Mechanical Characteristics of Clay-Based Masonry Walls
Abstract
1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Mechanical Properties
Compressive Strength Test
Bending Test
- The weight of the upper element with mortar (W);
- The applied load through the lever system (F1);
- The clamp weight (F2).
- b is the average joint width (mm);
- d is the average thickness of the tested sample (mm);
- F1 is the maximum applied force (N);
- F2 is the clamp weight (N);
- W is the weight of the upper element with mortar (N);
- e1 is the distance between the applied load and the tensioned face of the test body (mm);
- e2 is the distance between the clamp’s center and the tested sample face (mm).
Shear Test
2.2.2. Water Content
2.2.3. Thermal Properties
Thermal Conductivity
- λ: Thermal conductivity of the sample
- Q: Heat flux
- ΔT: Temperature difference across the sample (°C)
- e: Thickness of the sample (m)
- A: Surface area of the sample (m2)
Specific Heat Capacity
- Q: Amount of heat (kJ)
- M: Mass of the sample (kg)
- C: Specific heat capacity (kJ/(kg·°C))
- ΔT: Temperature difference across the sample (°C)
3. Results and Discussion
3.1. Mechanical Results
3.1.1. Compressive Strength
3.1.2. Bending Stress at the Brick Mortar
- A1 achieved the highest strength, reaching around 0.28 MPa, which indicates enhanced bonding at the interface. This improvement can be attributed to the presence of additives such as fibers or pozzolanic materials that improve the mortar’s crack-bridging ability and ductility [30].
3.1.3. Shear Stress at the Brick–Mortar Interface
- A1 showed the highest initial shear strength, reaching approximately 0.73 MPa, which is a clear improvement over the reference. After exposure, its strength dropped to about 0.35 MPa, but it still outperformed the Ref and other modified mixes in both conditions. This suggests that A1 not only enhances initial bonding but also retains a relatively better performance after degradation.
- A2 and A3 followed the same general trend. A2 started at around 0.65 MPa and dropped to 0.30 MPa after exposure, while A3 went from 0.62 MPa to 0.29 MPa. Though both formulations improved the initial shear strength compared to Ref, they remained vulnerable to environmental deterioration.
3.2. Water Content of the Different Mixtures
3.3. Thermal Results
3.3.1. Thermal Conductivity
3.3.2. Specific Heat Capacity
3.4. Measured Hygrothermal Properties of Traditional Construction Materials
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hache, E.; Leboullenger, D.; Mignon, V. Beyond average energy consumption in the French residential housing market: A household classification approach. Energy Policy 2017, 107, 82–95. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Lv, W.; Xiao, S.; Zhang, P.; Xu, X.; Chen, J.; Wu, Z.; Pan, J.; Si, B.; et al. Effects of optical and radar satellite observations within Google Earth Engine on soil organic carbon prediction models in Spain. J. Environ. Manag. 2023, 338, 117810. [Google Scholar] [CrossRef]
- Zhou, T.; Lv, W.; Geng, Y.; Xiao, S.; Chen, J.; Xu, X.; Pan, J.; Si, B.; Lausch, A. National-scale spatial prediction of soil organic carbon and total nitrogen using long-term optical and microwave satellite observations in Google Earth Engine. Comput. Electron. Agric. 2023, 210, 107928. [Google Scholar] [CrossRef]
- Haddad, B.; Alassaad, F.; Affan, H.; Mohamad, A.; Sebaibi, N. Characterization of Mortars Incorporating Concrete Washing Fines: Impact on Mechanical Properties, Microstructure and Carbon Footprint. Appl. Sci. 2024, 14, 8381. [Google Scholar] [CrossRef]
- Alassaad, F.; Affan, H.; Haddad, B.; Mohamad, A.; Sebaibi, N. Incorporation of Concrete Polishing Waste as a Partial Substitute for Cement in Mortar. Materials 2025, 18, 530. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; Mendili, Y.E.; Sebaibi, N. Improvement of cob thermal inertia by latent heat storage and its implication on energy consumption. Constr. Build. Mater. 2022, 329, 127163. [Google Scholar] [CrossRef]
- Affan, H.; El Haddaji, B.; Khadraoui, F. Effects of Low-Carbon Binders on the Mechanical and Thermal Properties of Biobased Insulation Materials. In The 1st International Conference on Net-Zero Built Environment; Kioumarsi, M., Shafei, B., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 425–435. [Google Scholar] [CrossRef]
- Desk, H.N. Brick Masonry: Types, Techniques, Benefits and Drawbacks. Housing News. Available online: https://housing.com/news/brick-masonry-the-fundamentals-of-this-construction-technique/ (accessed on 3 November 2023).
- Affan, H.; El Haddaji, B.; Ajouguim, S.; Khadraoui, F. Comparative analysis of bio-based insulation materials with low-carbon binders: Mechanical, hygrothermal, and durability performance. Case Stud. Constr. Mater. 2025, 22, e04915. [Google Scholar] [CrossRef]
- Affan, H. Etude du Cοmpοrtement Hygrοthermique et Durabilité de Matériaux de Cοnstructiοn Incοrpοrant des Biοmasses. Ph.D. Thesis, Université de Caen Normandie, Caen, France, 2024. Available online: https://theses.fr/2024NORMC255 (accessed on 29 September 2025).
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Impact of phase change materials on lightened earth hygroscopic, thermal and mechanical properties. J. Build. Eng. 2021, 41, 102417. [Google Scholar] [CrossRef]
- Dedenis, M.; Sonebi, M.; Amziane, S.; Perrot, A.; Amato, G. Effect of Metakaolin, Fly Ash and Polypropylene Fibres on Fresh and Rheological Properties of 3D Printing Based Cement Materials. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Cham, Switzerland, 2020; p. 206. [Google Scholar] [CrossRef]
- Bouteldja, F.; Semache, S.; Sellami, A.; Amziane, S. Mechanical and Thermal Insulation Properties of Eco-Friendly Geopolymer Composites Reinforced with Diss Fibres: A Comparative Study. Iran. J. Sci. Technol. Trans. Civ. Eng. 2025. [Google Scholar] [CrossRef]
- Grosjean, A.; Touati, K.; Alonzo, G.; Ravat, H.C.; Houot, T.; El Mendili, Y.; Nougarèdes, B.; Camara, N. Experimental Raw Earth Building for Passive Cooling: A Case Study for Agricultural Application in a Mediterranean Climate. Buildings 2025, 15, 2603. [Google Scholar] [CrossRef]
- Touati, K.; Al Sahmarany, B.; Le Guern, M.; El Mendili, Y.; Streiff, F.; Goodhew, S. Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics. Eng 2023, 4, 2075–2089. [Google Scholar] [CrossRef]
- Walker, P.; Stace, T. Properties of some cement stabilised compressed earth blocks and mortars. Mat. Struct. 1997, 30, 545–551. [Google Scholar] [CrossRef]
- Affan, H.; Touati, K.; Benzaama, M.-H.; Chateigner, D.; El Mendili, Y. Earth-Based Building Incorporating Sargassum muticum Seaweed: Mechanical and Hygrothermal Performances. Buildings 2023, 13, 932. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar] [CrossRef]
- Zeghari, K.; Gounni, A.; Louahlia, H.; Marion, M.; Boutouil, M.; Goodhew, S.; Streif, F. Novel Dual Walling Cob Building: Dynamic Thermal Performance. Energies 2021, 14, 7663. [Google Scholar] [CrossRef]
- Yadav, S. Analyse Expérimentale de la Vulnérabilité Sismique des Structures en Maçonnerie de Terre Crue Renforcées par Bande Horizontale. Ph.D. Thesis, Université Grenoble Alpes, Saint-Martin-d’Hères, France, 2021. Available online: https://www.theses.fr/2021GRALI087 (accessed on 29 September 2025).
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. Design and evaluation of restoration mortars for historic masonry using traditional materials and production techniques. MRS Online Proc. Libr. 2002, 712, 27. [Google Scholar] [CrossRef]
- Pavía, S.; Caro, S. An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr. Build. Mater. 2008, 22, 1807–1811. [Google Scholar] [CrossRef]
- Papayianni, I.; Anastasious, E.; Papadopoulou, K. Comparative Life Cycle Assessment of earth-block and conventional concrete-based houses. WIT Trans. Ecol. Environ. 2015, 193, 309–317. [Google Scholar] [CrossRef]
- Zhao, R.; Weng, Y.; Tuan, C.Y.; Xu, A. The Influence of Water/Cement Ratio and Air Entrainment on the Electric Resistivity of Ionically Conductive Mortar. Materials 2019, 12, 1125. [Google Scholar] [CrossRef]
- Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. Cob, a vernacular earth construction process in the context of modern sustainable building. Build. Environ. 2016, 106, 103–119. [Google Scholar] [CrossRef]
- Quagliarini, E.; Stazi, A.; Pasqualini, E.; Fratalocchi, E. Cob Construction in Italy: Some Lessons from the Past. Sustainability 2010, 2, 3291–3308. [Google Scholar] [CrossRef]
- Gomaa, M.; Vaculik, J.; Soebarto, V.; Griffith, M.; Jabi, W. Feasibility of 3DP cob walls under compression loads in low-rise construction. Constr. Build. Mater. 2021, 301, 124079. [Google Scholar] [CrossRef]
- Gomaa, M.; Jabi, W.; Reyes, A.V.; Soebarto, V. 3D printing system for earth-based construction: Case study of cob. Autom. Constr. 2021, 124, 103577. [Google Scholar] [CrossRef]
- Alqenaee, A.; Memari, A. Experimental study of 3D printable cob mixtures. Constr. Build. Mater. 2022, 324, 126574. [Google Scholar] [CrossRef]
- Miccoli, L.; Silva, R.A.; Oliveira, D.V.; Müller, U. Static Behavior of Cob: Experimental Testing and Finite-Element Modeling. J. Mater. Civ. Eng. 2019, 31, 04019021. [Google Scholar] [CrossRef]
- Ruiz, G.; Zhang, X.; Edris, W.F.; Cañas, I.; Garijo, L. A comprehensive study of mechanical properties of compressed earth blocks. Constr. Build. Mater. 2018, 176, 566–572. [Google Scholar] [CrossRef]
- Bouasria, M.; El Mendili, Y.; Benzaama, M.-H.; Pralong, V.; Bardeau, J.-F.; Hennequart, F. Valorisation of stranded Laminaria digitata seaweed as an insulating earth material. Constr. Build. Mater. 2021, 308, 125068. [Google Scholar] [CrossRef]
- Labiad, Y.; Meddah, A.; Beddar, M. Physical and mechanical behavior of cement-stabilized compressed earth blocks reinforced by sisal fibers. Mater. Today: Proc. 2022, 53, 139–143. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Al-Massri, G.; Ghanem, H.; Khatib, J.; El-Zahab, S.; Elkordi, A. The Effect of Adding Banana Fibers on the Physical and Mechanical Properties of Mortar for Paving Block Applications. Ceramics 2024, 7, 1533–1553. [Google Scholar] [CrossRef]
- Al-Massri, G.; Ghanem, H.; Khatib, J.; Kırgız, M.S.; Elkordi, A. Chemical shrinkage, autogenous shrinkage, drying shrinkage, and expansion stability of interfacial transition zone material using alkali-treated banana fiber for concrete. J. Struct. Integr. Maint. 2024, 9, 2390650. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Norme NF EN 1015-3; Méthodes D’essai des Mortiers Pour Maçonnerie—Partie 3: Détermination de la Consistance du Mortier Frais (Avec une Table à Secousses). Afnor EDITIONS: Paris, France, 1999. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-10153/methodes-dessai-des-mortiers-pour-maconnerie-partie-3-determination-de-la-c/fa037043/10531 (accessed on 29 September 2025).
- NF EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Afnor EDITIONS: Paris, France, 2019. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-101511/methods-of-test-for-mortar-for-masonry-part-11-determination-of-flexural-an/fa189085/84252 (accessed on 29 September 2025).
- NF EN 1052-1; Method of Test for Masonry. Part1: Determination of Compressive Strength. Afnor EDITIONS: Paris, France, 1999. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-10521/method-of-test-for-masonry-part-1-determination-of-compressive-strength/fa029727/10521 (accessed on 29 September 2025).
- NF EN 1052-2; Methods of Test for Masonry—Part 2: Determination of Flexural Strength. Afnor EDITIONS: Paris, France, 2016. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-10522/methods-of-test-for-masonry-part-2-determination-of-flexural-strength/fa063162/47147 (accessed on 29 September 2025).
- NF EN 1052-5; Methods of Test for Masonry—Part 5: Determination of Bond Strength by the Bond Wrentch Method. Afnor EDITIONS: Paris, France, 2005. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-10525/methods-of-test-for-masonry-part-5-determination-of-bond-strength-by-the-bo/fa119180/26080 (accessed on 29 September 2025).
- NF EN 1052-3; Methods of Test for Masonry—Part 3: Determination of Initial Shear Strength. Afnor EDITIONS: Paris, France, 2003. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-10523/methods-of-test-for-masonry-part-3-determination-of-initial-shear-strength/fa029731/21208 (accessed on 29 September 2025).
- ISO 8301:1991; Isolation Thermique. Détermination de la Résistance Thermique et des Propriétés Connexes en Régime Stationnaire. Méthode Fluxmétrique. Afnor EDITIONS: Paris, France, 1991. Available online: https://www.boutique.afnor.org/fr-fr/norme/iso-83011991/isolation-thermique-determination-de-la-resistance-thermique-et-des-proprie/xs007216/101342 (accessed on 29 September 2025).
- Eymard, M. Analyse du Comportement Mécanique de L’interface Entre un Enduit D’isolation Thermique Innovant et son Support Structurel. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2014. Available online: https://theses.hal.science/tel-01308204 (accessed on 29 September 2025).
- NF EN 12667; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance. Afnor EDITIONS: Paris, France, 2005. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-12667/thermal-performance-of-building-materials-and-products-determination-of-the/fa045167/18796 (accessed on 29 September 2025).
- Fourier Law—An overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/physics-and-astronomy/fourier-law (accessed on 29 September 2025).
- NF EN ISO 11357-4; Plastiques—Analyse Calorimétrique Différentielle (DSC)—Partie 4: Détermination de la Capacité Thermique Massique. Afnor EDITIONS: Paris, France, 2021. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-113574/plastiques-analyse-calorimetrique-differentielle-dsc-partie-4-determination/fa199556/238238 (accessed on 29 September 2025).
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Porter, H.; Blake, J.; Dhami, N.K.; Mukherjee, A. Rammed earth blocks with improved multifunctional performance. Cem. Concr. Compos. 2018, 92, 36–46. [Google Scholar] [CrossRef]
- Velasco-Aquino, A.A.; Espuna-Mujica, J.A.; Perez-Sanchez, J.F.; Zuñiga-Leal, C.; Palacio-Perez, A.; Suarez-Dominguez, E.J. Compressed earth block reinforced with coconut fibers and stabilized with aloe vera and lime. J. Eng. Des. Technol. 2020, 19, 795–807. [Google Scholar] [CrossRef]
- Indekeu, M.; Woloszyn, M.; Grillet, A.-C.; Soudani, L.; Fabbri, A. Towards hygrothermal characterization of rammed earth with small-scale dynamic methods. Energy Procedia 2017, 132, 297–302. [Google Scholar] [CrossRef]
- El Mendili, Y.; Benzaama, M.-H.; Bejček, L.; Mège, R.; Hennequart, F.; El Haddaji, B. Algae-Based Earth Materials for Sustainable Construction: Toward a New Generation of Bio-Stabilized Building Solutions. Resour. Conserv. Recycl. 2025, 221, 108401. [Google Scholar] [CrossRef]
Mix ID | Clay (%) | Sand (%) | Additives | Water Content (%) | Fiber Type & Content | Reference |
---|---|---|---|---|---|---|
Soil 0 | 75–85 | 15–25 | – | 20% | Straw, 2% | Hamard et al. (2016) [25] |
Cob 5 | 66.67 | 33.33 | – | – | Straw (36.3 kg/m3) | Alassaad et al. (2022) [6] |
Yellow Soil | 36 | 13.5 | – | 28% | – | Quagliarini et al.(2010) [26] |
3DP Cob | 19–20 | 80–81 | – | 22–28% | Straw, 2% | Gomaa et al. (2021) (a) [27] Gomaa et al. (2021) (b) [28] |
M31 | 39.89 | 17.73 | Cement 2.48%, Lime 7.98% | 31.91% | – | Alqenaee et al. (2019) [29] |
S1 | – | – | – | 25% | Hemp straw, 5% | Zeghari et al. (2021) [19] |
Soil 0 | 21 | 18 | – | 24% | Wheat straw, 1.7% | Miccoli et al. (2019) [30] |
Parameter | LL (%) | PL (%) | PI (%) | MBV (g/100 g) | USCS |
---|---|---|---|---|---|
Soil | 27.9 | 23.3 | 3.7 | 1.45 | Low plasticity silt |
Sand | 22.7 | 21.0 | 2.5 | 0.77 | Silty sand with gravel |
Percentage of Each Component (%) | Soil |
---|---|
Silicon Dioxide (SiO2) | 61.14 ± 2.5 |
Aluminum Oxide (Al2O3) | 11.39 ± 0.52 |
Iron (III) Oxide or Ferric Oxide (Fe2O3) | 8.38 ± 0.42 |
Magnesium Oxide (MgO) | 5.08 ± 0.21 |
Potassium Oxide (K2O) | 3.17 ± 0.11 |
Titanium Dioxide (TiO2) | 4.08 ± 0.16 |
Calcium Oxide (CaO) | 3.27 ± 0.105 |
Sodium Oxide (Na2O) | 2.11 ± 0.094 |
Manganese Oxide (MnO) | 1.16 ± 0.087 |
Phosphorus Pentoxide (P2O5) | 1.14 ± 0.084 |
Sulfur Trioxide (SO3) | <0.1 ± 0.004 |
Series | Type | Composition (% by Weight) | Notes |
---|---|---|---|
Ref | Stabilized mortar | 50% Soil/45% Sand/5% Cement | Rolled sand (0–4 mm) |
M1 | Stabilized mortar | 67% Soil/28% Sand/5% Cement | Same materials as Ref; only proportions changed |
M2 | Non-stabilized | 70% Soil/30% Sand | Standard mix; reference for comparison |
M3 | Non-stabilized | 64% Soil/36% Sand | Variation to observe effect of increased soil content |
M4 | Non-stabilized | 60% Soil/40% Sand | Further variation with soil content |
Series | Mortar Type | Soil (%) | Sand (%) | Cement (%) | Notes |
---|---|---|---|---|---|
Backed soil (BE) | Soil mortar | 70 | 30 | 0 | Fired clay bricks with soil mortar |
Mud + Soil (RE) | Soil mortar | 70 | 30 | 0 | Raw mud bricks with soil mortar |
Series | Mortar Type | Soil (%) | Sand (%) | Cement (%) | No. of Samples |
---|---|---|---|---|---|
Ref. | Soil mortar | 50 | 45 | 5 | 5 |
A1 | Soil mortar | 70 | 30 | 0 | 5 |
A2 | Soil mortar | 75 | 25 | 0 | 5 |
A3 | Soil stabilized mortar | 67.5 | 25 | 7.5 | 5 |
Construction Technique | Authors | Density [kg/m3] | Compressive Strength [MPa] | Specific Heat Capacity [J/(kg·K)] | Thermal Conductivity [W/(m·K)] |
---|---|---|---|---|---|
Adobe/Cob | Alassaad et al. (2022) [6] | 1750–17,800 | 2.5–3 | 817.6–877.6 | 0.6–0.8 |
Cagnon et al. (2014) [49] | 1940–2070 | 3–7 | 950–1030 | 0.47–0.59 | |
Affan et al. (2023) [17] | 1800–1820 | 3.1 | 800 | 0.52–0.41 | |
Raw soil/Raw soil block | Porter et al. (2018) [50] | 2064–2138 | – | 1321–1832 | – |
Velasco-aquino et al. (2020) [51] | 1340–2080 | – | – | 0.19–1.35 | |
Indekeu et al.(2017) [52] | 1730 | – | 648 | 0.6–2.4 | |
El Mendili et al. (2025) [53] | 1450–1600 | 3.6–6.8 | 1034–1389 | 0.48–0.69 | |
Present study | 1500–1700 | 2.5–3.5 | 1.1–1.4 | 1050–1150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Affan, H.; Arairo, W.; Barraj, F.; Khatib, M.; Saba, M.; El Mendili, Y. Mechanical Characteristics of Clay-Based Masonry Walls. Eng 2025, 6, 260. https://doi.org/10.3390/eng6100260
Affan H, Arairo W, Barraj F, Khatib M, Saba M, El Mendili Y. Mechanical Characteristics of Clay-Based Masonry Walls. Eng. 2025; 6(10):260. https://doi.org/10.3390/eng6100260
Chicago/Turabian StyleAffan, Houssam, Wahib Arairo, Firas Barraj, Milad Khatib, Marianne Saba, and Yassine El Mendili. 2025. "Mechanical Characteristics of Clay-Based Masonry Walls" Eng 6, no. 10: 260. https://doi.org/10.3390/eng6100260
APA StyleAffan, H., Arairo, W., Barraj, F., Khatib, M., Saba, M., & El Mendili, Y. (2025). Mechanical Characteristics of Clay-Based Masonry Walls. Eng, 6(10), 260. https://doi.org/10.3390/eng6100260