Highly Dispersive Optical Solitons in Birefringent Fibers of Complex Ginzburg–Landau Equation of Sixth Order with Kerr Law Nonlinear Refractive Index
Abstract
:1. Introduction
Governing Model
2. Mathematical Preliminaries
3. Addendum to Kudryashov’s Method
4. Unified Riccati Equation Expansion Method
4.1. Soliton Solutions
4.2. Periodic Wave Solutions
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A. A generalized model for description of propagation pulses in optical fiber. Optik 2019, 189, 42–52. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik 2020, 212, 164750. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 2020, 206, 163550. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 2020, 66, 401–405. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Antonova, E.V. Solitary waves of equation for propagation pulse with powernonlinearities. Optik 2020, 217, 164881. [Google Scholar] [CrossRef]
- Abdou, A.; Soliman, A.A.; Biswas, A.; Ekici, M.; Zhou, Q. Dark singular combo opticalsolitons with fractional complex Ginzburg Landau equation. Optik 2018, 171, 463–467. [Google Scholar] [CrossRef]
- Akram, G.; Mahak, N. Application of the first integral method for solving (1 + 1) dimensional cubic-quintic complex Ginzburg–Landau equation. Optik 2018, 164, 210–217. [Google Scholar] [CrossRef]
- Aranson, I.S.; Krammer, L. The world of the complex Ginzburg- Landau equation. Rev. Mod. Phys. 2002, 74, 99–143. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Alqahtani, R.T. Optical soliton perturbation with complex Ginzburg- Landau equationby semi inverse variational principle. Optik 2017, 147, 77–81. [Google Scholar] [CrossRef]
- Biswas, A. Chirp-free bright optical solitons and conservation laws for complex Ginzburg- Landauequation with three nonlinear forms. Optik 2018, 174, 207–215. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Yasar, E.; Triki, H.; Alshomrani, A.S.; Ullah, M.Z.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical soliton perturbation for complex Ginzburg Landau equation with modified simple equation method. Optik 2018, 158, 399–415. [Google Scholar] [CrossRef]
- Cong, H.; Liu, J.; Yuan, X. Quasiperiodic solutions for the cubic complex Ginzburg–Landau equation. J. Math. Phys. 2009, 50, 063516. [Google Scholar] [CrossRef]
- García-Morales, V.; Krischer, K. The complex Ginzburg–Landau equation: An introduction. Contemp. Phys. 2012, 53, 79–95. [Google Scholar] [CrossRef]
- Lega, J. Traveling hole solutions of the complex Ginzburg–Landau equation: A review. Phys. D Nonlinear Phenom. 2001, 152, 269–287. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Ekici, M.; Sonmezoglu, A.; Eslami, M.; Zhou, Q.; Kara, A.H.; Milovic, D.; Majid, F.B.; Biswas, A.; Belić, M. Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 2016, 85, 1979–1986. [Google Scholar] [CrossRef]
- Neuberger, J.M.; Rice, D.R., Jr.; Swift, J.W. Numerical solutions of a vector Ginzburg Landauequation with a triple well potential. Int. J. Bifurc. Chaos 2003, 13, 3295–3306. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, Y.; Biswas, A.; Kara, A.H.; Ekici, M.; Zayed, E.M.; Alzahrani, A.K.; Belic, M.R. Cubic–quartic optical soliton perturbation and conservation laws with Kudryashov’s law of refractive index. Phys. Lett. A 2020, 384, 126884. [Google Scholar] [CrossRef]
- Yıldırım, Y.; Biswas, A.; Ekici, M.; Zayed, E.M.; Khan, S.; Moraru, L.; Alzahrani, A.K.; Belic, M.R. Highly dispersive optical solitons in birefringent fibers with four forms of nonlinear refractive index by three prolific integration schemes. Optik 2020, 220, 165039. [Google Scholar] [CrossRef]
- Shwetanshumala, S. Temporal solitons of modified complex Ginzburg- Landau equation. Prog. Electromagn. Res. Lett. 2008, 3, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Tien, D.N. A stochastic Ginzburg–Landau equation with impulsive effects. Phys. A Stat. Mech. Its Appl. 2013, 392, 1962–1971. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; El-Horbaty, E.; Biswas, A.; Alshomrani, A.S.; Ekici, M.; Yildirm, Y.; Belic, M.R. Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinearforms with a couple of improved integration norms. Optik 2020, 207, 163804. [Google Scholar] [CrossRef]
- Biswas, A.; Yıldırım, Y.; Yaşar, E.; Zhou, Q.; Alshomrani, A.S.; Moshokoa, S.P.; Belic, M. Solitons for perturbed Gerdjikov–Ivanov equation in optical fibers and PCF by extended Kudryashov’s method. Opt. Quantum Electron. 2018, 50, 149. [Google Scholar] [CrossRef]
- Li, Z.-L. Periodic wave solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms. Z. Naturforsch. 2010, 56, 649–657. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Triki, H.; Sonmezoglu, A.; Mirzazadeh, M.; Zhou, Q.; Mahmood, M.; Zaka Ullahi, M.; Moshokoa, S.; Belic, M. Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method. Optik 2018, 156, 784–790. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; Biswas, A.; Ekici, M.; Khan, S.; Alshomrani, A.S. Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg–Landau Equation Having a Dozen Nonlinear Refractive Index Structures. J. Commun. Technol. Electron. 2021, 66, 481–544. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Gepreel, K.A.; El-Horbaty, M.; Biswas, A.; Yıldırım, Y.; Alshehri, H.M. Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms. Mathematics 2021, 9, 3270. [Google Scholar] [CrossRef]
- Bo, W.-B.; Wang, R.-R.; Fang, Y.; Wang, Y.-Y.; Dai, C.-Q. Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 2022, 111, 1577–1588. [Google Scholar] [CrossRef]
- Bo, W.-B.; Wang, R.-R.; Liu, W.; Wang, Y.-Y. Symmetry breaking of solitons in the PT-symmetric nonlinear Schrödinger equation with the cubic–quintic competing saturable nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 093104. [Google Scholar] [CrossRef]
- Bo, W.-B.; Liu, W.; Wang, Y.-Y. Symmetric and antisymmetric solitons in the fractional nonlinear schrödinger equation with saturable nonlinearity and PT-symmetric potential: Stability and dynamics. Optik 2022, 255, 168697. [Google Scholar] [CrossRef]
- Zafar, A.; Shakeel, M.; Ali, A.; Rezazadeh, H.; Bekir, A. Analytical study of complex Ginzburg–Landau equation arising in nonlinear optics. J. Nonlinear Opt. Phys. Mater. 2022, 32, 2350010. [Google Scholar] [CrossRef]
- Zafar, A.; Inc, M.; Shakoor, F.; Ishaq, M. Investigation for soliton solutions with some coupled equations. Opt. Quantum Electron. 2022, 54, 243. [Google Scholar] [CrossRef]
- Manikandan, K.; Sudharsan, J.B. Manipulating two-dimensional solitons in inhomogeneous nonlinear Schrodinger equation with power-law nonlinearity under -symmetric Rosen–Morse and hyperbolic Scarff-II potentials. Optik 2022, 256, 168703. [Google Scholar] [CrossRef]
- Manikandan, K.; Sudharsan, J.B.; Senthilvelan, M. Nonlinear tunneling of solitons in a variable coefficients nonlinear Schrodinger equation with PT-symmetric Rosen–Morse potential. Eur. Phys. B 2021, 94, 122. [Google Scholar] [CrossRef]
- Sudharsan, J.B.; Manikandan, K.; Aravinthan, D. Stabilization of solitons in collisionally inhomogeneous higher-order nonlinear media with PT-symmetric harmonic-Gaussian potential with unbounded gain-loss distributions. Eur. Phys. J. Plus 2022, 137, 860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, E.M.E.; Gepreel, K.A.; El-Horbaty, M.; Alngar, M.E.M. Highly Dispersive Optical Solitons in Birefringent Fibers of Complex Ginzburg–Landau Equation of Sixth Order with Kerr Law Nonlinear Refractive Index. Eng 2023, 4, 665-677. https://doi.org/10.3390/eng4010040
Zayed EME, Gepreel KA, El-Horbaty M, Alngar MEM. Highly Dispersive Optical Solitons in Birefringent Fibers of Complex Ginzburg–Landau Equation of Sixth Order with Kerr Law Nonlinear Refractive Index. Eng. 2023; 4(1):665-677. https://doi.org/10.3390/eng4010040
Chicago/Turabian StyleZayed, Elsayed M. E., Khaled A. Gepreel, Mahmoud El-Horbaty, and Mohamed E. M. Alngar. 2023. "Highly Dispersive Optical Solitons in Birefringent Fibers of Complex Ginzburg–Landau Equation of Sixth Order with Kerr Law Nonlinear Refractive Index" Eng 4, no. 1: 665-677. https://doi.org/10.3390/eng4010040
APA StyleZayed, E. M. E., Gepreel, K. A., El-Horbaty, M., & Alngar, M. E. M. (2023). Highly Dispersive Optical Solitons in Birefringent Fibers of Complex Ginzburg–Landau Equation of Sixth Order with Kerr Law Nonlinear Refractive Index. Eng, 4(1), 665-677. https://doi.org/10.3390/eng4010040