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Abstract

:

Micro-pollutants especially estrogens, progesterone, androgens, glucocorticoids, and growth hormones, are biological and chemical impurities that find their way into natural aquatic environments in trace quantities (ng/L), and possess a significant disturbance by impacting human and aquatic life. Due to the significant progress in in the analysis and detection techniques, these trace elements have been observed and quantified in several studies. However, as a result of limited methods and management technology, the adverse effects by these micro-pollutants in surface and coastal water is largely unknown. For this study, the compounds of estrogens, progesterone, androgens, glucocorticoids, and growth hormones have been selected according to their high frequent detection value in environmental waters. The concentration of the selected steroid and hormones ranges from 0.1–196 ng/L (estrogens), less than 0.1 to 439 ng/L (progesterone), 0.06–86 ± 2 (androgens), less than 0.1 to 433 ng/L (glucocorticoids), and 26.6 ng/g to 100 ng/L (growth hormones), and their percentage of removal efficiency varies from less than 10% to 99%, as the measurement of compounds concentration was found to be very low. Here, we report that future studies are necessary to detect the entry routes of these compounds into the environmental water, as well as to explore the technological approaches which are able to resolve this issue permanently.
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1. Introduction


As the global population grows exponentially, it has constituted a parallel increase in the need for the world’s limited availability of freshwater. Hence, preserving the virtue of accessible water resources is one of the vital environmental concerns of the 21st century [1,2,3,4,5,6]. The potential adverse effect on human and ecological health due to the production, use, and disposal of numerous chemicals that offer improvements in industry, agriculture, medical treatment, and even common household conveniences have brought immense concern nowadays [7,8,9,10,11]. The usage of steroid hormones in pharmaceutical as well as personal care products (PPCPs), livestock, and husbandry have become a burning issue, as their presence pollutes the water resources in a significant way [12,13,14]. Over the past few years, due to the presence in the environment and the risks associated with steroid hormones, this has brought immense concern. Furthermore, both estrogen and androgen are highlighted in stressing the environment in several studies [5,8,13,14,15,16,17,18]. Existing wastewater treatment plants (WWTPs) are struggling to remove these compounds effectively and completely [1,2,3,4,16,17,18]. Figure 1 shows a summary of the sources, as well as the impacts, of steroids and hormones.



The existence of these steroid hormones acting as endocrine-disrupting compounds (EDCs) in the water resources has become a prominent topic in the field of environmental research and policy nowadays, although it was first discovered in the 1990s [13,21]. EDCs have attracted the attention of scientists, as they play a major role in altering the regular reproduction of humans and wildlife, as well as their development and growth, and interference in the aging or longevity of aquatic organisms [19,20,21,22,23,24,25]. Pharmaceutical and personal care products (PPCPs) which contain natural and synthetic steroid hormones are referred to as contaminants of emerging concern (CECs), due to their multiple forms of operation, noxious actions, and adverse effects on different species [16,24,25]. Steroid and hormones, which are considered as EDCs, and are also frequently found in WWTP, include androgens, estrogens, glucocorticoids, progestogens, and growth hormones at trace concentration (ng/L) levels [13,14]. These compounds were selected on the basis of usage density and the percentage of their existence in effluent concentrations, as well as their impact as endocrine-disrupting chemicals.



The existing technology to remove hormones and steroids can be categorized into three different methods (physical removal technology, biodegradation of the compounds, and using advanced chemical oxidation processes (AOP)). Many researchers have shown that only 27% of micro pollutants can be removed from most of the WWTP, which is below the limit that can be detected; meanwhile, of the remaining 64% of compounds, less than 50% of them can be eliminated, and the remainder cannot be removed at all. [12,13,14,15,16,17,22,23,24,25]. Different types of steroids and hormones have been detected in the effluents of WWTP in different countries at different concentrations. Concentrations of detected compounds vary from μg/L to ng/L, and some research has shown that the detected pollutants are found in concentrations that are even higher than their toxicity limits [12,15,24,25,26,27,28,29,30].



The primary purpose of this study was to collect the data of occurrence and the fate of the steroid and hormonal compounds, measured from the intake sources to WWTP discharges. Specific objectives included: (1) summarizing the presence and concentrations of targeted compounds; (2) compiling the health and environmental impacts of steroids and hormones; and (3) addressing the current removable technologies and their efficiency.




2. Motivation


As the targeted steroid and hormonal compounds do not yet have specific limits established for drinking water in most countries, their frequent existence in raw water used for regular drinking water production engages the attention of environmentalists and the general public [31,32,33,34,35,36]). According to the perspective of pure water consumption, the question is: up to what concentration should the water system allow the presence of these substances before they impact the final product [37,38]. The potential long-term negative impact of steroids and hormones on human health, plants, and aquatic environments at currently found concentrations is yet to be proved [39,40,41,42]. As a result, scientists are addressing this scenario as unquantified risk [41]. As reported by The World Health Organization (WHO), due to the lower concentrations, these compounds are potentially less harmful to human health [39,40]. In addition to being aware of their long-term consequences on the world’s vulnerable populations, WHO also addressed the need of some preventive approaches to limit the concentrations of these compounds in the water [40]. Until specific limit values are established for the endocrine-disrupting steroids and hormones, thorough research and risk assessments should be the first priority.



Most steroids and hormones have three cyclohexane and cyclopentane rings, referred to as the tetra cyclic structure [43,44]. However, different classes (natural and synthetic) have different cyclic structures, based on their physical properties (Table 1) [45]. Physical and chemical characteristics of different steroid and hormone compounds are critical for understanding and predicting their presence and fate into the global environment. Steroids and hormones do not completely dissolve in the water. The octanol–water partition coefficient (Kow) measures the hydrophobicity of steroids and hormones, and the organic partition coefficient (Koc) can explain their sorption coefficient value. From Table 1, the log of Kow for frequently found steroid and hormone compounds is in the range of 1.4–5. [37,46]. GCs have very little ability to adsorb onto sludge than the other classes of steroids of steroids and hormones. However, while sorption had little role to play in the removal of GCs, it played an important role in the removal of other steroids and hormones in WWTPs.



Overall, four of the most frequently found natural and synthetic estrogens (E1, E2, E3, and EE2) are produced from human and animal excretions, PPCPs, and the cattle (dairy and meat) and poultry industries [41,42]. Sadly, these estrogenic compounds are being detected in feces, both liquid and solid waste collected from husbandry, bayou effluents, and human fecal matter, all of which directly applied to agricultural land [47,48]. The presence of these steroid estrogens has been globally confirmed by researchers, not only in the groundwater, but also in freshwater. It is reported that husbandry industries discharge around 58% estradiol (E2), which is excreted through urine; on the other hand, the percentage of 17α-ethinylestradiol (EE2) and estriol (E3) discharge is about 96% and 69%, respectively [42,47,48]. The maximum concentrations of estrogen products found in groundwater in North America were E1 (79 ng/L), E2 (147 ng/L), E3 (1745 ng/L), and EE2 (230 ng/L). On the other hand, in Europe, recorded numbers varied between 0.02–100 ng/L [49,50]. Some European countries, such as France, Italy, the Netherlands, and Spain, as well as American countries such as Brazil and the USA, had it confirmed by many researchers that there were no traces of estrogen found in drinking water [51,52,53,54,55,56]. However, in China, the presence of trace estrogens were found and evaluated (E1 (9.9 ng/L), E2 (0.1 ng/L), and EE2 (0.3 ng/L)) [57,58,59,60,61], whereas E1 and E2 were not detected in European countries (France and Spain) [61,62,63,64,65].



As mentioned earlier, limited fruitful studies have been published so far about the consequences of various steroids being present in surface water and effluents of WWTPs compared to estrogen [66,67,68,69]. However, the levels of concentrations of progesterone found in the wastewaters is much higher than estrogen, as its discharge through human urine has been reported 100–1000 times more than estrogen [70,71].The recorded concentrations of progesterone in surface water and wastewater effluents has ranged from 0.95 to 66 ng/L, 0.8–2.3 ng/L, respectively [67,69]. On the other hand, 96% of the total steroids and hormones found in WWTP are natural and synthetic androgens. Natural androgens, such as androsterone, epiandrosterone, and androstenedione, have frequently been found with a maximum concentration of 2977 ng/L, 640 ng/L, 270 ng/L, respectively [70,71]. Both China and Brazil have encountered higher concentrations of testosterone in their groundwater and drinking water. In China, the maximum testosterone concentration found in surface water was 480 ng/L, whereas in Brazil, it was slightly lower than 330 ng/L [72,73,74,75,76,77]. Glucocorticoids (GCs) can pollute natural aquatic environments, and are a cause of great concern due to their impact on human and ecosystem health. Furthermore, the excretion of natural GCs has been recorded to be 10 times higher than the previously mentioned estrogen and androgen [78,79]. The concentration of selected glucocorticoids in surface water and wastewater effluents was found in ranges from 0.05 ng/L to 433 ng/L. A total of 14 states in the USA have reported GCs in their wastewater effluents [80,81,82].



Overall, three synthetic hormones, which act as growth promotion chemicals in the husbandry industry, have been approved by the U.S. Food and Drug Administration (USFDA) [83,84]. Zeranol (commercially available in Zeraplix), trenbolone acetate (TBA), and melengestrol acetate (MGA) are the three growth hormones which have been detected in surface waters, as well as in soil near a husbandry and agricultural industry land, at concentration levels of 10–100 ng/L and 1–100 ng/g, respectively [85,86,87,88]. These hormones can easily enter the surface and groundwater through runoff from husbandry waste, as well as through animal manure and urine into soils as fertilizers [89,90,91]. Figure 2 summarizes all of the targeted steroids and hormones for this study, as mentioned above.




3. Sources of Steroid Hormones in WWTPs


Table 2 and Table 3 represent a comprehensive scenario of the current incidence of steroids and hormones found in the world. The tables were selected based on different hormone compounds, year, sources such as country or location, environmental health impact, and the level of impact. This paper was effectuated according to the studies accomplished until 2021, as well as those published in databases such as Google Scholar, Microsoft Academic, Elsevier, Science.gov, Scopus, Researchgate, Science direct, Refseek, Pubmed Central, etc., using hormone and steroid removal, micro pollutant removal, sex hormones removal, steroidal hormones environmental and health impact, hormone removal from different sources of wastewater, and removal efficiency of micro pollutants mainly hormone and steroids as the keywords.



Existing wastewater treatment plants are designed for the removal of nitrogen, carbon, and mostly phosphorus, and also the partial removal of these compounds has been detected in different cases [132,133,134,135]. Nevertheless, large differences in the efficiency of steroid hormone removal have been highlighted by many researchers. The removal efficiency varies between 0% to 99% in different countries, based on location and concentrations [134,135,136,137]. Different removal technologies accentuate the relevance of geographical location parameters. Over the last two decades, technical analysis progress, along with industrial development, have empowered scientists to think again about the occurrence and fate of natural and synthetic steroids and hormones in wastewater treatment plants, even at concentrations at the ng/L level [137,138,139]. Conventional treatment plants have three major facilities, namely preliminary, primary, and secondary. Tertiary treatment is needed when discharging the effluent to the groundwater or surface waters. Figure 3 shows the current approaches and some potential future directions of removing these steroids and hormones from wastewater treatment plants.



In spite of the fact that existing WWTPs are designed with the aim of removing nutrients and suspended solids as much as possible, partial removal of steroids and hormones has been detected in many cases [140,141,142,143,144]. The efficiency of steroid and hormone removal systems have been varied. Based on the specific topographic locations and levels of concentrations, the removal efficiency ranges between less than 10% to 98% [145]. Over the last few decades, improvements in the technical sector have forced scientists to reconsider the occurrence and fate of natural and synthetic steroids and hormones in wastewater treatment plants, even at the ng/L level [141,145]. The removal efficiency of treatment plants regarding the targeted steroids and hormones are listed in Table 4. Possible removal methods of steroids and hormones from wastewater treatment units include volatility, photocatalysis, nanotechnology, chlorination, adsorption, biological degradation, and Fe (VI) treatment as a tertiary treatment technology etc. [143,146,147,148,149,150,151,152,153,154]. Table 4 shows the removal efficiency of each recorded method in various studies. The regeneration or disposal of adsorbents must be performed after the treatment. Additional treatment technology would need to be investigated and considered before disposal, although regeneration can be expensive and energy comprehensive. Sometime the regeneration phases are not only somewhat difficult, but they also have the disadvantage of the loss of the adsorbent. In spite of the higher adsorption capacity of activated carbons, this technology demonstrates several weaknesses. Activated carbons are very expensive, and the expense will surely increase with the quantity needed for any experiment. Therefore, there is an urgent need to investigate or develop new materials which have the same effective performance as activated carbon, but without the disadvantages. Over the last couple of decades, scientists and researchers have published several articles regarding this challenge. There are two ways in which this challenge can be addressed. These are the adaptation of abundant and natural materials, which are very cheap, as well as conventional and easily available in either raw or modified forms, and the development and usage of new synthetic materials.




4. Conclusions


Water quality concerns have achieved significant importance, both in the USA and internationally. The objective of WWTP is to remove steroid and hormone compounds, which may have negative effects on both health of both the environment and humans, completely. Studies have shown that the steroid and hormone removal technology currently used in most of the wastewater treatment plants are, unfortunately, insufficient. Therefore, these compounds, which are potentially unsafe, may enter surface water and, sometimes, groundwater. Current regulations aimed at reducing emissions to the environment are confined to a limited number of these compounds. As a result, the majority of steroids and hormones remain a problem for the existing legal norms. Among all of the treatment processes, adsorption, removing with nanoparticles, and oxidation methods have shown greater efficiency in hormone removal, relative to other technologies. Over time, wastewater effluents has been considered as the leading source of steroids and hormones in aquatic environments; however, surface runoff, as well as livestock sewage, has been identified as another source of these compounds. These removal technologies and their efficiency varies according to the geography of the country and the type of process. This is why the accuracy of implementation and methods is dissimilar. There is always disagreement and inconsistency in inspecting the occurrence and fate of steroids and hormones over the course of the sludge stabilizing. Scientists are considering this as one of the main problems related to the quantification of very low concentrations of steroid and hormone compounds in sludge.



Although physical and chemical treatment processes, prior to biological treatment, can further decrease concentrations of hormones and steroids in wastewater effluents (ultra low levels), their economical aspect and feasibility require further escalation. Without lowering the regulatory levels of estrogens, the treatment process which has been previously used to treat drinking water, in order to eradicate the endocrine disrupting steroids and hormones, may not be needed in wastewater sewage. Researchers, thus, should focus on finding the benefits of STWs, and emphasize the activated sludge process as the most economical wastewater treatment process that does not cause further side streams, which would involve additional treatment and disposal. In addition to this, further research and scientific analysis in this field is required to identify the effects of pre-treatments, mainly thermal, mechanical, and chemical, which can be modified before application in aerobic and anaerobic digestion.
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Figure 1. Schematic diagram of main sources and fates of steroids and hormones in human world, plants, and the aquatic environment [19,20,21]. 
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Figure 2. Scheme of the potential endocrine disruption steroids and hormones. 






Figure 2. Scheme of the potential endocrine disruption steroids and hormones.



[image: Ecologies 03 00016 g002]







[image: Ecologies 03 00016 g003 550] 





Figure 3. Existing technologies combined with future suggestions for removing steroids and hormones from the preliminary stage to the discharge stage of a wastewater treatment plant. 
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Table 1. Physiochemical properties of targeted steroid and hormones.






Table 1. Physiochemical properties of targeted steroid and hormones.





	
Hormones Class

	
Compounds

	
Log Kow

	
Log Koc

	
Molecular Weight

	
Structure






	
Estrogen

	
Estrone

	
3.43

	
3.02

	
270.16

	
 [image: Ecologies 03 00016 i001]




	
17-β estradiol

	
3.94

	
2.90

	
272.38

	
 [image: Ecologies 03 00016 i002]




	
Estriol

	
2.45

	
N/A

	
288.28

	
 [image: Ecologies 03 00016 i003]




	
17α-ethinyl estradiol

	
4.12

	
2.70

	
296.40

	
 [image: Ecologies 03 00016 i004]




	
Progestogens

	
Norethindrone

	
3.99

	
2.35

	
298.40

	
 [image: Ecologies 03 00016 i005]




	
Progesterone

	
3.67

	
3.46

	
314.23

	
 [image: Ecologies 03 00016 i006]




	
Androgen

	
Testosterone

	
3.27

	
2.55

	
288.21

	
 [image: Ecologies 03 00016 i007]




	
Androstenedione

	
3.07

	
2.75

	
286.19

	
 [image: Ecologies 03 00016 i008]




	
Dihydrotestosterone

	
3.07

	
2.67

	
290.44
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Glucocorticoids

	
Prednisolone or beclomethasone

	
1.40

	
1.39

	
360.19

	
 [image: Ecologies 03 00016 i010]




	
Cortisol

	
1.62

	
1.38

	
362.21
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Dexamethasone (Betamethasone)

	
1.72

	
1.57

	
392.50

	
 [image: Ecologies 03 00016 i012]




	
Prednisone

	
1.59

	
1.30

	
358.18
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Cortisone

	
1.81

	
1.31

	
360.19

	
 [image: Ecologies 03 00016 i014]




	
6α-methylprednisolone

	
1.82

	
N/A

	
374.47
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Growth Hormone

	
Zeranol

	
5.37

	
N/A

	
322.40
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Trenbolone Acetate

	
3.65

	
3.90

	
312.17
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Melengestrol Acetate

	
4.41

	
N/A

	
396.23
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Table 2. Significant incidences of steroid and hormone compounds.
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Steroid and Hormones Class

	
Compounds

	
Sources

	
References






	
Estrogen

	
Estrone

	
Europe: United Kingdom, The Netherlands, Italy, Spain, Denmark, Austria, Switzerland, Germany, Portugal (Douro River), water purification plant in Helsinki, Finland, Belgium

Asia: Mainland China (Jiulongjiang River, River in Tianjing, Beijing-Tianjin-Hebei region), Japan, Korea, Taiwan, Hong Kong, India, Malaysia

Oceania: Five rivers in southeast Queensland, Australia

New Zealand: Littleton Harbor (Te Whakaraupō), New Zealand

North America: 14 states in US, Canada, Mexico

South America: Three rivers in south Rio de, Janeiro(Brazil), Some rivers (Brazilian, Rivers in southern Jiangsu, surface waters of the Chascomús Lagoon, Argentina,

African continent: City of Ekurhuleni Metropolitan area (Gauteng Province, South Africa)

	
[92,93,94,95,96,97,98,99,100,101,102,103]




	
17-β estradiol




	
Estriol




	
17α-ethinyl estradiol




	
Progestogens

	
Norethindrone

	
Europe: Wastewater and surface water of United Kingdom, The Netherlands, Italy, Spain, France, Switzerland, Germany, Hungary, Czech Republic, Finland

Asia: China (seven WWTPs (Beixiaohe Fangzhuang Gaobeidian Jiuxianqiao Qinghe Wujiacun Xiaohongmen) of Beijing),Japan, Korea, Malaysia

Oceania: Australia

New Zealand: New Zealand

North America: US, Canada

South America: Brazil, Argentina,

African continent: Arusha city, Tanzania

	
[22,23,27,66,67,68,69,70,71,72,75,76,78]




	
Progesterone




	
Androgen

	
Testosterone

	
Europe: United Kingdom, The Netherlands, Italy, Spain, France, Switzerland, Germany, Hungary, Czech Republic, downstream effluent in Sweden.

Asia: China (seven WWTPs (Beixiaohe Fangzhuang Gaobeidian Jiuxianqiao Qinghe Wujiacun Xiaohongmen) of Beijing),Japan, Korea, Malaysia, India (Ganga River near two major cities,)

Oceania: Australia

New Zealand: New Zealand

North America: US (Fenholloway River, in the southern United States), Canada, Mexico

South America: Brazil, Argentina,

African continent: Arusha city, Tanzania

	
[7,67,68,69,78,82,89]




	
Androstenedione




	
Dihydrotestosterone




	
Glucocorticoids

	
Prednisolone or beclomethasone

	
Europe: United Kingdom, The Netherlands, Spain, Switzerland, Hungary, Wastewater in France, Hospital Wastewater in Netherlands, Surface water in Spain, (Czech and Slovak republics Sewage and River water)

Asia: Japan (Ehime Prefecture), China (Sewage Treatment Plants and Receiving River Waters Beijing,), India, Malaysia,

Oceania: Australia (River water and municipal sewage)

New Zealand: New Zealand (municipal sewage)

North America: US, drinking water in Canada, Mexico

South America: Wastewater in Uruguay and Brazil, shallow lakes system Argentina.

	
[103,104,105,106,107,108]




	
Cortisol




	
Dexamethasone (Betamethasone)




	
Prednisone




	
Cortisone




	
6α-methylprednisolone




	
Growth Hormone

	
Zeranol

	
Europe: United Kingdom, The Netherlands, Spain, Switzerland, France, Ireland, Denmark

Asia: Japan, China (River Wenyu and its tributaries in Beijing,)

Oceania: Australia

North America: US, drinking water in Canada, Mexico

South America: Wastewater in Brazil

Middle East: Israel

	
[47,85,88,109,110]




	
Trenbolone Acetate




	
Melenogestrol Acetate
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Table 3. Occurrence and health impact of hormones.
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Hormones and Steroid Class

	
Compounds

	
Effluent Concentration (ng/L)

	
Toxicity and Impacts

	
References






	
Estrogen

	
Estrone

	
0.1–154

	
Studies showed that estrone at pollutant levels have been linked with breast cancer in women and prostate cancer in men, thyroid problems, and weakened immune systems of animals and birds.

	
[111,112,113,114,115]




	
17-β estradiol

	
0.2–64

	
It was reported in several studies that testicular and ovarian cancer, stimulated endometriosis, osteoporosis, cardiovascular diseases, neurodegenerative diseases, cognitive and behavioral alterations, hypertension, metabolic disorders (such as obesity and diabetes), and also immune disorders are the causes of excessive 17-β estradiol level.

	
[13,17,18,112]




	
Estriol

	
>0.1–196

	
Induction of plasma vitellogenin and intersex behaviors in fish exposed in the environment immediately adjacent to the outfalls due to the presence of estriol in water.

	
[113,114,115,116,117,118,119]




	
17α-ethinyl estradiol

	
0.2–66

	
Embryo deformation and mortality, impaired reproduction and growth in fish, feminization, and intersex behaviors in fish (males changing to females) was reported in many papers due to17α-ethinyl estradiol.

	
[13,17,18,114]




	
Progestogens

	
Norethindrone

	
0.11 to 3.2 ng/L

	
Reproductive consequences on marine fish for example, effects on egg production, egg fertility, and egg viability of spawning adults were reported in many papers.

	
[66]




	
Progesterone

	
n.d.–439

	
Studies showed that progesterone at pollutant levels can cause oocyte maturation in female and sperm motility in male fish, as well as in frogs and mussels, adverse effect on fish production, leading population decline, and skewed sex ratios.

	
[79,120,121,122,123,124,125,126]




	
Levonorgestrel

	
n.d.–12

	
Levonorgestrel has effects on the brains of female fathead minnow (Pimephales promelas), hampers reproductivity of Zebrafish.

	
[66,127]




	
Androgen

	
Testosterone

	
0.06–480

	
Testosterone has effects on the feminization of male fish, induction of vitellogenin in male trout

	
[118]




	
Androsterone

	
81 ± 13 ng/L

	
Androsterone has a significant effect on potency to masculinize and/or sex-reverse female fish.

	
[117]




	
Androstenedion

	
86 ± 2 ng/L

	
Androstenedion has effects on masculinized female eastern mosquitofish (Gambusia holbrooki).

	
[117]




	
Glucocorticoids

	
Prednisolone or beclomethasone

	
0.7–1.7

	
Many studies mentioned that, due to prednisolone or beclomethasone, plasma glucose levels in fathead minnow were increased, and the number of leukocytes in the peripheral blood was decreased.

	
[1,3]




	
Cortisol

	
100–145

	
Cortisol has effects on suppressed immune function in fish.

	
[127]




	
Dexamethasone (Betamethasone)

	
>0.1–1.7

	
Dexamethasone (Betamethasone) has adverse effects on reproduction, growth, and development in fathead minnow (Pimephales promelas).

	
[2,3]




	
Prednisone

	
0.2–100

	
It has been reported that a significant number of serum free amino acid levels were increased in common carp (Cyprinus carpio).

	
[3,4]




	
Cortisone

	
1.3–433

	
Cortisone has an adverse impact on the aquatic environment.

	




	
6α-methylprednisolone

	
60–91

	
Serum free amino acid levels was increased in common carp (Cyprinus carpio).

	
[3,4]




	
Growth Hormone

	
Zeranol

	

	
Adverse ability to stimulate growth of human breast tumor cells in vitro, abnormal cell growth in beef and cattle industry.

	
[119,120,121]




	
Trenbolone Acetate

	
26.5 and 63.0 ng/g

	
Trenbolone acetate has adverse effects on fertility and reproduction, altered hormone levels, induced transcriptional effects in adults, and induced development of male secondary sexual characteristics in female fish.

	
[79,122,123,124,125,126]




	
Melenogestrol Acetate

	
1–100

	
Wild male fathead minnows (Pimephales promelas) exposed to feedlot effluent had reduced testosterone concentrations, altered head morphometrics, and reduced testis size, while females had decreased estrogen/androgen ratios due to the Melenogestrol acetate.

	
[128,129,130,131]
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Table 4. Engineering processes and their efficiency for steroid and hormone removal.
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	Process
	Removal Efficiency
	References





	Adsorption with nano particles, e.g., Fe (VI) nanoparticle adsorption (pH range 7–8)
	Highly effective (80–99%)
	[140]



	Combination of membrane filtration, ultra-filtration
	Depends on the filtration type, size, and effluent concentration
	[140]



	Chlorination
	Activated sludge systems combined with chlorination in tertiary treatment has been effective (95%)
	[141]



	Coagulation and flocculation
	Not effective (<10%)
	[141,142,143,146,155,156,157]



	Sorption
	Effective (98%)
	[141,143]



	Adsorption with activated carbon(pH = 8)
	Highly effective (98%)
	[144,145,147,148,149,158,159,160]



	Attached growth process
	Varies between compounds, moderately effective
	[147,158]



	Advanced oxidation processes (Ozone, UV/H2O2, photo-Fenton processes)
	Highly Effective (<90%)
	[148,161]



	Combination of ozonation and granular activated carbon (GAC)
	Moderately Effective (70–85%)
	[148,155]



	Microfiltration membranes
	Not effective (<18% unless combines with activated carbon or ultrafiltration)
	[150,151,156]



	Ultrafiltration
	Not effective (~8%) but for hydrophobic membranes (such as Cortisone) its efficiency goes beyond 80%
	[151,160,161,162,163,164,165]



	Combination of reverse osmosis and micro-filtration
	Depends on the concentration of steroid and hormone’s. (56–90%)
	[155,166]



	Activated sludge systems with UV disinfection
	Not effective (49%)
	[155,167,168,169,170]



	Photocatalysis (µg/liter levels)
	Effective (>95%)
	[167,171,172,173,174,175]
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