Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterson, G.W. Diplodia Blight of Pines; Forest Insect & Disease Leaflet 161; US Forest Service: Lincoln, NE, USA, 1997. Available online: http://www.na.fs.fed.us/spfo/pubs/fidls/diplodia/diplodiafidl.htm (accessed on 5 April 2017).
- Chou, C.K.S. Crown wilt of Pinus radiata associated with Diplodia pinea infection of woody stems. Eur. J. For. Pathol. 1987, 17, 398–411. [Google Scholar]
- Hanso, M.; Drenkhan, R. Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol. 2009, 58, 797. [Google Scholar] [CrossRef]
- Wallis, C.; Eyles, A.; Chorbadjian, R.A.; Riedl, K.; Schwartz, S.; Hansen, R.; Cipollini, D.; Herms, D.A.; Bonello, P. Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. For. Pathol. 2011, 45, 52–58. [Google Scholar] [CrossRef]
- Mohali, S.; Encinas, O. Association of Diplodia mutila with blue stain of Caribbean pine in Venezuela. For. Pathol. 2001, 31, 187–189. [Google Scholar] [CrossRef]
- Munck, I.A.; Smith, D.R.; Sickley, T.; Stanosz, G.R. Site-related influences on cone-borne inoculum and asymptomatic persistence of Diplodia shoot blight fungi on or in mature red pines. For. Ecol. Manag. 2009, 257, 812–819. [Google Scholar] [CrossRef]
- Stanosz, G.R.; Smith, D.R.; Leisso, R. Diplodia shoot blight and asymptomatic persistence of Diplodia pinea on or in stems of jack pine nursery seedlings. For. Pathol. 2007, 37, 145–154. [Google Scholar] [CrossRef]
- Kashian, D.M.; Barnes, B.V.; Walker, W.S. Landscape ecosystems of northern lower Michigan and the occurrence and management of the Kirtland’s warbler. For. Sci. 2003, 49, 140–159. [Google Scholar]
- Rudolf, P.O.; Laidly, P.R. Pinus banksiana Lamb. (Jack Pine). In Silvics of North America: 1. Softwoods; Burns, R.M., Honkala, B.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Gilmore, D.W.; Palik, B. A Revised Managers Handbook for Red Pine in the North Central Region; General Technical Report NC-264; North Central Research Station, US Forest Service: St. Paul, MI, USA, 2005.
- Rudolf, P.O. Pinus resinosa Ait. (Red Pine). In Silvics of North America: 1. Softwoods; Burns, R.M., Honkala, B.H., Eds.; US Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Magruder, M.; Chhin, S.; Monks, D.; O’Brien, J. Effects of initial stand density and climate on red pine productivity within Huron National Forest, Michigan. Forests 2012, 3, 1086–1103. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Chhin, S.; O’Brien, J. Dendroclimatic analysis of red pine affected by Diplodia shoot blight in different latitudinal regions in Michigan. Can. J. For. Res. 2015, 45, 1757–1767. [Google Scholar] [CrossRef]
- Bucur, V. Techniques for high resolution imaging of wood structure: A review. Meas. Sci. Technol. 2003, 14, R91–R98. [Google Scholar] [CrossRef]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 47, 965–975. [Google Scholar] [CrossRef]
- Wang, X.; Ross, R.J.; Carter, P. Acoustic evaluation of wood quality in standing trees. Part I. Acoustic wave behavior. Wood Fiber Sci. 2007, 39, 28–38. [Google Scholar]
- Dahle, G.A.; Carpenter, A.; DeVallance, D. Non-destructive Measurement of the Flexural Modulus of Elasticity of Wood Using Acoustical Stress Waves. Arboric. Urban For. 2016, 42, 227–233. [Google Scholar]
- Persad, A.; Rocha, O.; Dahle, G.A.; Grabosky, J.; DeVallance, D. Optical, acoustical and fine root analyses of emerald ash borer infested ash trees. Arboric. Urban For. 2019, 45, 211–220. [Google Scholar] [CrossRef]
- Nicolotti, G.; Socco, L.V.; Martinis, R.; Godio, A.; Sambuelli, L. Application and comparison of three tomographic techniques for detection of decay in trees. J. Arboric. 2003, 29, 66–78. [Google Scholar] [CrossRef]
- Gilbert, E.A.; Smiley, E.T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and Hickory (Carya spp.). J. Arboric. 2004, 30, 277–281. [Google Scholar] [CrossRef]
- Burcham, D.C.; Brazee, N.J.; Marra, R.E.; Kane, B. Geometry matters for sonic tomography of trees. Trees 2023, 34, 837–848. [Google Scholar] [CrossRef]
- Newton, P.F. Acoustic-based non-destructive estimation of wood quality attributes within standing red pine trees. Forests 2017, 8, 380. [Google Scholar] [CrossRef]
- Newton, P.F. Acoustic-based prediction of end-product-based fibre determinates within standing jack pine trees. Forests 2019, 10, 605. [Google Scholar] [CrossRef]
- Wang, X.; Divos, F.; Pilon, C.; Brashaw, B.K.; Ross, R.J.; Pellerin, R.F. Assessment of Decay in Standing Timber Using Stress Wave Timing Nondestructive Evaluation Tools; General Technical Report FPL-GTR-147; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2004.
- Carter, P.; Briggs, D.; Ross, R.J.; Wang, X. Acoustic testing to enhance western forest values and meet customer wood quality needs. In Productivity of Western Forests: A Forest Products Focus; Gen. Tech. Rep., P.NW-GTR-642; Harrington, C.A., Schoenholtz, S.H., Eds.; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; pp. 121–129. [Google Scholar]
- Zhang, H.; Wang, X.; Su, J. Experimental investigation of stress wave propagation in standing trees. Holzforschung 2011, 65, 743–748. [Google Scholar] [CrossRef]
- Mattheck, C.G.; Bethge, K.A. Detection of decay in trees with the Metriguard Stress Wave Timer. J. Abroriculture 1993, 19, 374–378. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as An Engineering Material; General Technical Report FPL-GTR-190; USDA, Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Li, L.; Wang, X.P.; Wang, L.; Allison, R.B. Acoustic tomograph in relation to 2D ultrasonic velocity and hardness mappings. Wood Sci. Technol. 2012, 46, 551–561. [Google Scholar] [CrossRef]
- Wang, X.; Wiedenbeck, J.; Lian, S. Acoustic tomography for decay detection in black cherry trees. Wood Fiber Sci. 2009, 41, 127–137. [Google Scholar]
Site Number | Latitudinal Region | Forest Health | Initial Stand Density | Longitude (o) | Latitude (o) | Elevation (m) | Group Abbreviation |
---|---|---|---|---|---|---|---|
RPC51 | UP | Control | Low | −84.7852 | 46.1877 | 221 | UP-C-L |
RPC64 | UP | Control | Low | −86.9458 | 45.8471 | 206 | UP-C-L |
RPC59 | UP | Control | High | −84.9909 | 46.3153 | 335 | UP-C-H |
RPC65 | UP | Control | High | −86.9545 | 45.8392 | 179 | UP-C-H |
RPD62 | UP | Diplodia | Low | −85.0323 | 46.3185 | 298 | UP-D-L |
RPD67 | UP | Diplodia | Low | −86.9610 | 45.8018 | 200 | UP-D-L |
RPD60 | UP | Diplodia | High | −84.9994 | 46.3113 | 296 | UP-D-H |
RPD66 | UP | Diplodia | High | −86.9475 | 45.8270 | 188 | UP-D-H |
RPC03 | LP | Control | Low | −83.9673 | 44.5715 | 355 | LP-C-L |
RPC04 | LP | Control | Low | −84.0781 | 44.6589 | 295 | LP-C-L |
RPC06 | LP | Control | Low | −83.5937 | 44.4974 | 267 | LP-C-L |
RPC05 | LP | Control | High | −84.0495 | 44.6588 | 278 | LP-C-H |
RPC07 | LP | Control | High | −83.6176 | 44.5156 | 267 | LP-C-H |
RPC09 | LP | Control | High | −83.6389 | 44.4832 | 256 | LP-C-H |
RPD11 | LP | Diplodia | Low | −83.6904 | 44.4976 | 272 | LP-D-L |
RPD17 | LP | Diplodia | Low | −83.6979 | 44.4289 | 255 | LP-D-L |
RPD19 | LP | Diplodia | Low | −83.6270 | 44.4118 | 259 | LP-D-L |
RPD01 | LP | Diplodia | High | −84.2502 | 44.6552 | 328 | LP-D-H |
RPD09 | LP | Diplodia | High | −84.0881 | 44.5950 | 387 | LP-D-H |
RPD16 | LP | Diplodia | High | −83.5829 | 44.5584 | 254 | LP-D-H |
Site Number | Latitudinal Region | Forest Health | Initial Stand Density | Longitude (o) | Latitude (o) | Elevation (m) | Group Abbreviation |
---|---|---|---|---|---|---|---|
JPC75 | UP | Control | Low | −86.6163 | 46.3019 | 273 | UP-C-L |
JPC81 | UP | Control | Low | −84.9866 | 46.2881 | 268 | UP-C-L |
JPC74 | UP | Control | High | −84.9790 | 46.3023 | 281 | UP-C-H |
JPC80 | UP | Control | High | −86.9738 | 45.8475 | 193 | UP-C-H |
JPD72 | UP | Diplodia | Low | −84.9694 | 46.2126 | 267 | UP-D-L |
JPD77 | UP | Diplodia | Low | −86.9615 | 45.8485 | 201 | UP-D-L |
JPD71 | UP | Diplodia | High | −85.0044 | 46.2320 | 267 | UP-D-H |
JPD79 | UP | Diplodia | High | −86.3902 | 46.1565 | 220 | UP-D-H |
JPC03 | LP | Control | Low | −84.0307 | 44.6542 | 294 | LP-C-L |
JPC05 | LP | Control | Low | −84.4482 | 44.6454 | 364 | LP-C-L |
JPC06 | LP | Control | Low | −84.5333 | 44.6110 | 363 | LP-C-L |
JPC01 | LP | Control | High | −84.3678 | 44.5355 | 367 | LP-C-H |
JPC02 | LP | Control | High | −84.3521 | 44.5351 | 372 | LP-C-H |
JPC04 | LP | Control | High | −83.9006 | 44.6619 | 303 | LP-C-H |
JPD01 | LP | Diplodia | Low | −84.5260 | 44.6479 | 349 | LP-D-L |
JPD07 | LP | Diplodia | Low | −84.5366 | 44.6162 | 379 | LP-D-L |
JPD14 | LP | Diplodia | Low | −84.3692 | 44.5364 | 364 | LP-D-L |
JPD09 | LP | Diplodia | High | −84.3703 | 44.5341 | 371 | LP-D-H |
JPD13 | LP | Diplodia | High | −83.9118 | 44.6709 | 303 | LP-D-H |
JPD16 | LP | Diplodia | High | −84.3719 | 44.5458 | 361 | LP-D-H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhin, S.; Dahle, G. Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies 2023, 4, 512-520. https://doi.org/10.3390/ecologies4030033
Chhin S, Dahle G. Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies. 2023; 4(3):512-520. https://doi.org/10.3390/ecologies4030033
Chicago/Turabian StyleChhin, Sophan, and Gregory Dahle. 2023. "Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities" Ecologies 4, no. 3: 512-520. https://doi.org/10.3390/ecologies4030033
APA StyleChhin, S., & Dahle, G. (2023). Using Acoustic Tomography to Infer Stem Wood Quality of Pine Forests Affected by a Fungal Pathogen in Different Latitudinal Regions and Plantation Densities. Ecologies, 4(3), 512-520. https://doi.org/10.3390/ecologies4030033