | Control | Low | −83.5937 | 44.4974 | 267 | LP-C-L |
RPC05 | LP | Control | High | −84.0495 | 44.6588 | 278 | LP-C-H |
RPC07 | LP | Control | High | −83.6176 | 44.5156 | 267 | LP-C-H |
RPC09 | LP | Control | High | −83.6389 | 44.4832 | 256 | LP-C-H |
RPD11 | LP | Diplodia | Low | −83.6904 | 44.4976 | 272 | LP-D-L |
RPD17 | LP | Diplodia | Low | −83.6979 | 44.4289 | 255 | LP-D-L |
RPD19 | LP | Diplodia | Low | −83.6270 | 44.4118 | 259 | LP-D-L |
RPD01 | LP | Diplodia | High | −84.2502 | 44.6552 | 328 | LP-D-H |
RPD09 | LP | Diplodia | High | −84.0881 | 44.5950 | 387 | LP-D-H |
RPD16 | LP | Diplodia | High | −83.5829 | 44.5584 | 254 | LP-D-H |
Site Number | Latitudinal Region | Forest Health | Initial Stand Density | Longitude (o) | Latitude (o) | Elevation (m) | Group Abbreviation |
---|---|---|---|---|---|---|---|
JPC75 | UP | Control | Low | −86.6163 | 46.3019 | 273 | UP-C-L |
JPC81 | UP | Control | Low | −84.9866 | 46.2881 | 268 | UP-C-L |
JPC74 | UP | Control | High | −84.9790 | 46.3023 | 281 | UP-C-H |
JPC80 | UP | Control | High | −86.9738 | 45.8475 | 193 | UP-C-H |
JPD72 | UP | Diplodia | Low | −84.9694 | 46.2126 | 267 | UP-D-L |
JPD77 | UP | Diplodia | Low | −86.9615 | 45.8485 | 201 | UP-D-L |
JPD71 | UP | Diplodia | High | −85.0044 | 46.2320 | 267 | UP-D-H |
JPD79 | UP | Diplodia | High | −86.3902 | 46.1565 | 220 | UP-D-H |
JPC03 | LP | Control | Low | −84.0307 | 44.6542 | 294 | LP-C-L |
JPC05 | LP | Control | Low | −84.4482 | 44.6454 | 364 | LP-C-L |
JPC06 | LP | Control | Low | −84.5333 | 44.6110 | 363 | LP-C-L |
JPC01 | LP | Control | High | −84.3678 | 44.5355 | 367 | LP-C-H |
JPC02 | LP | Control | High | −84.3521 | 44.5351 | 372 | LP-C-H |
JPC04 | LP | Control | High | −83.9006 | 44.6619 | 303 | LP-C-H |
JPD01 | LP | Diplodia | Low | −84.5260 | 44.6479 | 349 | LP-D-L |
JPD07 | LP | Diplodia | Low | −84.5366 | 44.6162 | 379 | LP-D-L |
JPD14 | LP | Diplodia | Low | −84.3692 | 44.5364 | 364 | LP-D-L |
JPD09 | LP | Diplodia | High | −84.3703 | 44.5341 | 371 | LP-D-H |
JPD13 | LP | Diplodia | High | −83.9118 | 44.6709 | 303 | LP-D-H |
JPD16 | LP | Diplodia | High | −84.3719 | 44.5458 | 361 | LP-D-H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhin, S.; Dahle, G. Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies 2023, 4, 512-520. https://doi.org/10.3390/ecologies4030033
Chhin S, Dahle G. Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies. 2023; 4(3):512-520. https://doi.org/10.3390/ecologies4030033
Chicago/Turabian StyleChhin, Sophan, and Gregory Dahle. 2023. "Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities" Ecologies 4, no. 3: 512-520. https://doi.org/10.3390/ecologies4030033
APA StyleChhin, S., & Dahle, G. (2023). Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies, 4(3), 512-520. https://doi.org/10.3390/ecologies4030033