The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review
Abstract
:1. Introduction
2. Motivation
3. Sources of Steroid Hormones in WWTPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2020, 387, 121682. [Google Scholar] [CrossRef] [PubMed]
- Grdulska, A.; Kowalik, R. Pharmaceuticals in water and wastewater—Overview (Farmaceutyki w wodach i ściekach). Struct. Environ. 2020, 12, 79–84. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Herrera-Melián, J.A.; Rodríguez-Rodríguez, R.; Ojeda-González, Z.; Landívar-Andrade, V.; Santana-Rodríguez, J.J. Pharmaceutical and personal care product residues in a macrophyte pond-constructed wetland treating wastewater from a university campus: Presence, removal and ecological risk assessment. Sci. Total Environ. 2020, 703, 135596. [Google Scholar] [CrossRef]
- Zwart, N.; Jonker, W.; Ten Broek, R.; de Boer, J.; Somsen, G.; Kool, J.; Lamoree, M.H. Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. Water Res. 2020, 168, 115204. [Google Scholar] [CrossRef]
- Lei, K.; Lin, C.Y.; Zhu, Y.; Chen, W.; Pan, H.Y.; Sun, Z.; He, M.C. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. J. Hazard. Mater. 2020, 389, 121891. [Google Scholar] [CrossRef] [PubMed]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z. Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia. Sci. Rep. 2020, 10, 20360. [Google Scholar] [CrossRef] [PubMed]
- Pratush, A.; Ye, X.; Yang, Q.; Kan, J.; Peng, T.; Wang, H.; Hu, Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl. Microbiol. Biotechnol. 2020, 104, 2385–2409. [Google Scholar] [CrossRef] [PubMed]
- Čelić, M.; Škrbić, B.D.; Insa, S.; Živančev, J.; Gros, M.; Petrović, M. Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. Environ. Pollut. 2020, 262, 114344. [Google Scholar] [CrossRef]
- Vulliet, E.; Baugros, J.B.; Flament-Waton, M.M.; Grenier-Loustalot, M.F. Analytical methods for the determination of selected steroid sex hormones and corticosteriods in wastewater. Anal. Bioanal. Chem. 2007, 387, 2143–2151. [Google Scholar] [CrossRef]
- Kolodziej, E.P.; Gray, J.L.; Sedlak, D.L. Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. Environ. Toxicol. Chem. Int. J. 2003, 22, 2622–2629. [Google Scholar] [CrossRef] [Green Version]
- Cartinella, J.L.; Cath, T.Y.; Flynn, M.T.; Miller, G.C.; Hunter, K.W.; Childress, A.E. Removal of natural steroid hormones from wastewater using membrane contactor processes. Environ. Sci. Technol. 2006, 40, 7381–7386. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.T.; Churchley, J.; Huddersman, K.D. Pilot-scale removal of trace steroid hormones and pharmaceuticals and personal care products from municipal wastewater using a heterogeneous fenton’s catalytic process. Int. J. Chem. Eng. 2013, 2013, 760915. [Google Scholar] [CrossRef] [Green Version]
- Combalbert, S.; Hernandez-Raquet, G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl. Microbiol. Biotechnol. 2010, 86, 1671–1692. [Google Scholar] [CrossRef]
- Williams, R.J.; Johnson, A.C.; Smith, J.J.; Kanda, R. Steroid estrogens profiles along river stretches arising from sewage treatment works discharges. Environ. Sci. Technol. 2003, 37, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.G.; Borglin, S.E.; Green, F.B.; Grayson, A.; Wozei, E.; Stringfellow, W.T. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 2006, 65, 1265–1280. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Ternes, T.A.; Stumpf, M.; Mueller, J.; Haberer, K.; Wilken, R.D.; Servos, M. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 1999, 225, 81–90. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Sci. Total Environ. 2019, 690, 447–459. [Google Scholar] [CrossRef]
- Samavat, H.; Kurzer, M.S. Estrogen metabolism and breast cancer. Cancer Lett. 2015, 356, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cheng, Q.; Lin, L.; Wang, X.; Chen, B.; Luan, T.; Tam, N.F. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity. Environ. Pollut. 2016, 211, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Ying, G.G.; Liu, S.; Lai, H.J.; Chen, Z.F.; Pan, C.G.; Chen, J. Analysis of 21 progestagens in various matrices by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment. Anal. Bioanal. Chem. 2014, 406, 7299–7311. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Ying, G.G.; Liu, Y.S.; Yang, Y.Y.; He, L.Y.; Chen, J.; Zhao, J.L. Occurrence and removal of progestagens in two representative swine farms: Effectiveness of lagoon and digester treatment. Water Res. 2015, 77, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, D.A.; Shappell, N.W.; Billey, L.O.; Bermudez, D.S.; Wilson, V.S.; Kolpin, D.W.; Meyer, M.T. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations. Water Res. 2013, 47, 3347–3363. [Google Scholar] [CrossRef]
- Zhi, E.; Song, Y.; Duan, L.; Yu, H.; Peng, J. Spatial distribution and diversity of microbial community in large-scale constructed wetland of the Liao River Conservation Area. Environ. Earth Sci. 2015, 73, 5085–5094. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Y.; Tang, Z.; Huang, J.; Zhou, Q.; Vymazal, J. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment. Ecol. Eng. 2015, 84, 38–45. [Google Scholar] [CrossRef]
- Weizel, A.; Schlüsener, M.P.; Dierkes, G.; Ternes, T.A. Occurrence of glucocorticoids, mineralocorticoids, and progestogens in various treated wastewater, rivers, and streams. Environ. Sci. Technol. 2018, 52, 5296–5307. [Google Scholar] [CrossRef]
- Prieto-Rodríguez, L.; Oller, I.; Klamerth, N.; Agüera, A.; Rodríguez, E.M.; Malato, S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res. 2013, 47, 1521–1528. [Google Scholar] [CrossRef]
- Frontistis, Z.; Xekoukoulotakis, N.P.; Hapeshi, E.; Venieri, D.; Fatta-Kassinos, D.; Mantzavinos, D. Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation. Chem. Eng. J. 2011, 178, 175–182. [Google Scholar] [CrossRef]
- Nakrst, J.; Bistan, M.; Tišler, T.; Zagorc-Končan, J.; Derco, J.; Gotvajn, A.Ž. Comparison of Fenton’s oxidation and ozonation for removal of estrogens. Water Sci. Technol. 2011, 63, 2131–2137. [Google Scholar] [CrossRef]
- Ferrer, I.; Thurman, E.M. Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1259, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D. Environmental mass spectrometry: Emerging contaminants and current issues. Anal. Chem. 2012, 84, 747–778. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. 2019. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?qid=1582731822045&uri=CELEX:52019DC0128 (accessed on 25 February 2020). European Union Strategic Approach to Pharmaceuticals in the Environment.
- Datel, J.V.; Hrabankova, A. Pharmaceuticals load in the svihov water reservoir (Czech Republic) and impacts on quality of treated drinking water. Water 2020, 12, 1387. [Google Scholar] [CrossRef]
- Eckhardt, P.; Hrabánková, A.; Novotná, E.; Hrkal, Z.; Rozman, D. PPCP Monitoring in Drinking Water Supply Systems: The Example of Káraný Waterworks in Central Bohemia. Water 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Snyder, S.A. Occurrence of pharmaceuticals in US drinking water. In Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations; American Chemical Society: Washington, DC, USA, 2010; pp. 69–80. [Google Scholar] [CrossRef]
- World Health Organization. WHO/HSE/WSH/11.05, Pharmaceuticals in Drinking Water. 2011. Available online: http://www.who.int/water_sanitation_health/publications/2011/pharmaceuticals/en (accessed on 25 February 2020).
- World Health Organization. Pharmaceuticals in Drinking-Water; World Health Organization: Geneva, Switzerland, 2012; Available online: https://www.who.int/water_sanitation_health/publications/2012/pharmaceuticals/en/ (accessed on 24 February 2020).
- Chiang, Y.R.; Wei, S.T.S.; Wang, P.H.; Wu, P.H.; Yu, C.P. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies. Microb. Biotechnol. 2020, 13, 926–949. [Google Scholar] [CrossRef] [Green Version]
- Jari, Y.; Roche, N.; Necibi, M.C.; El Hajjaji, S.; Dhiba, D.; Chehbouni, A. Emerging Pollutants in Moroccan Wastewater: Occurrence, Impact, and Removal Technologies. J. Chem. 2022. [Google Scholar] [CrossRef]
- Jones, O.A.; Lester, J.N.; Voulvoulis, N. Pharmaceuticals: A threat to drinking water? TRENDS Biotechnol. 2005, 23, 163–167. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment—A review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ. Sci. Technol. 2019, 53, 2950–2960. [Google Scholar] [CrossRef] [Green Version]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Caldas, S.S.; Arias, J.L.O.; Rombaldi, C.; Mello, L.L.; Cerqueira, M.B.; Martins, A.F.; Primel, E.G. Occurrence of pesticides and PPCPs in surface and drinking water in southern Brazil: Data on 4-year monitoring. J. Braz. Chem. Soc. 2019, 30, 71–80. [Google Scholar] [CrossRef]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Vandenberg, L.N.; Demeneix, B.A.; Porta, M.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020, 8, 719–730. [Google Scholar] [CrossRef]
- Yazdan, M.M.; Ahad, M.T.; Mallick, Z.; Mallick, S.P.; Jahan, I.; Mazumder, M. An Overview of the Glucocorticoids’ Pathways in the Environment and Their Removal Using Conventional Wastewater Treatment Systems. Pollutants 2021, 1, 141–155. [Google Scholar] [CrossRef]
- Biswas, S.; Shapiro, C.A.; Kranz, W.L.; Mader, T.L.; Shelton, D.P.; Snow, D.D.; Ensley, S. Current knowledge on the environmental fate, potential impact, and management of growth-promoting steroids used in the US beef cattle industry. J. Soil Water Conserv. 2013, 68, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Zoh, K.D. Occurrence and removals of micropollutants in water environment. Environ. Eng. Res. 2016, 21, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Yates, S.R.; Bradford, S.A. Analysis of steroid hormones in a typical dairy waste disposal system. Environ. Sci. Technol. 2008, 42, 530–535. [Google Scholar] [CrossRef]
- Karnjanapiboonwong, A.; Suski, J.G.; Shah, A.A.; Cai, Q.; Morse, A.N.; Anderson, T.A. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut. 2011, 216, 257–273. [Google Scholar] [CrossRef]
- Dévier, M.H.; Le Menach, K.; Viglino, L.; Di Gioia, L.; Lachassagne, P.; Budzinski, H. Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters. Sci. Total Environ. 2013, 443, 621–632. [Google Scholar] [CrossRef]
- Maggioni, S.; Balaguer, P.; Chiozzotto, C.; Benfenati, E. Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environ. Sci. Pollut. Res. 2013, 20, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Esteban, S.; Gorga, M.; González-Alonso, S.; Petrovic, M.; Barceló, D.; Valcárcel, Y. Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain. Environ. Sci. Pollut. Res. 2014, 21, 9297–9310. [Google Scholar] [CrossRef]
- Wang, C.; Shi, H.; Adams, C.D.; Gamagedara, S.; Stayton, I.; Timmons, T.; Ma, Y. Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res. 2011, 45, 1818–1828. [Google Scholar] [CrossRef] [PubMed]
- Yazdan, M.M.; Ahad, M.T.; Jahan, I.; Mazumder, M. Review on the evaluation of the impacts of wastewater disposal in hydraulic fracturing industry in the United States. Technologies 2020, 8, 67. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Ruan, R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Falconer, I.R.; Chapman, H.F.; Moore, M.R.; Ranmuthugala, G. Endocrine—disrupting compounds: A review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. Int. J. 2006, 21, 181–191. [Google Scholar] [CrossRef]
- Zhang, T.; Xiong, G.; Maser, E. Characterization of the steroid degrading bacterium S19-1 from the Baltic Sea at Kiel, Germany. Chem. Biol. Interact. 2011, 191, 83–88. [Google Scholar] [CrossRef]
- Zhang, H.C.; Xu, T.; Hu, X.L.; Pang, W.H.; Yin, D.Q. The distributions, removals and estrogenic effects of selected endocrine disrupting chemicals in two drinking water factories in China. J. Water Health 2013, 11, 41–50. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Zhang, H.; Li, Z.; Ma, Y.; Wu, M.; Liu, X. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing. Sci. Total Environ. 2013, 450, 162–168. [Google Scholar] [CrossRef]
- Chen, F.; Ying, G.G.; Kong, L.X.; Wang, L.; Zhao, J.L.; Zhou, L.J.; Zhang, L.J. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ. Pollut. 2011, 159, 1490–1498. [Google Scholar] [CrossRef]
- Vulliet, E.; Wiest, L.; Baudot, R.; Grenier-Loustalot, M.F. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2008, 1210, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Félix–Cañedo, T.E.; Durán–Álvarez, J.C.; Jiménez–Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci. Total Environ. 2013, 454, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Jardim, W.F.; Montagner, C.C.; Pescara, I.C.; Umbuzeiro, G.A.; Bergamasco, A.M.D.D.; Eldridge, M.L.; Sodré, F.F. An integrated approach to evaluate emerging contaminants in drinking water. Sep. Purif. Technol. 2012, 84, 3–8. [Google Scholar] [CrossRef]
- Khalil, A.M.; Hashem, T.; Gopalakrishnan, A.; Schafer, A.I. Cyclodextrin composite nanofiber membrane: Impact of the crosslinker type on steroid hormone micropollutant removal from water. ACS Appl. Polym. Mater. 2021, 3, 2646–2656. [Google Scholar] [CrossRef]
- Baştürk, E.; Karataş, M. Removal of pharmaceuticals by advanced treatment methods. J. Environ. Management 2021, 300, 113808. [Google Scholar] [CrossRef]
- Tölgyesi, Á.; Verebey, Z.; Sharma, V.K.; Kovacsics, L.; Fekete, J. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography–tandem mass spectrometry. Chemosphere 2010, 78, 972–979. [Google Scholar] [CrossRef]
- Liu, S.; Ying, G.G.; Zhao, J.L.; Zhou, L.J.; Yang, B.; Chen, Z.F.; Lai, H.J. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants. J. Environ. Monit. 2012, 14, 482–491. [Google Scholar] [CrossRef]
- Chang, H.; Wan, Y.; Wu, S.; Fan, Z.; Hu, J. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: Comparison to estrogens. Water Res. 2011, 45, 732–740. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Trinh, P.B.; Burkhardt, C.J.; Schäfer, A.I. Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants. Sep. Purif. Technol. 2021, 264, 118405. [Google Scholar] [CrossRef]
- Shore, L.S.; Shemesh, M. Naturally produced steroid hormones and their release into the environment. Pure Appl. Chem. 2003, 75, 1859–1871. [Google Scholar] [CrossRef]
- Yang, G.; Fan, M.; Zhang, G. Emerging contaminants in surface waters in China—A short review. Environ. Res. Lett. 2014, 9, 074018. [Google Scholar] [CrossRef] [Green Version]
- Montagner, C.C.; Sodré, F.F.; Acayaba, R.D.; Vidal, C.; Campestrini, I.; Locatelli, M.A.; Jardim, W.F. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 2019, 30, 614–632. [Google Scholar] [CrossRef]
- Praveena, S.M.; Lui, T.S.; Hamin, N.A.; Razak, S.Q.N.A.; Aris, A.Z. Occurrence of selected estrogenic compounds and estrogenic activity in surface water and sediment of Langat River (Malaysia). Environ. Monit. Assess. 2016, 188, 442. [Google Scholar] [CrossRef] [PubMed]
- Kuster, M.; de Alda, M.J.L.; Hernando, M.D.; Petrovic, M.; Martín-Alonso, J.; Barceló, D. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J. Hydrol. 2008, 358, 112–123. [Google Scholar] [CrossRef]
- Kuster, M.; Díaz-Cruz, S.; Rosell, M.; de Alda, M.L.; Barceló, D. Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters. Chemosphere 2010, 79, 880–886. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, J.L.; Wilding, A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1022, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Delgado-González, C.R.; Madariaga-Navarrete, A.; Fernández-Cortés, J.M.; Islas-Pelcastre, M.; Oza, G.; Iqbal, H.; Sharma, A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. Int. J. Environ. Res. Public Health 2021, 18, 5215. [Google Scholar] [CrossRef] [PubMed]
- Runnalls, T.J.; Margiotta-Casaluci, L.; Kugathas, S.; Sumpter, J.P. Pharmaceuticals in the aquatic environment: Steroids and anti-steroids as high priorities for research. Hum. Ecol. Risk Assess. 2010, 16, 1318–1338. [Google Scholar] [CrossRef]
- Torres, M.J.; Canto, G. Hypersensitivity reactions to corticosteroids. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 273–279. [Google Scholar] [CrossRef]
- Ammann, A.A.; Macikova, P.; Groh, K.J.; Schirmer, K.; Suter, M.J. LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. Anal. Bioanal. Chem. 2014, 406, 7653–7665. [Google Scholar] [CrossRef]
- Stavreva, D.A.; George, A.A.; Klausmeyer, P.; Varticovski, L.; Sack, D.; Voss, T.C.; NHager, G.L. Prevalent glucocorticoid and androgen activity in US water sources. Sci. Rep. 2012, 2, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, T.L.; Gaughan, J.B.; Kreikemeier, W.M.; Parkhurst, A.M. Behavioural effects of yearling grain-finished heifers exposed to differing environmental conditions and growth-promoting agents. Aust. J. Exp. Agric. 2008, 48, 1155–1160. [Google Scholar] [CrossRef]
- Sinnett-Smith, P.A.; Dumelow, N.W.; Buttery, P.J. Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs. Br. J. Nutr. 1983, 50, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, B.; Daxenberger, A.; Meyer, K.; Meyer, H.H. The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: Environmental studies. Environ. Health Perspect. 2001, 109, 1145–1151. [Google Scholar] [CrossRef]
- Lange, I.G.; Daxenberger, A.; Schiffer, B.; Witters, H.; Ibarreta, D.; Meyer, H.H. Sex hormones originating from different livestock production systems: Fate and potential disrupting activity in the environment. Anal. Chim. Acta 2002, 473, 27–37. [Google Scholar] [CrossRef]
- Kolok, A.S.; Snow, D.D.; Kohno, S.; Sellin, M.K.; Guillette, L.J., Jr. Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska, USA. Sci. Total Environ. 2007, 388, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartelt-Hunt, S.L.; Snow, D.D.; Kranz, W.L.; Mader, T.L.; Shapiro, C.A.; Donk, S.J.V.; Zhang, T.C. Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations. Environ. Sci. Technol. 2012, 46, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durhan, E.J.; Lambright, C.S.; Makynen, E.A.; Lazorchak, J.; Hartig, P.C.; Wilson, V.S.; Ankley, G.T. Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot. Environ. Health Perspect. 2006, 114 (Suppl. 1), 65–68. [Google Scholar] [CrossRef] [Green Version]
- Laganà, A.; Bacaloni, A.; De Leva, I.; Faberi, A.; Fago, G.; Marino, A. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal. Chim. Acta 2004, 501, 79–88. [Google Scholar] [CrossRef]
- Lee, L.S.; Carmosini, N.; Sassman, S.A.; Dion, H.M.; Sepulveda, M.S. Agricultural contributions of antimicrobials and hormones on soil and water quality. Adv. Agron. 2007, 93, 1–68. [Google Scholar] [CrossRef]
- Koh, Y.K.K.; Chiu, T.Y.; Boobis, A.; Cartmell, E.; Scrimshaw, M.D.; Lester, J.N. Treatment and removal strategies for estrogens from wastewater. Environ. Technol. 2008, 29, 245–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Jiao, R.; Sun, H.; Xu, H.; He, Y.; Wang, D. Removal of microorganic pollutants in aquatic environment: The utilization of Fe (VI). J. Environ. Manag. 2022, 316, 115328. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, H.; van der Hoek, J.P.; Yu, K.; Cao, Y. Recent applications of biological technologies for decontaminating hormones in livestock waste and wastewater. Curr. Opin. Environ. Sci. Health 2021, 24, 100307. [Google Scholar] [CrossRef]
- Necibi, M.C.; Dhiba, D.; El Hajjaji, S. Contaminants of emerging concern in African wastewater effluents: Occurrence, impact and removal technologies. Sustainability 2021, 13, 1125. [Google Scholar] [CrossRef]
- Okoye, C.O.; Okeke, E.S.; Okoye, K.C.; Echude, D.; Andong, F.A.; Chukwudozie, K.I.; Okoye, H.U.; Ezeonyejiaku, C.D. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention. Heliyon 2022, e09143. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, Z.X.; Liu, Y.Y.; Wu, Q.Y.; Sun, Y.X. Relative developmental toxicities of reclaimed water to zebrafish embryos and the relationship with relevant water quality parameters. Water Cycle 2021, 2, 85–90. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.B.; Kumar, V.; Necibi, M.C.; Mu, Y.J.; Shi, C.Z.; Chaurasia, D.; Chauhan, S.; Chaturvedi, P.; Sillanpää, M.; et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. Environ. Res. 2022, 211, 113075. [Google Scholar] [CrossRef]
- Furuichi, T.; Kannan, K.; Giesy, J.P.; Masunaga, S. Contribution of known endocrine disrupting substances to the estrogenic activity in Tama River water samples from Japan using instrumental analysis and in vitro reporter gene assay. Water Res. 2004, 38, 4491–4501. [Google Scholar] [CrossRef]
- Bednárek, J.; Matějová, L.; Jankovská, Z.; Vaštyl, M.; Sokolová, B.; Peikertová, P.; Šiler, P.; Verner, A.; Tokarský, J.; Koutník, I.; et al. The Influence of Structural Properties on the Adsorption Capacities of Microwave-assisted Biochars for Metazachlor Removal from Aqueous Solutions. J. Environ. Chem. Eng. 2022, 108003. [Google Scholar] [CrossRef]
- Fernandez, M.P.; Ikonomou, M.G.; Buchanan, I. An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci. Total Environ. 2007, 373, 250–269. [Google Scholar] [CrossRef]
- Clara, M.; Kreuzinger, N.; Strenn, B.; Gans, O.; Kroiss, H. The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res. 2005, 39, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Conley, J.M.; Evans, N.; Cardon, M.C.; Rosenblum, L.; Iwanowicz, L.R.; Hartig, P.C.; Wilson, V.S. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters. Environ. Sci. Technol. 2017, 51, 4781–4791. [Google Scholar] [CrossRef]
- Yarahmadi, H.; Duy, S.V.; Hachad, M.; Dorner, S.; Sauvé, S.; Prévost, M. Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases. Sci. Total Environ. 2018, 635, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Šauer, P.; Stará, A.; Golovko, O.; Valentová, O.; Bořík, A.; Grabic, R.; Kroupová, H.K. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics. Water Res. 2018, 137, 64–71. [Google Scholar] [CrossRef]
- Karpińska, J.; Kotowska, U. New Aspects of Occurrence and Removal of Emerging Pollutants. Water 2021, 13, 2418. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, C.; Wu, J. Removal of steroid hormones from mariculture system using seaweed Caulerpa lentillifera. Front. Environ. Sci. Eng. 2021, 16, 1–11. [Google Scholar] [CrossRef]
- Ribeiro, T.S.; Mourão, L.C.; Souza, G.B.; Dias, I.M.; Andrade, L.A.; Souza, P.L.; Cardozo-Filho, L.; Oliveira, G.R.; Oliveira, S.B.; Alonso, C.G. Treatment of hormones in wastewater from the pharmaceutical industry by continuous flow supercritical water technology. J. Environ. Chem. Eng. 2021, 9, 106095. [Google Scholar] [CrossRef]
- Kolok, A.S.; Ali, J.M.; Rogan, E.G.; Bartelt-Hunt, S.L. The fate of synthetic and endogenous hormones used in the US beef and dairy industries and the potential for human exposure. Curr. Environ. Health Rep. 2018, 5, 225–232. [Google Scholar] [CrossRef]
- Hatt, J.W.; Germain, E.; Judd, S.J. Powdered Activated Carbon-Microfiltration for Waste-Water Reuse. Sep. Sci. Technol. 2013, 48, 690–698. [Google Scholar] [CrossRef]
- Nakada, N.; Yasojima, M.; Okayasu, Y.; Komori, K.; Tanaka, H.; Suzuki, Y. Fate of oestrogenic compounds and identification of oestrogenicity in a wastewater treatment process. Water Sci. Technol. 2006, 53, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Desbrow, C.E.J.R.; Routledge, E.J.; Brighty, G.C.; Sumpter, J.P.; Waldock, M. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol. 1998, 32, 1549–1558. [Google Scholar] [CrossRef]
- Johnson, A.C.; Belfroid, A.; Di Corcia, A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci. Total Environ. 2000, 256, 163–173. [Google Scholar] [CrossRef]
- Körner, W.; Spengler, P.; Bolz, U.; Schuller, W.; Hanf, V.; Metzger, J.W. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 2. Biological analysis. Environ. Toxicol. Chem. Int. J. 2001, 20, 2142–2151. [Google Scholar] [CrossRef]
- Belfroid, A.C.; Van der Horst, A.; Vethaak, A.D.; Schäfer, A.J.; Rijs, G.B.J.; Wegener, J.; Cofino, W.P. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci. Total Environ. 1999, 225, 101–108. [Google Scholar] [CrossRef]
- Servos, M.R.; Bennie, D.T.; Burnison, B.K.; Jurkovic, A.; McInnis, R.; Neheli, T.; Ternes, T.A. Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci. Total Environ. 2005, 336, 155–170. [Google Scholar] [CrossRef]
- Jenkins, R.L.; Wilson, E.M.; Angus, R.A.; Howell, W.M.; Kirk, M. Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol. Sci. 2003, 73, 53–59. [Google Scholar] [CrossRef]
- Hansen, P.D.; Dizer, H.H.B.; Marx, A.; Sherry, J.; McMaster, M.; Blaise, C. Vitellogenin: A Biomarker for Endocrine Disruptors. Trends Anal. Chem. 1998, 17, 448–451. [Google Scholar] [CrossRef]
- Leffers, H.; Næsby, M.; Vendelbo, B.; Skakkebæk, N.E.; Jørgensen, M. Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: Implications for exposure assessment of potential endocrine disrupters. Hum. Reprod. 2001, 16, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lin, Y.C. Transformation of MCF-10A Human Breast Epithelial Cells by Zeranol and Estradiol-17β. Breast J. 2004, 10, 514–521. [Google Scholar] [CrossRef]
- Xu, P.; Ye, W.; Jen, R.; Lin, S.H.; Kuo, C.T.; Lin, Y.C. Mitogenic activity of zeranol in human breast cancer cells is enhanced by leptin and suppressed by gossypol. Anticancer Res. 2009, 29, 4621–4628. [Google Scholar]
- Chang, H.; Hu, J.; Shao, B. Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters. Environ. Sci. Technol. 2007, 41, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, J.P.; Johnson, A.C. Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ. Sci. Technol. 2005, 39, 4321–4332. [Google Scholar] [CrossRef]
- Länge, R.; Hutchinson, T.H.; Croudace, C.P.; Siegmund, F.; Schweinfurth, H.; Hampe, P.; Sumpter, J.P. Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. Int. J. 2001, 20, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, S.; Van Aerle, R.; Tyler, C.R.; Braunbeck, T. Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicol. Environ. Saf. 2004, 57, 330–345. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.J.; Arao, Y.; Korach, K.S. Estrogen hormone physiology: Reproductive findings from estrogen receptor mutant mice. Reprod. Biol. 2014, 14, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.H.; Hala, D.; Carty, D.; Cantu, M.; Martinović, D.; Huggett, D.B. Effects of progesterone and norethindrone on female fathead minnow (Pimephales promelas) steroidogenesis. Environ. Toxicol. Chem. 2015, 34, 379–390. [Google Scholar] [CrossRef]
- Orlando, E.F.; Kolok, A.S.; Binzcik, G.A.; Gates, J.L.; Horton, M.K.; Lambright, C.S.; Guillette, L.J., Jr. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environ. Health Perspect. 2004, 112, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Morthorst, J.E.; Holbech, H.; Bjerregaard, P. Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations. Aquat. Toxicol. 2010, 98, 336–343. [Google Scholar] [CrossRef]
- Sone, K.; Hinago, M.; Itamoto, M.; Katsu, Y.; Watanabe, H.; Urushitani, H.; Iguchi, T. Effects of an androgenic growth promoter 17β-trenbolone on masculinization of Mosquitofish (Gambusia affinis affinis). Gen. Comp. Endocrinol. 2005, 143, 151–160. [Google Scholar] [CrossRef]
- Ankley, G.T.; Jensen, K.M.; Makynen, E.A.; Kahl, M.D.; Korte, J.J.; Hornung, M.W.; Gray, L.E. Effects of the androgenic growth promoter 17-β-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environ. Toxicol. Chem. Int. J. 2003, 22, 1350–1360. [Google Scholar] [CrossRef]
- Nuzzo, J.B. The biological threat to US water supplies: Toward a national water security policy. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2006, 4, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef]
- Wojnarowicz, P.; Yang, W.; Zhou, H.; Parker, W.J.; Helbing, C.C. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant. Water Res. 2014, 66, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Baronti, C.; Curini, R.; D’Ascenzo, G.; Di Corcia, A.; Gentili, A.; Samperi, R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ. Sci. Technol. 2000, 34, 5059–5066. [Google Scholar] [CrossRef]
- D’ascenzo, G.; Di Corcia, A.; Gentili, A.; Mancini, R.; Mastropasqua, R.; Nazzari, M.; Samperi, R. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 2003, 302, 199–209. [Google Scholar] [CrossRef]
- Azzouz, A.; Ballesteros, E. Gas chromatography–mass spectrometry determination of pharmacologically active substances in urine and blood samples by use of a continuous solid-phase extraction system and microwave-assisted derivatization. J. Chromatogr. B 2012, 891, 12–19. [Google Scholar] [CrossRef]
- Azzouz, A.; Ballesteros, E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography–mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ. 2012, 419, 208–215. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Liu, H.; Ru, J.; Qu, J.; Dai, R.; Wang, Z.; Hu, C. Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 2009, 100, 2995–3002. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms, Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
- Lopez, J. Endocrine-Disrupting Chemical Pollution: Why the EPA Should Regulate These Chemicals under the Clean Water Act. Sustain. Dev. Law Policy 2009, 10, 19. [Google Scholar]
- Ohko, Y.; Iuchi, K.-I.; Niwa, C.; Tatsuma, T.; Nakashima, T.; Iguchi, T.; Kubota, Y.; Fujishima, A. 17β-Estradiol Degradation by TiO2 Photocatalysis as a Means of Reducing Estrogenic Activity. Environ. Sci. Technol. 2002, 36, 4175–4181. [Google Scholar] [CrossRef]
- Rose, L.J.; Rice, E.W. Inactivation of bacterial biothreat agents in water, a review. J. Water Health 2014, 12, 618–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volker, J.; Stapf, M.; Miehe, U.; Wagner, M. Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon. Environ. Sci. Technol. 2019, 53, 7215–7233. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, M.T.M.; Nygaard, J.M.; Ghosh, A.K.; Hoek, E.M. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 2010, 261, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Karnik, B.S.; Davies, S.H.; Baumann, M.J.; Masten, S.J. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ. Sci. Technol. 2005, 39, 7656–7661. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environ. Pollut. 2003, 122, 435–445. [Google Scholar] [CrossRef]
- Humplik, T.; Lee, J.; O’hern, S.C.; Fellman, B.A.; Baig, M.A.; Hassan, S.F.; Wang, E.N. Nanostructured materials for water desalination. Nanotechnology 2011, 22, 292001. [Google Scholar] [CrossRef]
- World Health Organization. Economic and Health Effects of Increasing Coverage of Low Cost Household Drinking-Water Supply and Sanitation Interventions to Countries Off-Track to Meet MDG Target 10: Background Document to the “Human Development Report 2006”; No. WHO/SDE/WSH/07.05; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- WHO/UNICEF Joint Water Supply, and Sanitation Monitoring Programme. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Lin, L.; Jiang, W.; Chen, L.; Xu, P.; Wang, H. Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects. Catalysts 2020, 10, 924. [Google Scholar] [CrossRef]
- Thomas, A.G.; Syres, K.L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207–4217. [Google Scholar] [CrossRef]
- Díez, A.M.; Ribeiro, A.S.; Sanromán, M.A.; Pazos, M. Optimization of photo-Fenton process for the treatment of prednisolone. Environ. Sci. Pollut. Res. 2018, 25, 27768–27782. [Google Scholar] [CrossRef]
- Yin, K.; He, Q.; Liu, C.; Deng, Y.; Wei, Y.; Chen, S.; Luo, S. Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism. Chemosphere 2018, 212, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Romão, J.S.; Hamdy, M.S.; Mul, G.; Baltrusaitis, J. Photocatalytic decomposition of cortisone acetate in aqueous solution. J. Hazard. Mater. 2015, 282, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, X.; Sun, W.; Ren, D.; Li, X.; Li, X.; Pan, X. Occurrence, removal, and fate of progestogens, androgens, estrogens, and phenols in six sewage treatment plants around Dianchi Lake in China. Environ. Sci. Pollut. Res. 2014, 21, 12898–12908. [Google Scholar] [CrossRef] [PubMed]
- Larauche, M.; Mulak, A.; Tache, Y. Stress-related alterations of visceral sensation: Animal models for irritable bowel syndrome study. J. Neurogastroenterol. Motil. 2011, 17, 213–234. [Google Scholar] [CrossRef]
- Onesios, K.M.; Yu, J.T.; Bouwer, E.J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation 2009, 20, 441–466. [Google Scholar] [CrossRef]
- Jia, A.; Wu, S.; Daniels, K.D.; Snyder, S.A. Balancing the budget: Accounting for glucocorticoid bioactivity and fate during water treatment. Environ. Sci. Technol. 2016, 50, 2870–2880. [Google Scholar] [CrossRef]
- Saha, B.; Karounou, E.; Streat, M. Removal of 17β-oestradiol and 17α-ethinyl oestradiol from water by activated carbons and hypercrosslinked polymeric phases. React. Funct. Polym. 2010, 70, 531–544. [Google Scholar] [CrossRef]
- Yang, B.; Ying, G.G.; Zhao, J.L.; Liu, S.; Zhou, L.J.; Chen, F. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate (VI) treatment of secondary wastewater effluents. Water Res. 2012, 46, 2194–2204. [Google Scholar] [CrossRef]
- Wang, F.; Sun, W.; Pan, W.; Xu, N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem. Eng. J 2015, 274, 17–29. [Google Scholar] [CrossRef]
- Patel, S.; Han, J.; Gao, W. Sorption of 17β-estradiol from aqueous solutions on to bone char derived from waste cattle bones: Kinetics and isotherms. J. Environ. Chem. Eng. 2015, 3, 1562–1569. [Google Scholar] [CrossRef]
- Teixeira, A.P.C.; Purceno, A.D.; De Paula, C.C.A.; Da Silva, J.C.C.; Ardisson, J.D.; Lago, R.M. Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol. J. Hazard. Mater. 2013, 248–249, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.L.; Fang, L.F.; Shen, Y.J.; Yu, W.H.; Zhu, B.K.; Hélix-Nielsen, C.; Zhang, W. Ionic dendrimer based polyamide membranes for ion separation. ACS Nano 2021, 15, 7522–7535. [Google Scholar] [CrossRef]
- Tagliavini, M.; Engel, F.; Weidler, P.G.; Scherer, T.; Schäfer, A.I. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC). J. Hazard. Mater. 2017, 337, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Pretali, L.; Albini, A.; Cantalupi, A.; Maraschi, F.; Nicolis, S.; Sturini, M. TiO2-Photocatalyzed Water Depollution, a Strong, yet Selective Depollution Method: New Evidence from the Solar Light Induced Degradation of Glucocorticoids in Freshwaters. Appl. Sci. 2021, 11, 2486. [Google Scholar] [CrossRef]
- Oseph, L.; Zaib, Q.; Khan, I.A.; Berge, N.D.; Park, Y.G.; Saleh, N.B.; Yoon, Y. Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res. 2011, 45, 4056–4068. [Google Scholar] [CrossRef]
- Klauson, D.; Pilnik-Sudareva, J.; Pronina, N.; Budarnaja, O.; Krichevskaya, M.; Käkinen, A.; Preis, S. Aqueous photocatalytic oxidation of prednisolone. Open Chem. 2013, 11, 1620–1633. [Google Scholar] [CrossRef]
- Ellerie, J.R.; Apul, O.G.; Karanfil, T.; Ladner, D.A. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes. J. Hazard. Mater. 2013, 26, 91–98. [Google Scholar] [CrossRef]
- Yasir, M.; Masar, M.; Sopik, T.; Ali, H.; Urbanek, M.; Antos, J.; Machovsky, M.; Kuritka, I. ZnO nanowires and nanorods based ZnO/WO3/Pt heterojunction for efficient photocatalytic degradation of estriol (E3) hormone. Mater. Lett. 2022, 319, 132291. [Google Scholar] [CrossRef]
Hormones Class | Compounds | Log Kow | Log Koc | Molecular Weight | Structure |
---|---|---|---|---|---|
Estrogen | Estrone | 3.43 | 3.02 | 270.16 | |
17-β estradiol | 3.94 | 2.90 | 272.38 | ||
Estriol | 2.45 | N/A | 288.28 | ||
17α-ethinyl estradiol | 4.12 | 2.70 | 296.40 | ||
Progestogens | Norethindrone | 3.99 | 2.35 | 298.40 | |
Progesterone | 3.67 | 3.46 | 314.23 | ||
Androgen | Testosterone | 3.27 | 2.55 | 288.21 | |
Androstenedione | 3.07 | 2.75 | 286.19 | ||
Dihydrotestosterone | 3.07 | 2.67 | 290.44 | ||
Glucocorticoids | Prednisolone or beclomethasone | 1.40 | 1.39 | 360.19 | |
Cortisol | 1.62 | 1.38 | 362.21 | ||
Dexamethasone (Betamethasone) | 1.72 | 1.57 | 392.50 | ||
Prednisone | 1.59 | 1.30 | 358.18 | ||
Cortisone | 1.81 | 1.31 | 360.19 | ||
6α-methylprednisolone | 1.82 | N/A | 374.47 | ||
Growth Hormone | Zeranol | 5.37 | N/A | 322.40 | |
Trenbolone Acetate | 3.65 | 3.90 | 312.17 | ||
Melengestrol Acetate | 4.41 | N/A | 396.23 |
Steroid and Hormones Class | Compounds | Sources | References |
---|---|---|---|
Estrogen | Estrone | Europe: United Kingdom, The Netherlands, Italy, Spain, Denmark, Austria, Switzerland, Germany, Portugal (Douro River), water purification plant in Helsinki, Finland, Belgium Asia: Mainland China (Jiulongjiang River, River in Tianjing, Beijing-Tianjin-Hebei region), Japan, Korea, Taiwan, Hong Kong, India, Malaysia Oceania: Five rivers in southeast Queensland, Australia New Zealand: Littleton Harbor (Te Whakaraupō), New Zealand North America: 14 states in US, Canada, Mexico South America: Three rivers in south Rio de, Janeiro(Brazil), Some rivers (Brazilian, Rivers in southern Jiangsu, surface waters of the Chascomús Lagoon, Argentina, African continent: City of Ekurhuleni Metropolitan area (Gauteng Province, South Africa) | [92,93,94,95,96,97,98,99,100,101,102,103] |
17-β estradiol | |||
Estriol | |||
17α-ethinyl estradiol | |||
Progestogens | Norethindrone | Europe: Wastewater and surface water of United Kingdom, The Netherlands, Italy, Spain, France, Switzerland, Germany, Hungary, Czech Republic, Finland Asia: China (seven WWTPs (Beixiaohe Fangzhuang Gaobeidian Jiuxianqiao Qinghe Wujiacun Xiaohongmen) of Beijing),Japan, Korea, Malaysia Oceania: Australia New Zealand: New Zealand North America: US, Canada South America: Brazil, Argentina, African continent: Arusha city, Tanzania | [22,23,27,66,67,68,69,70,71,72,75,76,78] |
Progesterone | |||
Androgen | Testosterone | Europe: United Kingdom, The Netherlands, Italy, Spain, France, Switzerland, Germany, Hungary, Czech Republic, downstream effluent in Sweden. Asia: China (seven WWTPs (Beixiaohe Fangzhuang Gaobeidian Jiuxianqiao Qinghe Wujiacun Xiaohongmen) of Beijing),Japan, Korea, Malaysia, India (Ganga River near two major cities,) Oceania: Australia New Zealand: New Zealand North America: US (Fenholloway River, in the southern United States), Canada, Mexico South America: Brazil, Argentina, African continent: Arusha city, Tanzania | [7,67,68,69,78,82,89] |
Androstenedione | |||
Dihydrotestosterone | |||
Glucocorticoids | Prednisolone or beclomethasone | Europe: United Kingdom, The Netherlands, Spain, Switzerland, Hungary, Wastewater in France, Hospital Wastewater in Netherlands, Surface water in Spain, (Czech and Slovak republics Sewage and River water) Asia: Japan (Ehime Prefecture), China (Sewage Treatment Plants and Receiving River Waters Beijing,), India, Malaysia, Oceania: Australia (River water and municipal sewage) New Zealand: New Zealand (municipal sewage) North America: US, drinking water in Canada, Mexico South America: Wastewater in Uruguay and Brazil, shallow lakes system Argentina. | [103,104,105,106,107,108] |
Cortisol | |||
Dexamethasone (Betamethasone) | |||
Prednisone | |||
Cortisone | |||
6α-methylprednisolone | |||
Growth Hormone | Zeranol | Europe: United Kingdom, The Netherlands, Spain, Switzerland, France, Ireland, Denmark Asia: Japan, China (River Wenyu and its tributaries in Beijing,) Oceania: Australia North America: US, drinking water in Canada, Mexico South America: Wastewater in Brazil Middle East: Israel | [47,85,88,109,110] |
Trenbolone Acetate | |||
Melenogestrol Acetate |
Hormones and Steroid Class | Compounds | Effluent Concentration (ng/L) | Toxicity and Impacts | References |
---|---|---|---|---|
Estrogen | Estrone | 0.1–154 | Studies showed that estrone at pollutant levels have been linked with breast cancer in women and prostate cancer in men, thyroid problems, and weakened immune systems of animals and birds. | [111,112,113,114,115] |
17-β estradiol | 0.2–64 | It was reported in several studies that testicular and ovarian cancer, stimulated endometriosis, osteoporosis, cardiovascular diseases, neurodegenerative diseases, cognitive and behavioral alterations, hypertension, metabolic disorders (such as obesity and diabetes), and also immune disorders are the causes of excessive 17-β estradiol level. | [13,17,18,112] | |
Estriol | >0.1–196 | Induction of plasma vitellogenin and intersex behaviors in fish exposed in the environment immediately adjacent to the outfalls due to the presence of estriol in water. | [113,114,115,116,117,118,119] | |
17α-ethinyl estradiol | 0.2–66 | Embryo deformation and mortality, impaired reproduction and growth in fish, feminization, and intersex behaviors in fish (males changing to females) was reported in many papers due to17α-ethinyl estradiol. | [13,17,18,114] | |
Progestogens | Norethindrone | 0.11 to 3.2 ng/L | Reproductive consequences on marine fish for example, effects on egg production, egg fertility, and egg viability of spawning adults were reported in many papers. | [66] |
Progesterone | n.d.–439 | Studies showed that progesterone at pollutant levels can cause oocyte maturation in female and sperm motility in male fish, as well as in frogs and mussels, adverse effect on fish production, leading population decline, and skewed sex ratios. | [79,120,121,122,123,124,125,126] | |
Levonorgestrel | n.d.–12 | Levonorgestrel has effects on the brains of female fathead minnow (Pimephales promelas), hampers reproductivity of Zebrafish. | [66,127] | |
Androgen | Testosterone | 0.06–480 | Testosterone has effects on the feminization of male fish, induction of vitellogenin in male trout | [118] |
Androsterone | 81 ± 13 ng/L | Androsterone has a significant effect on potency to masculinize and/or sex-reverse female fish. | [117] | |
Androstenedion | 86 ± 2 ng/L | Androstenedion has effects on masculinized female eastern mosquitofish (Gambusia holbrooki). | [117] | |
Glucocorticoids | Prednisolone or beclomethasone | 0.7–1.7 | Many studies mentioned that, due to prednisolone or beclomethasone, plasma glucose levels in fathead minnow were increased, and the number of leukocytes in the peripheral blood was decreased. | [1,3] |
Cortisol | 100–145 | Cortisol has effects on suppressed immune function in fish. | [127] | |
Dexamethasone (Betamethasone) | >0.1–1.7 | Dexamethasone (Betamethasone) has adverse effects on reproduction, growth, and development in fathead minnow (Pimephales promelas). | [2,3] | |
Prednisone | 0.2–100 | It has been reported that a significant number of serum free amino acid levels were increased in common carp (Cyprinus carpio). | [3,4] | |
Cortisone | 1.3–433 | Cortisone has an adverse impact on the aquatic environment. | ||
6α-methylprednisolone | 60–91 | Serum free amino acid levels was increased in common carp (Cyprinus carpio). | [3,4] | |
Growth Hormone | Zeranol | Adverse ability to stimulate growth of human breast tumor cells in vitro, abnormal cell growth in beef and cattle industry. | [119,120,121] | |
Trenbolone Acetate | 26.5 and 63.0 ng/g | Trenbolone acetate has adverse effects on fertility and reproduction, altered hormone levels, induced transcriptional effects in adults, and induced development of male secondary sexual characteristics in female fish. | [79,122,123,124,125,126] | |
Melenogestrol Acetate | 1–100 | Wild male fathead minnows (Pimephales promelas) exposed to feedlot effluent had reduced testosterone concentrations, altered head morphometrics, and reduced testis size, while females had decreased estrogen/androgen ratios due to the Melenogestrol acetate. | [128,129,130,131] |
Process | Removal Efficiency | References |
---|---|---|
Adsorption with nano particles, e.g., Fe (VI) nanoparticle adsorption (pH range 7–8) | Highly effective (80–99%) | [140] |
Combination of membrane filtration, ultra-filtration | Depends on the filtration type, size, and effluent concentration | [140] |
Chlorination | Activated sludge systems combined with chlorination in tertiary treatment has been effective (95%) | [141] |
Coagulation and flocculation | Not effective (<10%) | [141,142,143,146,155,156,157] |
Sorption | Effective (98%) | [141,143] |
Adsorption with activated carbon(pH = 8) | Highly effective (98%) | [144,145,147,148,149,158,159,160] |
Attached growth process | Varies between compounds, moderately effective | [147,158] |
Advanced oxidation processes (Ozone, UV/H2O2, photo-Fenton processes) | Highly Effective (<90%) | [148,161] |
Combination of ozonation and granular activated carbon (GAC) | Moderately Effective (70–85%) | [148,155] |
Microfiltration membranes | Not effective (<18% unless combines with activated carbon or ultrafiltration) | [150,151,156] |
Ultrafiltration | Not effective (~8%) but for hydrophobic membranes (such as Cortisone) its efficiency goes beyond 80% | [151,160,161,162,163,164,165] |
Combination of reverse osmosis and micro-filtration | Depends on the concentration of steroid and hormone’s. (56–90%) | [155,166] |
Activated sludge systems with UV disinfection | Not effective (49%) | [155,167,168,169,170] |
Photocatalysis (µg/liter levels) | Effective (>95%) | [167,171,172,173,174,175] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdan, M.M.S.; Kumar, R.; Leung, S.W. The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies 2022, 3, 206-224. https://doi.org/10.3390/ecologies3020016
Yazdan MMS, Kumar R, Leung SW. The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies. 2022; 3(2):206-224. https://doi.org/10.3390/ecologies3020016
Chicago/Turabian StyleYazdan, Munshi Md. Shafwat, Raaghul Kumar, and Solomon W. Leung. 2022. "The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review" Ecologies 3, no. 2: 206-224. https://doi.org/10.3390/ecologies3020016
APA StyleYazdan, M. M. S., Kumar, R., & Leung, S. W. (2022). The Environmental and Health Impacts of Steroids and Hormones in Wastewater Effluent, as Well as Existing Removal Technologies: A Review. Ecologies, 3(2), 206-224. https://doi.org/10.3390/ecologies3020016