Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge
Abstract
:1. Introduction
2. Control Methods
3. Interactions of Toxic Cyanobacteria with Other Aquatic Microbes
3.1. Protection and Promotion
3.2. Antagonism and Inhibition
4. Prospects for Incorporating Microbial Species Interactions into the Management of Toxic Cyanobacteria
4.1. Non-Targeted Approaches
4.2. Targeting of Facilitators
4.3. Reduction of Benthic Occupancy and Recruitment
4.4. Manipulation of Natural Enemies
5. Future Research Directions for HABs Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarn, J.; Peoples, L.M.; Hardy, K.; Cameron, J.; Bartlett, D.H. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front. Microbiol. 2016, 7, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierzchos, J.; Ascaso, C.; McKay, C.P. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 2006, 6, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Prieto, A.; Weber, A.P.M.; Bhattacharya, D. The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 2007, 41, 147–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottingham, K.L.; Ewing, H.A.; Greer, M.L.; Carey, C.C.; Weathers, K.C. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Stewart, I.; Robertson, I.M.; Webb, P.M.; Schluter, P.J.; Shaw, G.R. Cutaneous hypersensitivity reactions to freshwater cyanobacteria—Human volunteer studies. BMC Dermatol. 2006, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Massey, I.Y.; Feng, H.; Yang, F. A review of cardiovascular toxicity of microcystins. Toxins (Basel) 2019, 11, 507. [Google Scholar] [CrossRef] [Green Version]
- Kubickova, B.; Babica, P.; Hilscherová, K.; Šindlerová, L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019, 31, 31. [Google Scholar] [CrossRef] [Green Version]
- Lad, A.; Breidenbach, J.D.; Su, R.C.; Murray, J.; Kuang, R.; Mascarenhas, A.; Najjar, J.; Patel, S.; Hegde, P.; Youssef, M.; et al. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life 2022, 12, 418. [Google Scholar] [CrossRef]
- Smucker, N.J.; Beaulieu, J.J.; Nietch, C.T.; Young, J.L. Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs. Glob. Change Biol. 2021, 27, 2507–2519. [Google Scholar] [CrossRef]
- Guo, Y.; O’Brien, A.M.; Lins, T.F.; Shahmohamadloo, R.S.; Almirall, X.O.; Rochman, C.M.; Sinton, D. Effects of hydrogen peroxide on cyanobacterium Microcystis aeruginosa in the presence of nanoplastics. ACS ES&T Water 2021, 1, 1596–1607. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Duelling ‘CyanoHABs’: Unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ. Microbiol. 2016, 18, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique, R.O.; Salerno, G.L. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 2018, 57, 130–146. [Google Scholar] [CrossRef]
- Jankowiak, J.; Hattenrath-Lehmann, T.; Kramer, B.J.; Ladds, M.; Gobler, C.J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 2019, 64, 1347–1370. [Google Scholar] [CrossRef] [Green Version]
- Den Uyl, P.A.; Harrison, S.B.; Godwin, C.M.; Rowe, M.D.; Strickler, J.R.; Vanderploeg, H.A. Comparative analysis of Microcystis buoyancy in western Lake Erie and Saginaw Bay of Lake Huron. Harmful Algae 2021, 108, 102102. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Rivera, E.; Paul, V.J. Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J. Chem. Ecol. 2007, 33, 213–217. [Google Scholar] [CrossRef]
- Larsen, M.L.; Baulch, H.M.; Schiff, S.L.; Simon, D.F.; Sauvé, S.; Venkiteswaran, J.J. Extreme rainfall drives early onset cyanobacterial bloom. FACETS 2020, 5, 1. [Google Scholar] [CrossRef]
- Lohan, K.M.P.; Darling, J.A.; Ruiz, G.M. International shipping as a potent vector for spreading marine parasites. Divers. Distrib. 2022, 28, 1922–1933. [Google Scholar] [CrossRef]
- Visser, P.M.; Ibelings, B.W.; Mur, L.R.; Walsby, A.E. The ecophysiology of the harmful cyanobacterium Microcystis: Features explaining its success and measures for its control. In Harmful Cyanobacteria; Matthijs, J., Hans, C.P., Visser, P.M., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 109–142. [Google Scholar]
- Burford, M.A.; Gobler, C.J.; Hamilton, D.P.; Visser, P.M.; Lurling, M.; Codd, G.A. Solutions for Managing Cyanobacterial Blooms: A Scientific Summary for Policy Makers; IOC/INF-1382; IOC/UNESCO: Paris, France, 2019; 16p. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods. Harmful Algae 2021, 109, 102119. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. Harmful Algae 2021, 109, 102099. [Google Scholar] [CrossRef]
- Sukenik, A.; Kaplan, A. Cyanobacterial harmful algal blooms in aquatic ecosystems: A comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 2021, 9, 1472. [Google Scholar] [CrossRef]
- Bormans, M.; Maršálek, B.; Jančula, D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 407–422. [Google Scholar] [CrossRef]
- Collins, K.E.; Febria, C.M.; Devlin, H.S.; Hogsden, K.L.; Warburton, H.J.; Goeller, B.C.; McIntosh, A.R.; Harding, J.S. Trialling tools using hand-weeding, weed mat and artificial shading to control nuisance macrophyte growth at multiple scales in small agricultural waterways. N. Z. J. Mar. Freshw. Res. 2020, 54, 512–526. [Google Scholar] [CrossRef]
- Arruda, R.S.; Noyma, N.P.; de Magalhães, L.; Mesquita, M.C.B.; de Almeida, E.C.; Pinto, E.; Lürling, M.; Marinho, M.M. ‘Floc and sink’ technique removes cyanobacteria and microcystins from tropical reservoir water. Toxins 2021, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, K.; Chen, Y. Effects of water level fluctuations on phytoplankton in a Changjiang River floodplain lake (Poyang Lake): Implications for dam operations. J. Great Lakes Res. 2015, 41, 770–779. [Google Scholar] [CrossRef]
- Xu, H.-F.; Dai, G.-Z.; Qiu, B.-S. Weak red light plays an important role in awakening the photosynthetic machinery following desiccation in the subaerial cyanobacterium Nostoc flagelliforme. Environ. Microbiol. 2019, 21, 2261–2272. [Google Scholar] [CrossRef]
- Abeynayaka, H.D.L.; Asaeda, T.; Tanaka, K.; Atsuzawa, K.; Kaneko, Y.; Nishda, H.; Inada, S. An alternative method to improve the settleability of gas-vacuolated cyanobacteria by collapsing gas vesicles. Water Supply 2016, 16, 1552–1560. [Google Scholar] [CrossRef]
- Jančula, D.; Mikula, P.; Maršálek, B.; Rudolf, P.; Pochylý, F. Selective method for cyanobacterial bloom removal: Hydraulic jet cavitation experience. Aquac. Int. 2014, 22, 509–521. [Google Scholar] [CrossRef]
- Park, J.; Church, J.; Son, Y.; Kim, K.-T.; Lee, W.H. Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs). Ultrason. Sonochemistry 2017, 38, 326–334. [Google Scholar] [CrossRef]
- Hamamoto, S.; Takemura, T.; Suzuki, K.; Nishimura, T. Effects of pH on nano-bubble stability and transport in saturated porous media. J. Contam. Hydrol. 2018, 208, 61–67. [Google Scholar] [CrossRef]
- Taneez, M.; Hurel, C.; Mady, F.; Francour, P. Capping of marine sediments with valuable industrial by-products: Evaluation of inorganic pollutants immobilization. Environ. Pollut. 2018, 239, 714–721. [Google Scholar] [CrossRef]
- Sadeghi, S.; Hua, G.; Min, K.; Johnson, T.J.; Gibbons, W.B. Phosphorus and cyanobacteria precipitation and sediment capping in lake water using alum and natural minerals. J. Environ. Eng. 2020, 146, 04019095. Available online: https://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0001621 (accessed on 4 April 2021). [CrossRef]
- Wan, W.; Gadd, G.M.; Gu, J.-D.; He, D.; Liu, W.; Yuan, W.; Ye, L.; Yang, Y. Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community. Water Res. 2021, 202, 117449. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Park, J.-H.; Hoashi, Y.; Min, B.-C. Development of an unmanned surface vehicle for harmful algae removal. In Oceans 2019 MTS/IEEE Seattle; IEEE-USA: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Jančula, D.; Maršálek, B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 2011, 85, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.-P. Management of target algae by using copper-based algaecides: Effects of algal cell density and sensitivity to copper. Water Air Soil Pollut. 2016, 227, 238. [Google Scholar] [CrossRef]
- Crafton, E.; Glowczewski, J.; Cutright, T.; Ott, D. Bench-scale assessment of three copper-based algaecide products for cyanobacteria management in source water. SN Appl. Sci. 2021, 3, 391. [Google Scholar] [CrossRef]
- Zerrifi, S.E.A.; Tazart, Z.; El Khalloufi, F.; Oudra, B.; Campos, A.; Vasconcelos, V. Potential control of toxic cyanobacteria blooms with Moroccan seaweed extracts. Environ. Sci. Pollut. Res. 2019, 26, 15218–15228. [Google Scholar] [CrossRef] [PubMed]
- Klementova, S.; Keltnerova, L. Triazine Herbicides in the Environment. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.; He, X.; Yan, N.; Tian, S.; Liu, C.; Wang, W.-X.; Luo, L.; Tang, B.Z. Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. Chem. Eng. J. 2021, 417, 127890. [Google Scholar] [CrossRef]
- Drikas, M.; Chow, C.W.K.; House, J.; Burch, M.D. Using coagulation, flocculation, and settling to remove toxic cyanobacteria. J. AWWA 2001, 93, 100–111. [Google Scholar] [CrossRef]
- Ma, X.; Li, M.; Jiang, E.; Pan, B.; Gao, L. Humic acid inhibits colony formation of the cyanobacterium Microcystis at high level of iron. Chemosphere 2021, 281, 130742. [Google Scholar] [CrossRef]
- Nolan, M.P.; Cardinale, B.J. Species diversity of resident green algae slows the establishment and proliferation of the cyanobacterium Microcystis aeruginosa. Limnologica 2019, 74, 23–27. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, L.; Qi, Y.; Ma, C. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chemosphere 2020, 259, 127430. [Google Scholar] [CrossRef] [PubMed]
- Hao, A.; Haraguchi, T.; Kuba, T.; Kai, H.; Lin, Y.; Iseri, Y. Effect of the microorganism-adherent carrier for Nitzschia palea to control the cyanobacterial blooms. Ecol. Eng. 2021, 159, 106127. [Google Scholar] [CrossRef]
- Xie, P.; Liu, J. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: A synthesis of decades of research and application in a subtropical hypereutrophic lake. Sci. World J. 2001, 1, 276487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos Severiano, J.; dos Santos Almeida-Melo, V.L.; do Carmo Bittencourt-Oliveira, M.; Chia, M.A.; do Nascimento Moura, A. Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: A tropical mesocosm study. Harmful Algae 2018, 71, 10–18. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef]
- Lubnow, F.S. Using floating wetland islands to reduce nutrient concentrations in lake ecosystems. Natl. Wetl. Newsl. 2014, 36, 14–17. [Google Scholar]
- Gu, C.; Li, F.; Xiao, J.; Chu, S.; Song, S.; Wong, M.H. A novel submerged Rotala rotundifolia, its growth characteristics and remediation potential for eutrophic waters. Sci. Rep. 2019, 9, 14855. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Gan, J. Mitigation of eutrophication and hypoxia through oyster aquaculture: An ecosystem model evaluation off the Pearl River Estuary. Environ. Sci. Technol. 2021, 55, 5506–5514. [Google Scholar] [CrossRef]
- Paerl, H.W.; Barnard, M.A. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae 2020, 96, 101845. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M. Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie. J. Great Lakes Res. 2015, 41, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms (HABs): Paradigm shifts and new technologies for research, monitoring and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, J.; Li, R.; Lepo, J.E.; Gu, J.-D. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manag. 2013, 125, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Closson, K.R.; Paul, E.A. Comparison of the toxicity of two chelated copper algaecides and copper sulfate to non-target fish. Bull. Environ. Contam. Toxicol. 2014, 93, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Weenink, E.F.J.; Luimstra, V.M.; Schuurmans, J.M.; Van Herk, M.J.; Visser, P.M.; Matthijs, H.C.P. Combatting cyanobacteria with hydrogen peroxide: A laboratory study on the consequences for phytoplankton community and diversity. Front. Microb. 2015, 6, 714. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Huang, H.; Ge, Z.; Rounge, T.B.; Shi, J.; Xu, X.; Li, R.; Chen, Y. A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): Characterization and comparison of their anti-cyanobacterial activities. Environ. Microbiol. 2014, 16, 1238–1251. [Google Scholar] [CrossRef]
- Benfield, M.C.; Minello, T.J. Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish. Environ. Biol. Fishes 1996, 46, 211–216. [Google Scholar] [CrossRef]
- Terlizzi, D.E.; Ferrier, M.D.; Armbrester, E.A.; Anlauf, K.A. Inhibition of dinoflagellate growth by extracts of barley straw (Hordeum vulgare). J. Appl. Phycol. 2002, 14, 275–280. [Google Scholar] [CrossRef]
- Boylan, J.D.; Morris, J.E. Limited effects of barley straw on algae and zooplankton in a midwestern pond. Lake Reserv. Manag. 2009, 19, 265–271. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.-B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2017, 2, 17065. [Google Scholar] [CrossRef]
- Pringault, O.; Bouvy, M.; Carre, C.; Mejri, K.; Bancon-Montigny, C.; Gonzalez, C.; Leboulanger, C.; Hlaili, A.S.; Goni-Urriza, M. Chemical contamination alters the interactions between bacteria and phytoplankton. Chemosphere 2021, 278, 130457. [Google Scholar] [CrossRef]
- Berg, K.A.; Lyra, C.; Sivonen, K.; Paulin, L.; Suomalainen, S.; Tuomi, P.; Rapala, J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 2009, 3, 314–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.J.; Tan, J.Y.; Powers, M.A.; Lin, X.N.; Davis, T.W.; Dick, G.J. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 2021, 23, 3020–3036. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, H.; Krumholz, L.R.; Yang, Z. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 2014, 9, e102879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoke, A.K.; Reynoso, G.; Smith, M.R.; Gardner, M.I.; Lockwood, D.J.; Gilbert, N.E.; Wilhelm, S.W.; Becker, I.R.; Brennan, G.J.; Crider, K.E.; et al. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE 2021, 16, e0257017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Z.; Lu, T.; Peijnenburg, W.J.G.M.; Gillings, M.; Yang, X.; Chen, J.; Penuelas, J.; Zhu, Y.-G.; Zhou, N.-Y.; et al. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Commun. Biol. 2020, 3, 737. [Google Scholar] [CrossRef]
- Wang, W.; Shen, H.; Shi, P.; Chen, J.; Ni, L.; Xie, P. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. J. Appl. Phycol. 2016, 28, 1111–1123. [Google Scholar] [CrossRef]
- Gao, S.; Kong, Y.; Yu, J.; Miao, L.; Ji, L.; Song, L.; Zeng, C. Isolation of axenic cyanobacterium and the promoting effect of associated bacterium on axenic cyanobacterium. BMC Biotechnol. 2020, 20, 61. [Google Scholar] [CrossRef]
- Shen, H.; Niu, Y.; Xie, P.; Tao, M.; Yang, X. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw. Biol. 2011, 56, 1065–1080. [Google Scholar] [CrossRef]
- Xiao, M.; Li, M.; Reynolds, C.S. Colony formation in the cyanobacterium Microcystis. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1399–1420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Benoit, G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome. Aquat. Toxicol. 2019, 215, 105271. [Google Scholar] [CrossRef]
- Fan, J.; Rao, L.; Chiu, Y.-T.; Lin, T. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis. Water Res. 2016, 102, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Y.; Cao, X.; Zhou, Z.; Wang, S.; Xiao, J.; Song, C.; Zhou, Y. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria. Microbiol. Res. 2017, 205, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Shin, B.; Lee, J.; Park, H.Y.; Park, W. Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Sci. Rep. 2019, 9, 20416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, S.E., Jr.; Patterson, C.O.P.; Myers, J. The production of hydrogen peroxide by blue-green algae: A survey. J. Phycol. 1973, 9, 427–430. [Google Scholar] [CrossRef]
- Piel, T.; Sandrini, G.; White, E.; Xu, T.; Schuurmans, J.M.; Huisman, J.; Visser, P.M. Suppressing cyanobacteria with hydrogen peroxide is more effective at high light intensities. Toxins 2020, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Kaasalainen, U.; Fewer, D.P.; Jokel, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 5886–5891. [Google Scholar] [CrossRef] [Green Version]
- Aschenbrenner, I.A.; Cernava, T.; Berg, G.; Grube, M. Understanding microbial multi-species symbioses. Front. Microbiol. 2016, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Gasulla, F.; del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants 2021, 10, 807. [Google Scholar] [CrossRef]
- Li, T.; Jiang, L.; Hu, Y.; Paul, J.T.; Zuniga, C.; Zengler, K.; Betenbaugh, M.J. Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res. 2020, 45, 101755. [Google Scholar] [CrossRef]
- Jiang, L.; Li, T.; Jenkins, J.; Hu, Y.; Brueck, C.L.; Pei, H.; Betenbaugh, M.J. Evidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environments. Appl. Microbiol. Biotechnol. 2020, 104, 6413–6426. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Jiang, L.; Sun, Y.; Luo, C.; Zhang, G. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. J. Hazard. Mater. 2021, 403, 123895. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Sudo, S.; Kawagishi, H.; Hirai, H. Biodegradation of diuron in artificially contaminated water and seawater by wood colonized with the white-rot fungus Trametes versicolor. J. Wood Sci. 2018, 64, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Hung, T.-C.; Kurobe, T.; Wang, Y.; Yang, P. Microcystin-induced immunotoxicity in fishes: A scoping review. Toxins 2021, 13, 765. [Google Scholar] [CrossRef] [PubMed]
- Rymuszka, A.; Adaszek, L. Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress–An in vitro study. Fish Shellfish Immunol. 2012, 33, 382–388. [Google Scholar] [CrossRef]
- Tellenbach, C.; Tardent, N.; Pomati, F.; Keller, B.; Hairston, N.G., Jr.; Wolinska, J.; Spaak, P. Cyanobacteria facilitate parasite epidemics in Daphnia. Ecology 2016, 97, 3422–3432. [Google Scholar] [CrossRef] [Green Version]
- Buss, N.; Wersebe, M.; Hua, J. Direct and indirect effects of a common cyanobacterial toxin on amphibian-trematode dynamics. Chemosphere 2019, 220, 731–737. [Google Scholar] [CrossRef]
- Kissman, C.E.H.; Williamson, C.E.; Rose, K.C.; Saros, J.E. Nutrients associated with terrestrial dissolved organic matter drive changes in zooplankton:phytoplankton biomass ratios in an alpine lake. Freshw. Biol. 2017, 62, 40–51. [Google Scholar] [CrossRef]
- Wilk-Woźniak, E. An introduction to the ‘micronet’ of cyanobacterial harmful algal blooms (CyanoHABs): Cyanobacteria, zooplankton and microorganisms: A review. Mar. Freshw. Res. 2019, 71, 636–643. [Google Scholar] [CrossRef]
- Sánchez, K.F.; Huntley, N.; Duffy, M.A.; Hunter, M.D. Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proc. Biol. Sci. 2019, 286, 20182231. [Google Scholar] [CrossRef] [Green Version]
- Olsen, E.M.; Jørstad, T.; Kaartvedt, S. The feeding strategies of two large marine copepods. J. Plankton Res. 2000, 22, 1513–1528. [Google Scholar] [CrossRef] [Green Version]
- Wurzbacher, C.; Rösel, S.; Rychła, A.; Grossart, H.-P. Importance of saprotrophic freshwater fungi for pollen degradation. PLoS ONE 2014, 9, e94643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, C.E.; Hinman, N.W. Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Res. 2016, 15, 152–163. [Google Scholar] [CrossRef]
- Zhao, B.; Xing, P.; Wu, Q.L. Interactions between bacteria and fungi in macrophyte leaf litter decomposition. Environ. Microbiol. 2021, 23, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Yang, N.; Liu, J. The osmoprotectant switch of potassium to compatible solutes in an extremely halophilic archaea Halorubrum kocurii 2020YC7. Genes 2022, 13, 939. [Google Scholar] [CrossRef]
- Striednig, B.; Hilbi, H. Bacterial quorum sensing and phenotypic heterogeneity: How the collective shapes the individual. Trends Microbiol. 2022, 30, 379–389. [Google Scholar] [CrossRef]
- Yoch, D.C. Dimethylsulfoniopropionate: Its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 2002, 68, 5804–5815. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, H.; Myronova, N.; Boden, R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: Organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 2010, 61, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Mann, N.H.; Clokie, M.R.J. Cyanophages. In Ecology of Cyanobacteria II; Whitton, B., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Sabehi, G.; Shaulov, L.; Silver, D.H.; Yanai, I.; Harel, A.; Lindell, D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc. Natl. Acad. Sci. USA 2012, 109, 2037–2042. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Li, D.; Sun, Z.; Tong, Y.; Yan, X.; Wang, C.; Zhang, X.; Pei, G. A novel freshwater cyanophage vB_MelS-Me-ZS1 infecting bloom-forming cyanobacterium Microcystis elabens. Mol. Biol. Rep. 2020, 47, 7979–7989. [Google Scholar] [CrossRef]
- Morimoto, D.; Šulčius, S.; Yoshida, T. Viruses of freshwater bloom-forming cyanobacteria: Genomic features, infection strategies and coexistence with the host. Environ. Microbiol. Rep. 2020, 12, 486–502. [Google Scholar] [CrossRef]
- Manage, P.M.; Kawabata, Z.; Nakano, S. Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology 2001, 2, 73–78. [Google Scholar] [CrossRef]
- Sigee, D.C.; Glenn, R.; Andrews, M.J.; Bellinger, E.G.; Butler, R.D.; Epton, H.A.S.; Hendry, R.D. Biological control of cyanobacteria: Principles and possibilities. In The Ecological Bases for Lake and Reservoir Management; Developments in Hydrobiology; Harper, D.M., Brierley, B., Ferguson, A.J.D., Phillips, G., Eds.; Springer: Dordrecht, The Netherlands, 1999; Volume 136. [Google Scholar] [CrossRef]
- Sun, R.; Sun, P.; Zhang, J.; Esquivel-Elizondo, S.; Wu, Y. Microorganisms-based methods for harmful algal blooms control: A review. Bioresour. Technol. 2018, 248 Pt B, 12–20. [Google Scholar] [CrossRef]
- Jassim, S.A.A.; Limoges, R.G. Impact of external forces on cyanophage–host interactions in aquatic ecosystems. World J. Microbiol. Biotechnol. 2013, 29, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Liu, L.; Wang, N.; Sun, Y.; Huang, Y.; Yang, Z. Simultaneous removal of colonial Microcystis and microcystins by protozoa grazing coupled with ultrasound treatment. J. Hazard. Mater. 2021, 420, 126616. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.R.; Pokrzywinski, K.L.; Waechter, C.; Rycroft, T.; Zhang, Y.; Aligata, A.; Kramer, M.; Lamsal, A. A review of cyanophage–host relationships: Highlighting cyanophages as a potential cyanobacteria control strategy. Toxins 2022, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Forchhammer, K. Bacterial predation on cyanobacteria. Microb. Physiol. 2021, 31, 99–108. [Google Scholar] [CrossRef]
- Qi, J.; Song, Y.; Liang, J.; Bai, Y.; Hu, C.; Liu, H.; Qu, J. Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium. Sep. Purif. Technol. 2021, 256, 117808. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, P.; Wang, Y. Algicidal efficiency and mechanism of Phanerochaete chrysosporium against harmful algal bloom species. Algal Res. 2015, 12, 182–190. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Hashem, M.; Alamri, S.; Campos, A.; Vasconcelos, V. Fungal biodegradation and removal of cyanobacteria and microcystins: Potential applications and research needs. Environ. Sci. Pollut. Res. 2021, 28, 37041–37050. [Google Scholar] [CrossRef]
- Williams, R.J.; Martinez, N.D. Limits to trophic levels and omnivory in complex food webs: Theory and data. Am. Nat. 2004, 163, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Omarova, A.; Tussupova, K.; Berndtsson, R.; Kalishev, M.; Sharapatova, K. Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries. Int. J. Environ. Res. Public Health 2018, 15, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahoon, L.B. Chapter 8-Microbiological threats to water quality. In Handbook of Water Purity and Quality, 2nd ed.; Ahuja, S., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 179–198. [Google Scholar] [CrossRef]
- Venkataramanana, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, L.; Guerrero, M.; Russo, B.; Martínez-Gomariz, E.; Sunyer, D.; Martínez, M. Socio-economic assessment of green infrastructure for climate change adaptation in the context of urban drainage planning. Sustainability (Basel) 2020, 12, 3792. [Google Scholar] [CrossRef]
- Hamel, P.; Tan, L. Blue–green infrastructure for flood and water quality management in southeast Asia: Evidence and knowledge gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef]
- Purvis, R.A.; Winston, R.J.; Hunt, W.F.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, M.S.; Libes, S. Evaluating the water quality benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water 2018, 10, 134. [Google Scholar] [CrossRef]
- Hoover, F.-A.; Hopton, M.E. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 2019, 22, 1139–1148. [Google Scholar] [CrossRef]
- Macgillivray, K.A.; Greenwood, W.J.; Paterson, A.M.; Watmough, S.A.; Williams, A.J.; Eimers, M.C. Complex patterns of phosphorus delivery in the Lake of the Woods watershed. J. Great Lakes Res. 2022, in press. [CrossRef]
- Zia, A.; Schroth, A.W.; Hecht, J.S.; Isles, P.; Clemins, P.J.; Turnbull, S.; Bitterman, P.; Tsai, Y.; Mohammed, I.N.; Bucini, G.; et al. Climate change-legacy phosphorus synergy hinders lake response to aggressive water policy targets. Earth’s Future 2022, 10, e2021EF002234. [Google Scholar] [CrossRef]
- Kok, M.; Maton, L.; van der Peet, M.; Hankemeier, T.; Coenvan Hasselt, J.G. Unraveling antimicrobial resistance using metabolomics. Drug Discov. Today 2022, 27, 1774–1783. [Google Scholar] [CrossRef]
- Tekin, E.; White, C.; Kang, T.M.; Singh, N.; Cruz-Loya, M.C.; Damoiseaux, R.; Savage, V.M.; Yeh, P.J. Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst. Biol. Appl. 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Ebert, I.; Bachmann, J.; Kühnen, U.; Küster, A.; Kussatz, C.; Maletzki, D.; Schlüter, C. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ. Toxicol. Chem. 2011, 30, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Macke, E.; Callens, M.; De Meester, L.; Decaestecker, E. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat. Commun. 2017, 8, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.K.; Stenberg, J.A.; Lankinen, Å. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Zhang, X.; Kong, F. Inhibition of the growth of cyanobacteria during the recruitment stage in Lake Taihu. Environ. Sci. Pollut. Res. Int. 2016, 23, 5830–5838. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.L. Use of fungicides to control blue-green algae on Bermuda grass putting-green surfaces. Crop Prot. 1998, 17, 631–637. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Q.; Lavoie, M.; Zhu, Y.; Ye, Y.; Yang, J.; Paerl, H.W.; Qian, H.; Zhu, Y.-G. The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition. Microbiome 2019, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Helman, Y.; Chernin, L. Silencing the mob: Disrupting quorum sensing as a means to fight plant disease. Mol. Plant Pathol. 2015, 16, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Inaba, Y.; Otero, A.; Suzuki, I. Development of a reversible regulatory system for gene expression in the cyanobacterium Synechocystis sp. PCC 6803 by quorum-sensing machinery from marine bacteria. J. Appl. Phycol. 2021, 33, 1651–1662. [Google Scholar] [CrossRef]
- Wang, H.; Tomasch, J.; Michael, V.; Bhuju, S.; Jarek, M.; Petersen, J.; Wagner-Döbler, I. Identification of genetic modules mediating the Jekyll and Hyde interaction of Dinoroseobacter shibae with the dinoflagellate Prorocentrum minimum. Front. Microbiol. 2015, 6, 1262. [Google Scholar] [CrossRef] [Green Version]
- Kremer, R.J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 1993, 3, 42–52. [Google Scholar] [CrossRef]
- Gioria, M.; Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. BioScience 2016, 66, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Fong, P.; Donohoe, R.M.; Zedler, J.B. Competition with macroalgae and benthic cyanobacterial mats limits phytoplankton abundance in experimental microcosms. Mar. Ecol. Prog. Ser. 1993, 100, 97–102. [Google Scholar] [CrossRef]
- Perez, R.; Wörmer, L.; Sass, P.; Maldener, I. A highly asynchronous developmental program triggered during germination of dormant akinetes of filamentous diazotrophic cyanobacteria. FEMS Microbiol. Ecol. 2018, 94, fix131. [Google Scholar] [CrossRef] [PubMed]
- Head, R.M.; Jones, R.I.; Bailey-Watts, A.E. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshw. Biol. 1999, 41, 759–769. [Google Scholar] [CrossRef]
- Misson, B.; Sabart, M.; Amblard, C.; Latour, D. Involvement of microcystins and colony size in the benthic recruitment of the cyanobacterium Microcystis (Cyanophyceae). J. Phycol. 2011, 47, 42–51. [Google Scholar] [CrossRef]
- Kitchens, C.M.; Johengen, T.H.; Davis, T.W. Establishing spatial and temporal patterns in Microcystis sediment seed stock viability and their relationship to subsequent bloom development in Western Lake Erie. PLoS ONE 2018, 13, e0206821. [Google Scholar] [CrossRef]
- Park, J.; Son, Y.; Lee, W.H. Variation of efficiencies and limits of ultrasonication for practical algal bloom control in fields. Ultrason. Sonochemistry 2019, 55, 8–17. [Google Scholar] [CrossRef]
- Gerphagnon, M.; Colombet, J.; Latour, D.; Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 2017, 7, 6056. [Google Scholar] [CrossRef] [Green Version]
- Hao, A.; Su, M.; Kobayashi, S.; Zhao, M.; Iseri, Y. Multiple roles of bamboo as a regulator of cyanobacterial bloom in aquatic systems. Sci. Rep. 2022, 12, 1605. [Google Scholar] [CrossRef]
- Wright, S.; Redhead, K.; Maudsley, H. Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 1981, 125, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Urrutia-Cordero, P.; Agha, R.; Cirés, S.; Lezcano, M.A.; Sánchez-Contreras, M.; Waara, K.-O.; Utkilen, H.; Quesada, A. Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. Aquat. Toxicol. 2013, 130–131, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.M.; Berec, L.; Drake, J.M. Editorial: Allee effects in ecology and evolution. J. Anim. Ecol. 2018, 87, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pala, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.J.; Patel, U.D.; Nerurkar, A.S. Moving bed biofilm reactor developed with special microbial seed for denitrification of high nitrate containing wastewater. World J. Microbiol. Biotechnol. 2021, 37, 68. [Google Scholar] [CrossRef]
- Roccuzzo, S.; Beckerman, A.P.; Trögl, J. New perspectives on the bioremediation of endocrine disrupting compounds from wastewater using algae-, bacteria- and fungi-based technologies. Int. J. Environ. Sci. Technol. 2021, 18, 89–106. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Samat, N.A.; Yusoff, F.M.; Chong, C.M.; Karim, M. Enrichment of freshwater zooplankton Moina micrura with probiotics isolated from microalgae. J. Environ. Biol. 2020, 41, 1215–1223. [Google Scholar] [CrossRef]
- Eckert, E.M.; Anicic, N.; Fontaneto, D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol. Ecol. 2021, 30, 1545–1558. [Google Scholar] [CrossRef]
- Edwards, C.; Lawton, L.A. Chapter 4 bioremediation of cyanotoxins. Adv. Appl. Microbiol. 2009, 67, 109–129. [Google Scholar] [CrossRef]
- Kormas, K.A.; Lymperopoulou, D.S. Cyanobacterial toxin degrading bacteria: Who are they? BioMed Res. Int. 2013, 2013, 463894. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Huang, F.; Feng, H.; Wei, J.; Massey, I.Y.; Liang, G.; Zhang, F.; Yin, L.; Kacew, S.; Zhang, X.; et al. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Res. 2020, 174, 115638. [Google Scholar] [CrossRef]
- Schmidt, S.K. Degradation of juglone by soil bacteria. J. Chem. Ecol. 1988, 14, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Banerji, A.; Morin, P.J. Trait-mediated apparent competition in an intraguild predator–prey system. Oikos 2014, 123, 567–574. [Google Scholar] [CrossRef]
- Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; et al. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biol. Control 2017, 105, 19–26. [Google Scholar] [CrossRef]
- Agha, R.; Saebelfeld, M.; Manthey, C.; Rohrlack, T.; Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 2016, 6, 35039. [Google Scholar] [CrossRef] [PubMed]
- Frenken, T.; Wierenga, J.; van Donk, E.; Declerck, S.A.J.; de Senerpont Domis, L.N.; Rohrlack, T.; Van de Waal, D.B. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol. Oceanogr. 2018, 63, 2384–2393. [Google Scholar] [CrossRef]
- Halaj, J.; Cady, A.B.; Uetz, G.W. Modular habitat refugia enhance generalist predators and lower plant damage in soybeans. Environ. Entomol. 2000, 29, 383–393. [Google Scholar] [CrossRef]
- Frank, S.D. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biol. Control 2010, 52, 8–16. [Google Scholar] [CrossRef]
- Reid, A.J.; Chapman, L.J.; Ricciardi, A. Wetland edges as peak refugia from an introduced piscivore. Aquat. Conserv. 2013, 23, 646–655. [Google Scholar] [CrossRef]
- Miller, J.W.; Kocovsky, P.M.; Wiegmann, D.; Miner, J.G. Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie. N. Am. J. Fish. Manag. 2018, 38, 623–629. [Google Scholar] [CrossRef]
- Wen, X.; Chen, F.; Lin, Y.; Zhu, H.; Yuan, F.; Kuang, D.; Jia, Z.; Yuan, Z. Microbial indicators and their use for monitoring drinking water quality—a review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef] [Green Version]
- Mhlongo, N.T.; Tekere, M.; Sibanda, T. Prevalence and public health implications of mycotoxigenic fungi in treated drinking water systems. J. Water Health 2019, 17, 517–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahk, Y.Y.; Cho, P.Y.; Ahn, S.K.; Park, S.; Jheong, W.H.; Park, Y.-K.; Shin, H.-J.; Lee, S.-S.; Rhee, O.; Kim, T.-S. Monitoring of noxious protozoa for management of natural water resources. Korean J. Parasitol. 2018, 56, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, G.L., Sr.; Hoffman, G.L., Jr. Studies on the control of Whirling Disease (Myxosoma cerebralis): I. The effects of chemicals on spores in vitro, and of calcium oxide as a disinfectant in simulated ponds. J. Wildl. Dis. 1972, 8, 49–53. [Google Scholar] [CrossRef]
- Bucke, D. The significance of diseases and anomalies in wild salmonids. Fish. Res. 1993, 17, 209–217. [Google Scholar] [CrossRef]
- Coopman, M.; Muylaert, K.; Lange, B.; Reyserhove, L.; Decaestecker, E. Context dependency of infectious disease: The cyanobacterium Microcystis aeruginosa decreases white bacterial disease in Daphnia magna. Freshw. Biol. 2014, 59, 714–723. [Google Scholar] [CrossRef]
- Sánchez, M.I.; Paredes, I.; Lebouvier, M.; Green, A.J. Functional role of native and invasive filter-feeders, and the effect of parasites: Learning from hypersaline ecosystems. PLoS ONE 2016, 11, e0161478. [Google Scholar] [CrossRef] [Green Version]
- Seelig, M.S. Mechanisms by which antibiotics increase the incidence and severity of candidiasis and alter the immunological defenses. Bacteriol. Rev. 1966, 30, 442–459. [Google Scholar] [CrossRef]
- Hofer, U. How antibiotics predispose to candidiasis. Nat. Rev. Microbiol. 2022, 20, 382. [Google Scholar] [CrossRef]
- Singh, N. Trends in the epidemiology of opportunistic fungal infections: Predisposing factors and the impact of antimicrobial use practices. Clin. Infect. Dis. 2001, 33, 1692–1696. [Google Scholar] [CrossRef] [Green Version]
- Badiee, P.; Hashemizadeh, Z. Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian J. Med. Res. 2014, 139, 195–204. [Google Scholar] [PubMed]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Ives, J.T.; McMeans, B.C.; McCann, K.S.; Fisk, A.T.; Johnson, T.B.; Bunnell, D.B.; Frank, K.T.; Muir, A.M. Food-web structure and ecosystem function in the Laurentian Great Lakes—Toward a conceptual model. Freshw. Biol. 2019, 64, 1–23. [Google Scholar] [CrossRef]
- Liu, S.; Johnson, F.; Tamburic, B.; Crosbie, N.D.; Glamore, W. The Effectiveness of Global Constructed Shallow Waterbody Design Guidelines to Limit Harmful Algal Blooms. Water Resour. Res. 2021, 57, e2020WR028918. [Google Scholar] [CrossRef]
- Son, G.; Kim, D.; Kim, Y.D.; Lyu, S.; Kim, S. A forecasting method for harmful algal bloom(HAB)-prone regions allowing preemptive countermeasures based only on acoustic doppler current profiler measurements in a large river. Water 2020, 12, 3488. [Google Scholar] [CrossRef]
- Sotton, B.; Paris, A.; Le Manach, S.; Blond, A.; Lacroix, G.; Millot, A.; Duval, C.; Huet, H.; Qiao, Q.; Labrut, S.; et al. Metabolic changes in Medaka fish induced by cyanobacterial exposures in mesocosms: An integrative approach combining proteomic and metabolomic analyses. Sci. Rep. 2017, 7, 4051. [Google Scholar] [CrossRef]
- Baek, S.-S.; Pyo, J.; Kwon, Y.S.; Chun, S.-J.; Baek, S.H.; Ahn, C.-Y.; Oh, H.-M.; Kim, Y.O.; Cho, K.H. Deep learning for simulating harmful algal blooms using ocean numerical model. Front. Mar. Sci. 2021, 8, 729954. [Google Scholar] [CrossRef]
- Kasinak, J.-M.E.; Holt, B.M.; Chislock, M.F.; Wilson, A.E. Benchtop fluorometry of phycocyanin as a rapid approach for estimating cyanobacterial biovolume. J. Plankton Res. 2015, 37, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Purcaro, G.; Tranchida, P.Q.; Dugo, P.; La Camera, E.; Bisignano, G.; Conte, L.; Mondello, L. Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J. Sep. Sci. 2010, 33, 2334–2340. [Google Scholar] [CrossRef]
- Whorley, S.B.; Smucker, N.J.; Kuhn, A.; Wehr, J.D. Urbanisation alters fatty acids in stream food webs. Freshw. Biol. 2019, 64, 984–996. [Google Scholar] [CrossRef]
- Karjalainen, M.; Reinikainen, M.; Lindvall, F.; Spoof, L.; Meriluoto, J.A.O. Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton. Environ. Toxicol. 2003, 18, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Le Croizier, G.; Schaal, G.; Gallon, R.; Fall, M.; Le Grand, F.; Munaron, J.M.; Rouget, M.L.; Machu, E.; Le Loc’h, F.; Laë, R.; et al. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses. Sci. Total Environ. 2016, 573, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Nam, S.; Hwang, S.-J.; An, K.-G.; Park, Y.-S.; Shin, K.-H.; Park, S. Fatty acid biomarkers to verify cyanobacteria feeding abilities of herbivorous consumers. J. Freshw. Ecol. 2016, 31, 77–91. [Google Scholar] [CrossRef]
- Plaas, H.E.; Paerl, H.W. Toxic cyanobacteria: A growing threat to water and air quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Zamyadi, A.; Glover, C.M.; Yasir, A.; Stuetz, R.; Newcombe, G.; Crosbie, N.D.; Lin, T.-F.; Henderson, R. Toxic cyanobacteria in water supply systems: Data analysis to map global challenges and demonstrate the benefits of multi-barrier treatment approaches. H2Open J. 2021, 4, 47–62. [Google Scholar] [CrossRef]
- Liao, J.; Zhao, L.; Cao, X.; Sun, J.; Gao, Z.; Wang, J.; Jiang, D.; Fan, H.; Huang, Y. Cyanobacteria in lakes on Yungui Plateau, China, are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci. Rep. 2016, 6, 36357. [Google Scholar] [CrossRef] [Green Version]
- Coffer, M.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Salls, W.B. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol. Indic. 2020, 111, 105976. [Google Scholar] [CrossRef]
- Erratt, K.J.; Creed, I.F.; Trick, C.G. Harmonizing science and management options to reduce risks of cyanobacteria. Harmful Algae 2022, 116, 102264. [Google Scholar] [CrossRef]
- Myers, J.H.; Simberloff, D.; Kuris, A.M.; Carey, J.R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 2000, 15, 316–320. [Google Scholar] [CrossRef]
- Homans, F.R.; Smith, D.J. Evaluating management options for aquatic invasive species: Concepts and methods. Biol. Invasions 2013, 15, 7–16. [Google Scholar] [CrossRef]
- Hinz, H.L.; Winston, R.L.; Schwarzländer, M. How safe is weed biological control? A global review of direct nontarget attack. Q. Rev. Biol. 2019, 94, 1. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Daszak, P.; Wood, J.L.N. One Health, emerging infectious diseases and wildlife: Two decades of progress? Phil. Trans. R. Soc. B 2017, 372, 2016016720160167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiTomaso, J.M.; Van Steenwyk, R.A.; Nowierski, R.M.; Vollmer, J.L.; Lane, E.; Chilton, E.; Burch, P.L.; Cowan, P.E.; Zimmerman, K.; Dionigi, C.P. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach. Pest Manag. Sci. 2017, 73, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.K.; Mandal, T.K.; Bhattacharya, M. Study on global public health threats due to emerging or re-emerging infectious diseases and the strategies to reduce threats. Indian J. Public Health Res. Dev. 2018, 9, 38. [Google Scholar] [CrossRef]
- Bonilla-Aldana, K.; Dhama, K.; Rodriguez-Morales, A.J. Revisiting the One Health approach in the context of COVID-19: A look into the ecology of this emerging disease. Adv. Anim. Vet. Sci. 2020, 8, 234–237. [Google Scholar] [CrossRef]
- Hubert, T.D.; Miller, J.; Burkett, D. A brief introduction to integrated pest management for aquatic systems. North Am. J. Fish. Manag. 2021, 41, 264–275. [Google Scholar] [CrossRef]
Microbial Relationship | Microbial Mechanism | Management Implications |
---|---|---|
Protection |
|
Cyanobacteria Promotion |
Antagonism |
|
Cyanobacteria Inhibition |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerji, A.; Benesh, K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. Ecologies 2022, 3, 570-587. https://doi.org/10.3390/ecologies3040042
Banerji A, Benesh K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. Ecologies. 2022; 3(4):570-587. https://doi.org/10.3390/ecologies3040042
Chicago/Turabian StyleBanerji, Aabir, and Kasey Benesh. 2022. "Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge" Ecologies 3, no. 4: 570-587. https://doi.org/10.3390/ecologies3040042
APA StyleBanerji, A., & Benesh, K. (2022). Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. Ecologies, 3(4), 570-587. https://doi.org/10.3390/ecologies3040042