Frequency-Based Density Estimation and Identification of Partial Discharges Signal in High-Voltage Generators via Gaussian Mixture Models
Abstract
:1. Introduction
2. Methodology
2.1. Data Acquisition Stage
2.2. Preprocessing and Feature Extraction Stage
2.2.1. PD Signal Waveforms
2.2.2. Fast Fourier Transform (FFT)
2.2.3. Findpeaks Algorithm
- The signal obtained from the FFT is subjected to a normalization process to ensure that the magnitude values are normalized within the range of 0 to 1.
- The findpeaks function is used to detect peaks from the signal components, with the goal in this work being to identify the two highest peaks, referred to as the f1 (major) and f2 (minor) frequencies. Figure 6 illustrates an example of the results for determining f1 and f2 for each PD type.
2.3. Parameter Estimation and Modeling Stage
2.3.1. Gaussian Mixture Model (GMM)
Input: The frequency value for each type of PD using the findpeaks algorithm. Output: and BICK |
1: for k = 1: K do 2: Initialize and set tol = 0.001. 3: while not converged do 4: Compute using Equation (5). 5: Compute using Equations (6)–(8). 6: Compute L(Θ) using Equation (9). 7: Check for converged: If the change in log-likelihood (L(Θ) − previous L(Θ)) < tol 8: end while 9: Compute BIC value using Equation (10). 10: 11: end for |
Input: The internal, surface, and corona PDs signal based on verified PD data Output: The model of internal PD, surface PD, and corona PD |
1: Selecting a PD type for model creation. 2: FFT is applied to PD signals with transformation into the frequency domain. 3: Using the findpeaks function to identify the top two highest peaks (f1, f2). 4: Using algorithm GMM for parameter estimation in Table 1. 5: Develop a model using the parameters from Step 4 and incorporate them into Equation (3). For the visualization of the 2D model, 10,000 frequency data points were randomly generated. An example of the modeling of internal PD is illustrated in Figure 7. |
2.3.2. BIC
2.4. Identification State
3. Results and Discussion
3.1. Analysis Frequency Distribution of PD Patterns with Only f1 and Both f1 and f2
3.2. The Performance of PD Model for Identification
3.3. Evaluation of the Model for Unknown Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardeshiri, A.; Lotfi, A.; Behkam, R.; Moradzadeh, A.; Barzkar, A. Introduction and Literature Review of Power System Challenges and Issues. In Application of Machine Learning and Deep Learning Methods to Power System Problems; Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–43. ISBN 978-3-030-77696-1. [Google Scholar]
- Darab, C.; Tarnovan, R.; Turcu, A.; Martineac, C. Artificial Intelligence Techniques for Fault Location and Detection in Distributed Generation Power Systems. In Proceedings of the 2019 8th International Conference on Modern Power Systems (MPS), Cluj Napoca, Romania, 21–23 May 2019; pp. 1–4. [Google Scholar]
- Li, S.; Li, J. Condition Monitoring and Diagnosis of Power Equipment: Review and Prospective. High Volt. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Kande, M.; Isaksson, A.J.; Thottappillil, R.; Taylor, N. Rotating Electrical Machine Condition Monitoring Automation—A Review. Machines 2017, 5, 24. [Google Scholar] [CrossRef]
- Stone, G.C. Partial Discharge Diagnostics and Electrical Equipment Insulation Condition Assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891–904. [Google Scholar] [CrossRef]
- Fuhr, J.; Aschwanden, T. Identification and Localization of PD-Sources in Power-Transformers and Power-Generators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 17–30. [Google Scholar] [CrossRef]
- Yaacob, M.M.; Alsaedi, M.A.; Rashed, J.R.; Dakhil, A.M.; Atyah, S.F. Review on Partial Discharge Detection Techniques Related to High Voltage Power Equipment Using Different Sensors. Photonic Sens. 2014, 4, 325–337. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichoń, A.; Nagi, Ł. Statistics Based Method for Partial Discharge Identification in Oil Paper Insulation Systems. Electr. Power Syst. Res. 2018, 163, 559–571. [Google Scholar] [CrossRef]
- Montanari, G.C.; Cavallini, A. Partial Discharge Diagnostics: From Apparatus Monitoring to Smart Grid Assessment. IEEE Electr. Insul. Mag. 2013, 29, 8–17. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Wang, H. A Review of Online Partial Discharge Measurement of Large Generators. Energies 2017, 10, 1694. [Google Scholar] [CrossRef]
- Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and Partial Discharge Analysis of Power Transformers: A Literature Review. IEEE Access 2021, 9, 64587–64605. [Google Scholar] [CrossRef]
- IEEE 1434-2014; IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery. IEEE: New York, NY, USA, 2014. [CrossRef]
- IEC 60034-27-2; Rotating Electrical Machines-Part 27-2: On-Line Partial Discharge Measurements on the Stator Winding Insulation of Rotating Electrical Machines. International Electrotechnical Commission: Geneva, Switzerland, 2012.
- Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Yang, Z.; Zhao, Y.; Liu, T. Optimizing GIS Partial Discharge Pattern Recognition in the Ubiquitous Power Internet of Things Context: A MixNet Deep Learning Model. Int. J. Electr. Power Energy Syst. 2021, 125, 106484. [Google Scholar] [CrossRef]
- Chang, C.-K.; Chang, H.-H.; Boyanapalli, B.K. Application of Pulse Sequence Partial Discharge Based Convolutional Neural Network in Pattern Recognition for Underground Cable Joints. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1070–1078. [Google Scholar] [CrossRef]
- Ilkhechi, H.D.; Samimi, M.H. Applications of the Acoustic Method in Partial Discharge Measurement: A Review. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 42–51. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Ghosh, S.; Dey, D.; Munshi, S.; Chatterjee, B.; Dalai, S. Denoising of Partial Discharge Signal Using a Hybrid Framework of Total Variation Denoising-Autoencoder. Measurement 2023, 223, 113674. [Google Scholar] [CrossRef]
- Florkowski, M. Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns. Energies 2021, 14, 3886. [Google Scholar] [CrossRef]
- Govindarajan, S.; Morales, A.; Ardila-Rey, J.A.; Purushothaman, N. A Review on Partial Discharge Diagnosis in Cables: Theory, Techniques, and Trends. Measurement 2023, 216, 112882. [Google Scholar] [CrossRef]
- Rostaghi-Chalaki, M.; Yousefpour, K.; Klüss, J.; Kurum, M.; Donohoe, J.P.; Park, C. Classification and Comparison of AC and DC Partial Discharges by Pulse Waveform Analysis. Int. J. Electr. Power Energy Syst. 2021, 125, 106518. [Google Scholar] [CrossRef]
- Long, J.; Xie, L.; Wang, X.; Zhang, J.; Lu, B.; Wei, C.; Dai, D.; Zhu, G.; Tian, M. A Comprehensive Review of Signal Processing and Machine Learning Technologies for UHF PD Detection and Diagnosis (II): Pattern Recognition Approaches. IEEE Access 2024, 12, 29850–29890. [Google Scholar] [CrossRef]
- Ardila-Rey, J.A.; Cerda-Luna, M.P.; Rozas-Valderrama, R.A.; de Castro, B.A.; Andreoli, A.L.; Muhammad-Sukki, F. Separation Techniques of Partial Discharges and Electrical Noise Sources: A Review of Recent Progress. IEEE Access 2020, 8, 199449–199461. [Google Scholar] [CrossRef]
- Mor, A.R.; Castro Heredia, L.C.; Muñoz, F.A. New Clustering Techniques Based on Current Peak Value, Charge and Energy Calculations for Separation of Partial Discharge Sources. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 340–348. [Google Scholar] [CrossRef]
- Fresno, J.M.; Ardila-Rey, J.A.; Martínez-Tarifa, J.M.; Robles, G. Partial Discharges and Noise Separation Using Spectral Power Ratios and Genetic Algorithms. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 31–38. [Google Scholar] [CrossRef]
- Kumar, C.; Ganguly, B.; Dey, D.; Chatterjee, S. Wavelet-Based Convolutional Neural Network for Denoising Partial Discharge Signals Extracted via Acoustic Emission Sensors. IEEE Sens. Lett. 2024, 8, 6007804. [Google Scholar] [CrossRef]
- Chan, J.C.; Ma, H.; Saha, T.K. Time-Frequency Sparsity Map on Automatic Partial Discharge Sources Separation for Power Transformer Condition Assessment. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2271–2283. [Google Scholar] [CrossRef]
- Maresch, K.; Freitas-Gutierres, L.F.; Oliveira, A.L.; Borin, A.S.; Cardoso, G.; Damiani, J.S.; Morais, A.M.; Correa, C.H.; Martins, E.F. Advanced Diagnostic Approach for High-Voltage Insulators: Analyzing Partial Discharges through Zero-Crossing Rate and Fundamental Frequency Estimation of Acoustic Raw Data. Energies 2023, 16, 6033. [Google Scholar] [CrossRef]
- Thuc, V.C.; Lee, H.S. Partial Discharge (PD) Signal Detection and Isolation on High Voltage Equipment Using Improved Complete EEMD Method. Energies 2022, 15, 5819. [Google Scholar] [CrossRef]
- Ardila-Rey, J.A.; Schurch, R.; Poblete, N.M.; Govindarajan, S.; Muñoz, O.; de Castro, B.A. Separation of Partial Discharges Sources and Noise Based on the Temporal and Spectral Response of the Signals. IEEE Trans. Instrum. Meas. 2021, 70, 3526013. [Google Scholar] [CrossRef]
- Melo, J.V.J.; Lira, G.R.S.; Costa, E.G.; Vilar, P.B.; Andrade, F.L.M.; Marotti, A.C.F.; Costa, A.I.; Leite Neto, A.F.; Santos Júnior, A.C. dos Separation and Classification of Partial Discharge Sources in Substations. Energies 2024, 17, 3804. [Google Scholar] [CrossRef]
- Pardauil, A.C.N.; Nascimento, T.P.; Siqueira, M.R.S.; Bezerra, U.H.; Oliveira, W.D. Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators. Energies 2020, 13, 5992. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Wang, N.; Han, X.; Li, J. Partial Discharge Ultrasonic Signals Pattern Recognition in Transformer Using BSO-SVM Based on Microfiber Coupler Sensor. Measurement 2022, 201, 111737. [Google Scholar] [CrossRef]
- Florkowski, M. Classification of Partial Discharge Images Using Deep Convolutional Neural Networks. Energies 2020, 13, 5496. [Google Scholar] [CrossRef]
- Boppiniti, S.T. Big Data Meets Machine Learning: Strategies for Efficient Data Processing and Analysis in Large Datasets. Int. J. Creat. Res. Comput. Technol. Des. 2020, 2. Available online: https://jrctd.in/index.php/IJRCTD/article/view/68 (accessed on 9 February 2025).
- Mantach, S. Supervised and Unsupervised Deep Learning Models for Partial Discharge Source Detection and Classification in Electrical Insulation. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2023. [Google Scholar]
- Miraftabzadeh, S.M.; Colombo, C.G.; Longo, M.; Foiadelli, F. K-Means and Alternative Clustering Methods in Modern Power Systems. IEEE Access 2023, 11, 119596–119633. [Google Scholar] [CrossRef]
- Ma, Y.; Hao, Y. Antenna Classification Using Gaussian Mixture Models (GMM) and Machine Learning. IEEE Open J. Antennas Propag. 2020, 1, 320–328. [Google Scholar]
- Mas’ud, A.A.; Sundaram, A.; Ardila-Rey, J.A.; Schurch, R.; Muhammad-Sukki, F.; Bani, N.A. Application of the Gaussian Mixture Model to Classify Stages of Electrical Tree Growth in Epoxy Resin. Sensors 2021, 21, 2562. [Google Scholar] [CrossRef]
- Romphuchaiyapruek, K.; Wattanawongpitak, S. Application of the Gaussian Mixture Model for Clustering Partial Discharge Signals in High Voltage Generators. In Proceedings of the 2023 International Conference on Power, Energy and Innovations (ICPEI), Phrachuap Khirikhan, Thailand, 18–20 October 2023; pp. 31–35. [Google Scholar]
- Stone, G.C.; Sasic, M. Twenty-Five Years of Experience With On-Line Partial Discharge Testing of Stator Windings. In Proceedings of the 12th International Conference on Electrical Insulation, Birmingham, UK, 29–31 May 2013; pp. 29–31. [Google Scholar]
- Pattanadech, N.; Nimsanong, P. Effect of Training Methods on the Accuracy of PCA-KNN Partial Discharge Classification Model. In Proceedings of the TENCON 2014—2014 IEEE Region 10 Conference, Bangkok, Thailand, 22–25 October 2014; pp. 1–5. [Google Scholar]
- Krishna, H. Digital Signal Processing Algorithms: Number Theory, Convolution, Fast Fourier Transforms, and Applications; Routledge: London, UK, 2017; ISBN 978-1-351-45496-4. [Google Scholar]
- McNicholas, P.D. Mixture Model-Based Classification; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-2567-9. [Google Scholar]
- Reynolds, D.A. Gaussian Mixture Models. Encycl. Biom. 2009, 741, 3. [Google Scholar]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian Information Criterion: Background, Derivation, and Applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Ding, J. Information Criteria for Model Selection. WIREs Comput. Stat. 2023, 15, e1607. [Google Scholar] [CrossRef]
- Franke, M.; Degen, J. The Softmax Function: Properties, Motivation, and Interpretation. 2023. Available online: https://osf.io/preprints/psyarxiv/vsw47_v1 (accessed on 9 February 2025).
- Javandel, V.; Akbari, A.; Ardebili, M.; Werle, P. Simulation of Negative and Positive Corona Discharges in Air for Investigation of Electromagnetic Waves Propagation. IEEE Trans. Plasma Sci. 2022, 50, 3169–3177. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; MIT Press: Cambridge, MA, USA, 2020; ISBN 978-0-262-04379-3. [Google Scholar]
- Kunicki, M.; Cichoń, A.; Borucki, S. Measurements on Partial Discharge in On-Site Operating Power Transformer: A Case Study. IET Gener. Transm. Distrib. 2018, 12, 2487–2495. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.-I. Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning. Sustainability 2021, 13, 4692. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, M.X.; Zhou, B.; Zhu, L.; Duan, Y.; Zhang, X. Partial Discharge Detection Method for Distribution Network Based on Feature Engineering. J. Phys. Conf. Ser. 2023, 2456, 012048. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Wang, C.; Ye, L.; Wang, K.; Wang, Y.; Yang, C.; Gui, W.; Shen, F. Variable Correlation Analysis-Based Convolutional Neural Network for Far Topological Feature Extraction and Industrial Predictive Modeling. IEEE Trans. Instrum. Meas. 2024, 73, 3001110. [Google Scholar] [CrossRef]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature Dimensionality Reduction: A Review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Hassan, W.; Mahmood, F.; Hussain, G.A.; Amin, S.; Kay, J.A. Feature Extraction of Partial Discharges During Multiple Simultaneous Defects in Low-Voltage Electric Machines. IEEE Trans. Instrum. Meas. 2021, 70, 3523410. [Google Scholar] [CrossRef]
- Kumar, H.; Shafiq, M.; Kauhaniemi, K. Performance Evaluation of AI-Based Algorithms for Condition Assessment of Power Components. In Proceedings of the 2022 9th International Conference on Condition Monitoring and Diagnosis (CMD), Kitakyushu, Japan, 13–18 November 2022; pp. 231–236. [Google Scholar]
- Boczar, T.; Borucki, S.; Jancarczyk, D.; Bernas, M.; Kurtasz, P. Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique. Energies 2022, 15, 5013. [Google Scholar] [CrossRef]
- Araújo, R.C.F.; de Oliveira, R.M.S.; Barros, F.J.B. Automatic PRPD Image Recognition of Multiple Simultaneous Partial Discharge Sources in On-Line Hydro-Generator Stator Bars. Energies 2022, 15, 326. [Google Scholar] [CrossRef]
- de Oliveira, R.M.S.; Fernandes, F.C.; Barros, F.J.B. Novel Self-Organizing Probability Maps Applied to Classification of Concurrent Partial Discharges from Online Hydro-Generators. Energies 2024, 17, 2208. [Google Scholar] [CrossRef]
Input: 1. The model of internal PD, surface PD, and corona PD. 2. PD signals represented in the form of frequencies (only f1 or both (f1, f2)). Output: Evaluate the accuracy, precision, recall, and confusion matrix values. |
1: The frequency value (only f1 or both (f1, f2)) is used to calculate the maximum likelihood using Equation (9), and value of softmax function using Equation (11) for each PD. Model is illustrated in Figure 8. 2: The identification of PD types is performed by comparing all three models, with the identification determined by the softmax value exceeding 50%, is shown in Table 4. 3: Evaluate the accuracy, precision, recall, and confusion matrix values. |
Freq For Testing (f1, f2) MHz | Value of Log-Likelihood Function (L) | Value of Softmax Function | Identification Type with Softmax > 50% | |
---|---|---|---|---|
Internal model | (1, 2) | −31.8521 | 11.99% | |
Surface model | −29.8588 | 88.01% | ✓ | |
Corona model | NaN | 00.00% |
Group | Internal PD | Surface PD | Corona PD | ||||||
---|---|---|---|---|---|---|---|---|---|
(µf1, µf2) (MHz) | Σ | w | (µf1, µf2) (MHz) | Σ | w | (µf1, µf2) (MHz) | Σ | w | |
1 | (1.34, 3.16) | 0.71 | (1.15, 2.56) | 0.40 | (12.83, 10.45) | 0.39 | |||
2 | (0.88, 1.31) | 0.16 | (0.81, 1.19) | 0.20 | (12.67, 19.82) | 0.38 | |||
3 | (1.08, 3.72) | 0.10 | (0.98, 2.11) | 0.17 | (12.51, 14.64) | 0.20 | |||
4 | (2.49, 4.28) | 0.02 | (1.02, 3.79) | 0.12 | (11.00, 12.85) | 0.02 | |||
5 | (3.83, 4.76) | 0.01 | (1.39, 6.98) | 0.11 | (12.86, 16.67) | 0.01 |
Predicted Label | |||||
---|---|---|---|---|---|
True Label | Internal PD | Surface PD | Corona PD | Recall | |
Internal PD | 8771 | 1229 | 0 | 87.71% | |
Surface PD | 820 | 9180 | 0 | 91.80% | |
Corona PD | 0 | 0 | 10,000 | 100.00% | |
Precision | 91.45% | 88.20% | 100.00% | ||
Accuracy = 93.17% |
Predicted Label | |||||
---|---|---|---|---|---|
True Label | Internal PD | Surface PD | Corona PD | Recall | |
Internal PD | 9350 | 650 | 0 | 93.50% | |
Surface PD | 347 | 9653 | 0 | 96.53% | |
Corona PD | 0 | 0 | 10,000 | 100.00% | |
Precision | 96.42% | 93.69% | 100.00% | ||
Accuracy = 96.68% |
Reference | Test Database | Feature Extraction | PD Identification/Classification /Clustering | Accuracy |
---|---|---|---|---|
Hassan et al., 2021 [56] | Laboratory | Statistical and pulse shape characteristics of cumulative energy (CE) function | K-mean clustering algorithm | 88.90% |
Kumar et al., 2022 [57] | Laboratory | Discrete wavelet transform (DWT) and statistical parameters | SVM, KNN | 90–100% |
Boczar et al., 2022 [58] | On-site (Oil Power Transformers) | Frequency domain, using Welch method | Probabilistic neural network (PNN) | 92% |
Pardauil et al., 2020 [32] | On-site (Hydro generators) | Pulse Height Analysis (PHA) | Random Forest (RF) with various clustering algorithms | 94–99% |
Araújo et al., 2022 [59] | On-site (Hydro generators) | sub-PRPDs, variables of valid PD, and quantify the shape of PD clouds | Artificial Neural Networks (ANNs) for image recognition | 88–94.80% |
de Oliveira et al., 2024 [60] | On-site (Hydro generators) | Amplitude histograms, sample-neuron distances in the space of features | Self-Organizing Probability Maps (SOPMs). | 90% |
This work | On-site (Gas turbine generators) | Fast Fourier Transform (FFT), findpeaks algorithm | Gaussian Mixture Model (GMM) and softmax function | 93.17–96.68% |
Assessment Predicted (%) | |||
---|---|---|---|
Internal PD | Surface PD | Unknown PD | |
Case 1 | 7810 (78.10%) | 307 (3.07%) | 1883 (18.83%) |
Case 2 | 8095 (80.95%) | 982 (9.82%) | 923 (9.23%) |
Case 3 | 234(2.34%) | 9446 (94.46%) | 320 (3.20%) |
Case 4 | 153 (1.53%) | 9511 (95.11%) | 336 (3.36%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romphuchaiyapruek, K.; Wattanawongpitak, S. Frequency-Based Density Estimation and Identification of Partial Discharges Signal in High-Voltage Generators via Gaussian Mixture Models. Eng 2025, 6, 64. https://doi.org/10.3390/eng6040064
Romphuchaiyapruek K, Wattanawongpitak S. Frequency-Based Density Estimation and Identification of Partial Discharges Signal in High-Voltage Generators via Gaussian Mixture Models. Eng. 2025; 6(4):64. https://doi.org/10.3390/eng6040064
Chicago/Turabian StyleRomphuchaiyapruek, Krissana, and Sarawut Wattanawongpitak. 2025. "Frequency-Based Density Estimation and Identification of Partial Discharges Signal in High-Voltage Generators via Gaussian Mixture Models" Eng 6, no. 4: 64. https://doi.org/10.3390/eng6040064
APA StyleRomphuchaiyapruek, K., & Wattanawongpitak, S. (2025). Frequency-Based Density Estimation and Identification of Partial Discharges Signal in High-Voltage Generators via Gaussian Mixture Models. Eng, 6(4), 64. https://doi.org/10.3390/eng6040064