Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting
Abstract
:1. Introduction
2. Methods
2.1. Study Areas
2.2. Study and Sampling Designs
2.3. Forest-Floor Small Mammal Populations
2.4. Population Data Analyses
2.5. Early Seral Vegetation
2.6. Statistical Analyses
3. Results
3.1. Small Mammal Populations
3.2. Small Mammals and Cumulative Clearcutting
3.3. Small Mammals in Clearcut vs. Forest
3.4. Composition of Small Mammal Communities in Clearcut vs. Forest
3.5. Early Seral Vegetation in Grazed and Ungrazed Sites
3.6. Small Mammals in Grazed and Ungrazed Sites
4. Discussion
4.1. Small Mammals and Cumulative Clearcutting
4.2. Small Mammals in Clearcut vs. Forest
4.3. Early Seral Vegetation in Grazed and Ungrazed Sites
4.4. Small Mammals in Grazed and Ungrazed sites
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, S.J. Wind as a natural disturbance agent in forests—A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 129. [Google Scholar] [CrossRef]
- Cooke, B.J.; Carroll, A.L. Predicting the risk of mountain pine beetle spread to eastern pine forests: Considering uncertainty in uncertain times. For. Ecol. Manag. 2017, 396, 11–25. [Google Scholar] [CrossRef]
- Pritchard, S.J.; Stevens-Rumann, C.S.; Hessburg, P.F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 2017, 398, 217–233. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burton, P.J.; Franklin, J.F. Salvage Logging and its Ecological Consequences; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- Keenan, R.J.; Kimmins, J.P. The ecological effects of clearcutting. Environ. Rev. 1993, 1, 121–144. [Google Scholar] [CrossRef]
- Rosenvald, R.; Lõhmus, A. For what, when, and where is green-tree retention better than clearcutting? A review of biodiversity aspects. For. Ecol. Manag. 2008, 255, 1–15. [Google Scholar] [CrossRef]
- Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: The complexity challenge. Ambio 2009, 38, 309–315. [Google Scholar] [CrossRef]
- Fisher, J.T.; Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mam. Rev. 2005, 35, 51–81. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Zwolak, R. Responses of small mammals to clearcutting in temperate and boreal forests of Europe: A meta-analysis and review. Eur. J. Forest Res. 2014, 133, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Carey, A.B.; Harrington, C.A. Small mammals in young forests: Implications for management for sustainability. For. Ecol. Manag. 2001, 154, 289–309. [Google Scholar] [CrossRef]
- Ecke, F.; Lofgren, O.; Hornfeldt, B.; Ekland, U.; Ericsson, P.; Sorlin, D. Abundance and diversity of small mammals in relation to structural habitat factors. Ecol. Bull. 2001, 49, 165–171. [Google Scholar]
- Ecke, F.; Lofgren, O.; Sorlin, D. Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J. Appl. Ecol. 2002, 39, 781–792. [Google Scholar] [CrossRef]
- Pearce, J.; Venier, L. Small mammals as bioindicators of sustainable boreal forest management. For. Ecol. Manag. 2005, 208, 153–175. [Google Scholar] [CrossRef]
- Martin, S.K. Feeding ecology of American martens and fishers. In Martens, Sables, and Fishers: Biology and Conservation; Buskirk, S., Harestad, A.S., Raphael, M.G., Powell, A., Eds.; Comstock Publishing Associates, Cornell University Press: Ithaca, NY, USA, 1994; pp. 297–315. [Google Scholar]
- Jędrzejewska, B.; Jędrzejewski, W. Predation in Vertebrate Communities: The Bialowieźa Primeval Forest as a Case Study; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Lobo, N.; Duong, M.; Millar, J.S. Conifer-seed preferences of small mammals. Can. J. Zool. 2009, 87, 773–780. [Google Scholar] [CrossRef]
- Zwolak, R.; Pearson, D.E.; Ortega, Y.K.; Crone, E.E. Fire and mice: Seed predation moderates fire’s influence on conifer recruitment. Ecology 2010, 91, 1124–1131. [Google Scholar] [CrossRef]
- Jacob, J.; Tkadlec, E. Rodent outbreaks in Europe: Dynamics and damage. In Rodent Outbreaks: Ecology and Impacts; Singleton, G.R., Belman, S.R., Brown, P.R., Hardy, B., Eds.; IRRI: Los Banos, Philippines, 2010; pp. 207–223. [Google Scholar]
- Ostfeld, R.S.; Manson, R.H.; Canham, C.D. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 1997, 78, 1531–1542. [Google Scholar] [CrossRef]
- Carey, A.B.; Kershner, J.; Biswell, B.; DeToledo, L.D. Ecological scale and forest development: Squirrels, dietary fungi, and vascular plants in managed and unmanaged forests. In Wildlife Monographs; The Wildlife Society: Bethesda, MD, USA, 1999; pp. 3–71. [Google Scholar]
- Bellocq, M.I.; Smith, S.M. Arthropods preferred as food by Sorex cinereus (masked shrew) and Peromyscus maniculatus (deer mouse): An experimental approach. Mammalia 1994, 53, 391–396. [Google Scholar] [CrossRef]
- Churchfield, S.; Rychlik, L. Diets and coexistence in Neomys and Sorex shrews in Bialowieźa forest, Eastern Poland. J. Zool. 2006, 269, 381–390. [Google Scholar] [CrossRef]
- Maser, C.; Claridge, A.W.; Trappe, J.M. Trees, Truffles, and Beasts: How Forests Function; Rutgers University Press: Piscataway, NJ, USA, 2008. [Google Scholar]
- Schickmann, S.; Urban, A.; Krautler, K.; Nopp-Mayr, U.; Hacklander, K. The interrelationship of mycophagous small mammals to ectomycorrhizal fungi in primeval, disturbed, and managed Central European mountainous forests. Oecologia 2012, 170, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Zwolak, R. A meta-analysis of the effects of wildfire, clearcutting, and partial harvest on the abundance of North American small mammals. For. Ecol. Manag. 2009, 258, 539–545. [Google Scholar] [CrossRef]
- Hooven, E.F.; Black, H.C. Effects of some clear-cutting practices on small mammal populations in western Oregon. Northwest Sci. 1976, 50, 189–208. [Google Scholar]
- Gagne, N.; Belanger, L.; Huot, J. Comparative responses of small mammals, vegetation, and food sources to natural regeneration and conifer seed release treatments in boreal balsam fir stands in Quebec. Can. J. For. Res. 1999, 29, 1128–1140. [Google Scholar] [CrossRef]
- Martell, A.M. Demography of southern red-backed voles (Clethrionomys gapperi) and deer mice (Peromyscus maniculatus) after logging in north-central Ontario. Can. J. Zool. 1983, 61, 958–969. [Google Scholar] [CrossRef]
- Fuller, A.K.; Harrison, D.J.; Lachowski, H.J. Stand scale effects of partial harvesting and clearcutting on small mammals and forest structure. For. Ecol. Manag. 2004, 191, 373–386. [Google Scholar] [CrossRef]
- Merritt, J.F. Clethrionomys gapperi. Mammalian Species; American Society of Mammalogists: Provo, UT, USA, 1981. [Google Scholar]
- St-Laurent, M.-H.; Ferron, J.; Hache, S.; Gagnon, R. Planning timber harvest of residual forest stands without compromising bird and small mammal communities in boreal landscapes. For. Ecol. Manag. 2008, 254, 261–275. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Green-tree retention and life after the beetle: Stand structure and small mammals 30 years after salvage harvesting. Silva Fenn. 2010, 44, 749–774. [Google Scholar] [CrossRef]
- Hughes, B.B.; Beas-Luna, R.; Barner, A.K.; Brewitt, K.; Brumbaugh, D.R.; Cerny-Chipman, E.B.; Close, S.L.; Coblentz, K.E.; De Nesnera, K.L.; Drobnitch, S.T.; et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 2017, 67, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R. Ecological futures: Building an ecology of the long now. Ecology 2002, 83, 2069–2083. [Google Scholar] [CrossRef]
- Holling, C.S. Adaptive Environmental Assessment and Management; John Wiley and Sons: Hoboken, NJ, USA, 1978. [Google Scholar]
- Lindenmayer, D.B.; Margules, C.R.; Botkin, D.B. Indicators of biodiversity for ecologically sustainable forest management. Cons. Biol. 2000, 14, 941–950. [Google Scholar] [CrossRef]
- Nichols, J.D.; Williams, B.K. Monitoring for conservation. Trends Ecol. Evol. 2006, 21, 668–673. [Google Scholar] [CrossRef]
- Sergeant, C.J.; Moynhan, B.J.; Johnson, W.F. Practical advice for implementing long-term ecosystem monitoring. J. Appl. Ecol. 2012, 49, 969–973. [Google Scholar] [CrossRef]
- Krebs, C.J.; Boonstra, R.; Kenney, A.J.; Gilbert, B.S. Hares and small rodent cycles: A 45-year perspective on predator-prey dynamics in the Yukon boreal forest. Aust. Zool. 2018, 39, 724–732. [Google Scholar] [CrossRef]
- Krebs, C.J.; Boonstra, R.; Gilbert, B.S.; Kenney, A.J.; Boutin, S. Impact of climate change on the small mammal community of the Yukon boreal forest. Integr. Zool. 2019, 14, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Wikeem, B.M.; McLean, A.; Bawtree, A.; Quinton, D. An overview of the forage resource and beef production on Crown land in British Columbia. Can. J. Anim. Sci. 1993, 73, 779–794. [Google Scholar] [CrossRef] [Green Version]
- IPPC. IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis. 2014, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia; Special Report Series No 6; Research Branch Ministry of Forests: Victoria, BC, Canada, 1991. [Google Scholar]
- Dobb, A.; Burton, S. Rangeland Seeding Manual for British Columbia; BC Ministry of Agriculture, Sustainable Agriculture and Management Branch: Abbotsford, BC, Canada, 2013. [Google Scholar]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.P.; Sullivan, D.S. Forecasting vole population outbreaks: The rise and fall of a major mammalian pest. For. Ecol. Manag. 2010, 260, 983–993. [Google Scholar] [CrossRef]
- Krebs, C.J.; Keller, B.L.; Tamarin, R.H. Microtus population biology: Demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern Indiana. Ecology 1969, 50, 587–607. [Google Scholar] [CrossRef] [Green Version]
- Nagorsen, D.W. Opossums, shrews, and moles of British Columbia. In Volume 2. The Mammals of British Columbia; UBC Press: Vancouver, BC, Canada, 1996. [Google Scholar]
- Sikes, R.S.; Gannon, W.L.; the Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 2016, 92, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Seber, G.A.F. The Estimation of Animal Abundance and Related Parameters, 2nd ed.; Charles Griffin and Co. Ltd.: London, UK, 1982. [Google Scholar]
- Krebs, C.J. Ecological Methodology; Addison Wesley Longman, Inc.: Boston, MA, USA, 1999. [Google Scholar]
- Krebs, C.J.; Boonstra, R.; Gilbert, S.; Reid, D.; Kenney, A.J.; Hofer, E.J. Density estimation for small mammals from livetrapping grids: Rodents in northern Canada. J. Mammal. 2011, 92, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.P.; Sullivan, D.S. Long-term demographic changes of deer mouse (Peromyscus maniculatus) populations in a forest landscape with cumulative clearcutting. For. Ecol. Manag. 2022, 517, 120255. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Balancing pest management and forest biodiversity: Vole populations and habitat in clearcut vs. variable retention harvested sites. Crop Prot. 2011, 30, 833–843. [Google Scholar] [CrossRef]
- Krebs, C.J.; Boonstra, R. Trappability estimates for mark-recapture data. Can. J. Zool. 1984, 62, 2440–2444. [Google Scholar] [CrossRef]
- Burton, P.J.; Balisky, A.C.; Coward, L.P.; Cumming, S.G.; Kneeshaw, D.D. The value of managing for biodiversity. For. Chron. 1992, 68, 225–237. [Google Scholar] [CrossRef]
- Lindgren, P.M.F.; Sullivan, T.P. Influence of stand thinning and repeated fertilization on plant community abundance and diversity in young lodgepole pine stands: 15-year results. For. Ecol. Manag. 2013, 308, 17–30. [Google Scholar] [CrossRef]
- Parish, R.; Coupé, R.; Lloyd, D. Plants of Southern Interior British Columbia; Lone Pine Publishing: Vancouver, BC, Canada, 1996. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; Version 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Littel, R.C. Statistical analysis of experiments with repeated measures. Hortscience 1989, 24, 36–40. [Google Scholar]
- Kuehl, R.C. Statistical Principles of Research Design and Analysis; Duxbury Press: Belmont, CA, USA, 1994. [Google Scholar]
- Huynh, H.; Feldt, L.S. Estimation of the Box correction for degrees of freedom from sample data in the randomized block and split-plot designs. J. Educ. Stat. 1976, 1, 69–82. [Google Scholar] [CrossRef]
- Saville, D.J. Multiple comparison procedures: The practical solution. Am. Stat. 1990, 44, 174–180. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1999; p. 663. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S. Population fluctuations of long-tailed voles (Microtus longicaudus) in managed forests: Site-specific disturbances or a long-term pattern? J. Mammal. 2022, gyac073. [Google Scholar] [CrossRef]
- Gitzen, R.A.; West, S.D.; Maguire, C.C.; Manning, T.; Halpern, C.B. Response of terrestrial small mammals to varying amounts and patterns of green-tree retention in Pacific Northwest forests. For. Ecol. Manag. 2007, 251, 142–155. [Google Scholar] [CrossRef]
- Wilk, R.J.; Raphael, M.G.; Nations, C.S.; Ricklefs, J.D. Initial response of small ground-dwelling mammals to forest alternative buffers along headwater streams in the Washington Coast Range, USA. For. Ecol. Manag. 2010, 260, 1567–1578. [Google Scholar] [CrossRef]
- Sutton, D.A. Tamias amoenus. Mamm. Species 1992, 390, 1–8. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Boonstra, R.; Krebs, C.J.; Vyse, A. Mechanisms of population limitation in the southern red-backed vole in conifer forests of western North America: Insights from a long-term study. J. Mammal. 2017, 98, 1367–1378. [Google Scholar] [CrossRef]
- Gashwiler, J.S. Plant and mammal changes in a clearcut in west-central Oregon. Ecology 1970, 51, 1018–1026. [Google Scholar] [CrossRef]
- Kirkland, G.L. Patterns of initial small mammal community change after clearcutting of temperate North American forests. Oikos 1990, 59, 313–320. [Google Scholar] [CrossRef]
- Montgomery, W.I. Peromyscus and Apodemus: Patterns of similarity in ecological equivalents. In Advances in the Study of Peromyscus (Rodentia); Kirkland, G.L., Layne, J.N., Eds.; Texas Tech University Press: Lubbock, TX, USA, 1989; pp. 293–366. [Google Scholar]
- Cornulier, T.; Yoccoz, N.G.; Bretagnolle, V.; Brommer, J.E.; Butet, A.; Ecke, F.; Elston, D.A.; Framstad, E.; Henttonen, H.; Hörn-feldt, B.; et al. Europe-wide dampening of population cycles in keystone herbivores. Science 2013, 340, 63–66. [Google Scholar] [CrossRef]
- Gouveia, A.; Bejcek, V.; Flousek, J.; Sedlacek, F.; Stastnv, K.; Zima, J.; Yoccoz, N.G.; Stenseth, N.C.; Tkadlec, E. Long-term pattern of population dynamics in the field vole from central Europe: Cyclic pattern with amplitude dampening. Popul. Ecol. 2015, 57, 581–589. [Google Scholar] [CrossRef]
- Christensen, P.; Hornfeldt, B. Long-term decline of vole populations in northern Sweden: A test of the destructive sampling hypothesis. J. Mammal. 2003, 84, 1292–1299. [Google Scholar] [CrossRef]
- Ecke, F.; Christensen, P.; Rentz, R.; Nilsson, M.; Sandstrom, P.; Hornfeldt, B. Landscape structure and the long-term decline of cyclic grey-sided voles in Fennoscandia. Landsc. Ecol. 2010, 25, 551–560. [Google Scholar] [CrossRef]
- Ims, R.A.; Henden, J.-A.; Killengreen, S.T. Collapsing population cycles. Trends Ecol. Evol. 2008, 23, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Brommer, J.E.; Pietiaeinen, H.A.; Ahola, K.; Karell, P.; Karstinen, T.; Kolunen, H. The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’. Glob. Change Biol. 2010, 16, 577–586. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Similarity in occupancy of different-sized forest patches by small mammals on clearcuts: Conservation implications for red-backed voles and small mustelids. Mam. Res. 2020, 65, 255–266. [Google Scholar] [CrossRef]
- McLean, A.; Willms, W. Cattle diets and distribution on spring-fall and summer ranges near Kamloops, British Columbia. Can. J. Anim. Sci. 1977, 57, 81–92. [Google Scholar] [CrossRef]
- Quinton, D.A. Cattle diets on seeded clearcut areas in central interior British Columbia. J. Range Manag. 1984, 37, 349–352. [Google Scholar] [CrossRef]
- McLean, A. Beef production on lodgepole pine-pinegrass range in southern British Columbia. J. Range Manag. 1967, 20, 214–216. [Google Scholar] [CrossRef]
- McLean, A.; Freyman, S.; Miltimore, J.E.; Bowden, D.M. Evaluation of pinegrass as a range forage. Can. J. Plant Sci. 1969, 49, 351–359. [Google Scholar] [CrossRef]
- Lindgren, P.M.F.; Sullivan, T.P. Response of plant community abundance and diversity during 10 years of cattle exclusion within silvopasture systems. Can. J. For. Res. 2012, 42, 451–462. [Google Scholar] [CrossRef]
- Grant, W.E.; Birney, E.C.; French, N.R.; Swift, D.M. Structure and productivity of grassland small mammal communities related to grazing-induced changes in vegetative cover. J. Mammal. 1982, 63, 248–260. [Google Scholar] [CrossRef]
- Chapman, E.W.; Ribic, C.A. The impact of buffer strips and stream-side grazing on small mammals in southwestern Wisconsin. Agric. Ecosyst. Environ. 2002, 88, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.N.; Anthony, R.G. Small-mammal microhabitat associations and response to grazing in Oregon. J. Wildl. Manag. 2008, 72, 1736–1746. [Google Scholar] [CrossRef]
- Reynolds, T.D.; Trost, C.H. The response of native vertebrate populations to crested wheatgrass planting and grazing by sheep. J. Range Manag. 1980, 33, 122–125. [Google Scholar] [CrossRef] [Green Version]
- Medin, D.E.; Clary, W.P. Small Mammal Populations in a Grazed and Ungrazed Riparian Habitat in Nevada; US Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989. [Google Scholar]
- Giuliano, W.M.; Homyack, J.D. Effects of short-term grazing exclusion on riparian small mammal communities. J. Range Manag. 2004, 57, 346–350. [Google Scholar] [CrossRef]
- Schulz, T.T.; Leininger, W.C. Nongame wildlife communities in grazed and ungrazed montane riparian habitats. Great Basin Nat. 1991, 51, 286–292. [Google Scholar]
- Rosenstock, S.S. Shrub-grassland small mammal and vegetation responses to rest from grazing. J. Range Manag. 1996, 49, 199–203. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F. Influence of repeated fertilization and cattle grazing on forest ecosystems: Abundance and diversity of forest-floor small mammals. For. Ecol. Manag. 2012, 277, 180–195. [Google Scholar] [CrossRef]
- Evans, D.M.; Redpath, S.M.; Elston, D.A.; Evans, S.A.; Mitchell, R.J.; Dennis, P. To graze or not to graze? Sheep, voles, forestry and nature conservation in the British uplands. J. Appl. Ecol. 2006, 43, 499–505. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Fertilization, cattle grazing, and voles: Collapse of vole population fluctuations in young forests? Wildl. Res. 2014, 41, 367–378. [Google Scholar] [CrossRef]
- Villar, N.; Cornulier, T.; Evans, D.; Pakeman, R.; Redpath, S.; Lambin, X. Experimental evidence that livestock grazing intensity affects cyclic vole population regulation processes. Popul. Ecol. 2014, 56, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Saetnan, E.R.; Skarpe, C.; Batzli, G.O. Do sheep affect vole populations in alpine meadows of central Norway? J. Mammal. 2012, 93, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Hipkiss, T.; Stefansson, O.; Hornfeldt, B. Effect of cyclic and declining food supply on great grey owls in boreal Sweden. Can. J. Zool. 2008, 86, 1426–1431. [Google Scholar] [CrossRef]
- Villar, N.; Lambin, X.; Evans, D.; Pakeman, R.; Redpath, S. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator. Acta Oecologica 2013, 49, 12–16. [Google Scholar] [CrossRef]
Area and Replicate Sites | Mean (±SE) Area (ha) | Distance between Sites (km) | Year of Harvest | Period + Years | Vegetation Sampling | Grazing | Ecological Subzone | Latititude + Longitude |
---|---|---|---|---|---|---|---|---|
Summerland | ||||||||
Munro—OKAE | 1 | No | Yes | MSdm | 49°40′ N; 119°53′ W | |||
n = 1 | 20.2 | 0.30 | 1978 | 1979–1982 | ||||
Munro—A | 2 | Yes | Yes | MSdm+IDFdk | 49°40′ N; 119°53′ W | |||
n = 3 | 9.2 ± 2.4 | 0.30–2.46 | 1996 | 1997–2002 | ||||
Munro—B | 3 | Yes | Yes | MSdm | 49°40′ N; 119°53′ W | |||
n = 3 | 23.7 ± 5.3 | 0.20–3.00 | 2006 | 2007–2011 | ||||
Munro—C | 4 | No | Yes | MSdm+IDFdk | 49°42′ N; 119°57′ W | |||
n = 4 | 24.2 ± 1.3 | 1.53 ± 0.46 | 2016 | 2017–2020 | ||||
Golden | ||||||||
Roth Creek | 1 | Yes | No | MSdk | 51°18′ N; 116°45′ W | |||
n = 3 | 15.9 ± 3.5 | 0.20–0.50 | 2003–2004 | 2004–2009 | ||||
East Palliser | 2 | Yes | No | ICHmk | 51°14′ N; 116°41′ W | |||
n = 3 | 11.4 ± 2.7 | 1.00–1.90 | 2011 | 2012–2016 | ||||
Donald | 3 | No | No | ICHmk | 51°29′ N; 117°05′ W | |||
n = 3 | 7.7 ± 1.8 | 0.20–0.50 | 2015–2016 | 2016–2019 |
Treatment | Treatment | Time | Treatment × Time | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Period 1 (1) | Period 2 (3) | Period 3 (3) | Period 4 (4) | F3,7 | p | F3,21 | p | F9,21 | p |
Total abundance | - | A | B | B | 20.59 | <0.01 | 23.03 | <0.01 | 22.20 | <0.01 |
Years post-harvest | ||||||||||
1 | 38.8 | 25.4 a ± 3.7 | 13.0 b ± 1.0 | 14.7 b ± 1.6 | ||||||
2 | 29.3 | 44.9 a ± 4.1 | 15.8 b ± 2.2 | 8.6 b ± 1.3 | ||||||
3 | 22.8 | 14.5 b ± 1.5 | 13.6 b ± 1.4 | 19.8 a ± 0.9 | ||||||
4 | 13.8 | 12.9 ± 1.5 | 11.7 ± 1.5 | 13.5 ± 1.5 | ||||||
Overall | 26.2 ± 5.3 | 24.4 ± 7.4 | 13.5 ± 0.9 | 14.2 ± 2.3 | ||||||
Species richness | - | A | B | C | 16.35 | <0.01 | 11.64 | <0.01 | 2.66 | 0.03 |
Years post-harvest | ||||||||||
1 | 3.00 | 5.11 a ± 0.15 | 3.83 b ± 0.17 | 3.05 c ± 0.22 | ||||||
2 | 2.89 | 5.45 a ± 0.15 | 4.44 b ± 0.24 | 2.65 c ± 0.35 | ||||||
3 | 2.57 | 3.94 ab ± 0.34 | 3.17 b ± 0.51 | 2.40 bc ± 0.16 | ||||||
4 | 2.43 | 3.45 a ± 0.40 | 3.47 a ± 0.33 | 2.42 b ± 0.14 | ||||||
Overall | 2.72 ± 0.13 | 4.49 ± 0.47 | 3.73 ± 0.27 | 2.63 ± 0.15 | ||||||
Species diversity | - | A | A | B | 10.18 | <0.01 | 8.31 | <0.01 | 0.66 | 0.74 |
Years post-harvest | ||||||||||
1 | 0.94 | 1.81 ± 0.05 | 1.60 ± 0.11 | 1.09 ± 0.19 | ||||||
2 | 0.70 | 1.80 ± 0.11 | 1.74 ± 0.12 | 1.02 ± 0.18 | ||||||
3 | 0.45 | 1.47 ± 0.19 | 1.32 ± 0.21 | 0.66 ± 0.09 | ||||||
4 | 0.61 | 1.35 ± 0.19 | 1.52 ± 0.19 | 0.84 ± 0.04 | ||||||
Overall | 0.68 ± 0.10 | 1.61 ± 0.12 | 1.55 ± 0.09 | 0.90 ± 0.10 |
Parameter | Year | |||
---|---|---|---|---|
1979 (9) | 1980 (9) | 1981 (7) | 1982 (7) | |
Mean abundance | ||||
Clearcut | 38.8 ± 5.5 | 29.3 ± 4.3 | 22.8 ± 1.0 | 13.8 ± 2.5 |
Forest | 16.4 ± 3.1 | 10.3 ± 2.0 | 11.3 ± 1.6 | 5.1 ± 0.8 |
Species richness | ||||
Clearcut | 3.00 ± 0.17 | 2.89 ± 0.20 | 2.57 ± 0.30 | 2.43 ± 0.30 |
Forest | 2.89 ± 0.54 | 3.00 ± 0.24 | 2.29 ± 0.18 | 2.00 ± 0.22 |
Species diversity | ||||
Clearcut | 0.94 ± 0.05 | 0.70 ± 0.06 | 0.45 ± 0.10 | 0.61 ± 0.11 |
Forest | 1.11 ± 0.23 | 1.31 ± 0.10 | 1.03 ± 0.11 | 0.79 ± 0.16 |
Clearcut | Forest | Treatment | Time | Treatment × Time | ||||
---|---|---|---|---|---|---|---|---|
Total abundance | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | - | - | 3.27 | 0.15 | 26.27 | <0.01 | 5.20 | <0.01 |
1997–2002 | 22.1 ± 2.9 | 16.8 ± 1.6 | ||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | - | - | 3.09 | 0.15 | 1.43 * | 0.28 | 1.02* | 0.42 |
2007–2011 | 13.9 ± 1.0 | 10.6 ± 1.1 | ||||||
F1,6 | p | F3,18 | p | F3,18 | p | |||
Period 4 | - | - | 5.08 | 0.07 | 2.18 * | 0.13 | 7.34* | <0.01 |
2017–2020 | 14.2 ± 1.2 | 20.5 ± 2.6 | ||||||
Species richness | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | A | B | 9.62 | 0.04 | 6.18 * | <0.01 | 5.06 * | <0.01 |
1997–2002 | 4.20 ± 0.25 | 3.13 ± 0.08 | ||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | A | B | 17.87 | 0.01 | 2.77 | 0.06 | 2.46 | 0.09 |
2007–2011 | 3.75 ± 0.16 | 2.86 ± 0.07 | ||||||
F1,6 | p | F3,18 | p | F3,18 | p | |||
Period 4 | - | - | 0.58 | 0.48 | 3.87 * | <0.04 | 1.43 * | 0.27 |
2017–2020 | 2.63 ± 0.12 | 2.45 ± 0.12 | ||||||
Species diversity | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | - | - | 2.47 | 0.19 | 1.16 | 0.36 | 3.46 | 0.02 |
1997–2002 | 1.55 ± 0.09 | 1.27 ± 0.05 | ||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | A | B | 7.44 | 0.05 | 0.72 | 0.59 | 1.75 | 0.19 |
2007–2011 | 1.57 ± 0.07 | 1.26 ± 0.05 | ||||||
F1,6 | p | F3,18 | p | F3,18 | p | |||
Period 4 | - | - | 2.76 | 0.15 | 5.24 | <0.01 | 13.08 | <0.01 |
2017–2020 | 0.90 ± 0.08 | 0.68 ± 0.06 |
Parameter | Grazed | Ungrazed | Treatment | Time | Treatment × Time | |||
---|---|---|---|---|---|---|---|---|
Period 2: years 3 + 5 (n = 6) | F1,4 | p | F1,4 | p | F1,4 | p | ||
Herb cover | 26.9 ± 3.6 | 38.4 ± 10.2 | 0.39 | 0.57 | 0.05 | 0.83 | 0.59 | 0.49 |
Herb abundance | 9.1 ± 1.9 | 11.8 ± 2.5 | 0.39 | 0.57 | 0.02 | 0.89 | 2.83 | 0.17 |
Shrub cover | 17.6 ± 2.6 | 78.2 ± 6.1 | 36.80 | <0.01 | 3.10 | 0.15 | 2.22 | 0.21 |
Shrub abundance | 8.9 ± 1.9 | 68.5 ± 9.1 | 18.40 | 0.01 | 3.32 | 0.14 | 0.10 | 0.77 |
Period 3: years 1 to 3 (n = 9) | F1,4 | p | F2,8 | p | F2,8 | p | ||
Herb cover | 31.5 ± 8.9 | 28.6 ± 3.2 | 0.01 | 0.94 | 27.66 | <0.01 | 11.84 | <0.01 |
Herb abundance | 9.8 ± 2.6 | 12.2 ± 1.9 | 0.79 | 0.42 | 20.58 | <0.01 | 0.62 | 0.56 |
Shrub cover | 7.3 ± 1.4 | 31.6 ± 4.4 | 19.77 | 0.01 | 27.52 * | <0.01 | 7.73 * | 0.03 |
Shrub abundance | 2.5 ± 0.3 | 12.2 ± 2.1 | 16.21 | 0.02 | 28.66 | <0.01 | 15.05 | <0.01 |
Grazed | Ungrazed | Treatment | Time | Treatment × Time | ||||
---|---|---|---|---|---|---|---|---|
Total abundance | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | B | A | 8.37 | 0.04 | 4.69 * | 0.03 | 6.30 * | 0.01 |
1997–2002 | 22.1 ± 2.9 | |||||||
2004–2009 | 32.7 ± 4.4 | |||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | B | A | 7.74 | 0.05 | 4.93 * | 0.03 | 4.46 * | 0.04 |
2007–2011 | 13.9 ± 1.0 | |||||||
2012–2016 | 40.0 ± 6.8 | |||||||
F1,5 | p | F3,15 | p | F3,15 | p | |||
Period 4 | B | A | 12.03 | 0.02 | 0.55 * | 0.60 | 1.90 * | 0.20 |
2017–2020 | 14.2 ± 1.2 | |||||||
2016–2019 | 49.1 ± 6.7 | |||||||
Species richness | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | - | - | 0.44 | 0.54 | 8.57 | <0.01 | 3.85 | 0.01 |
1997–2002 | 4.20 ± 0.25 | |||||||
2004–2009 | 3.94 ± 0.20 | |||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | - | - | 3.73 | 0.13 | 3.59 | 0.03 | 1.84 | 0.17 |
2007–2011 | 3.75 ± 0.16 | |||||||
2012–2016 | 3.20 ± 0.19 | |||||||
F1,5 | p | F3,15 | p | F3,15 | p | |||
Period 4 | - | - | 3.32 | 0.13 | 3.52 | 0.04 | 12.85 | <0.01 |
2017–2020 | 2.63 ± 0.12 | |||||||
2016–2019 | 3.18 ± 0.28 | |||||||
Species diversity | F1,4 | p | F5,20 | p | F5,20 | p | ||
Period 2 | - | - | 0.61 | 0.48 | 3.55 | 0.02 | 1.76 | 0.17 |
1997–2002 | 1.55 ± 0.09 | |||||||
2004–2009 | 1.42 ± 0.07 | |||||||
F1,4 | p | F4,16 | p | F4,16 | p | |||
Period 3 | A | B | 35.77 | <0.01 | 0.96 * | 0.45 | 0.73 * | 0.57 |
2007–2011 | 1.57 ± 0.07 | |||||||
2012–2016 | 0.79 ± 0.09 | |||||||
F1,5 | p | F3,15 | p | F3,15 | p | |||
Period 4 | - | - | 0.15 | 0.71 | 2.14 | 0.14 | 6.94 | <0.01 |
2017–2020 | 0.90 ± 0.08 | |||||||
2016–2019 | 0.97 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, T.P.; Sullivan, D.S. Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting. Ecologies 2022, 3, 446-466. https://doi.org/10.3390/ecologies3040032
Sullivan TP, Sullivan DS. Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting. Ecologies. 2022; 3(4):446-466. https://doi.org/10.3390/ecologies3040032
Chicago/Turabian StyleSullivan, Thomas P., and Druscilla S. Sullivan. 2022. "Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting" Ecologies 3, no. 4: 446-466. https://doi.org/10.3390/ecologies3040032
APA StyleSullivan, T. P., & Sullivan, D. S. (2022). Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting. Ecologies, 3(4), 446-466. https://doi.org/10.3390/ecologies3040032