Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach
Abstract
1. Introduction
2. Materials and Procedures
2.1. Concrete and Steel Reinforcement
2.2. BFRP Materials
2.3. Epoxy Resin
2.4. Beam Specimens
2.4.1. Testing Scheme
2.4.2. Details of Beam Reinforcement
2.4.3. Strengthening and Rehabilitation Scheme
2.4.4. Preparation of Grooves and the Procedure for Strengthening and Rehabilitation
2.5. Test Setup
3. Results and Discussion
3.1. Load Deflection Response
3.2. Overall Capacity and Failure Scenarios
3.3. Cracking Behavior
3.4. Ductility Index
3.5. Load Strain Analysis of Tensile Reinforcement
3.6. The Effectiveness of Using NSM-BFRP Ropes
4. Numerical Investigation
4.1. ABAQUS Element Library Test Description
4.1.1. Model Parts
4.1.2. Materials
- Concrete
- Concrete Damage Parameter (CDP)
- : Compressive stress in concrete along the descending part of the stress–strain curve.
- : Peak compressive stress in concrete.
- : Tensile stress in concrete along the descending part of the stress–strain curve.
- : Peak tensile stress in concrete.
- Steel reinforcement and NSM-BFRP ropes
4.2. Validation of Numerical Behavior
4.3. Enhanced Structural Analysis and Configuration Strategies: Utilizing FEM Models and BFRP Ropes
5. Code-Based Results
6. Conclusions
- The use of NSM-BFRP ropes for strengthening and rehabilitating low- and medium-strength RC beams effectively enhances both flexural strength and ductility, enabling higher load capacity and greater deformation before failure without causing concrete cover separation or debonding.
- Strengthened and rehabilitated continuous RC beams demonstrated significant improvements in load-carrying capacity, with increases ranging from 18% to 44% compared to control beams, highlighting the efficacy of proper rope placement in regions experiencing positive and negative moments.
- Numerical simulations using FEM closely replicated experimental behaviors, confirming their reliability as a predictive tool for exploring alternative strengthening configurations, reducing experimental effort, and supporting optimized design strategies.
- The configurations involving two BFRP ropes at the bottom or single-sided ropes with a bottom rope were particularly effective, achieving load enhancements of 31% to 65% and 21% to 58%, respectively, demonstrating the importance of strengthening pattern optimization.
- Comparisons with ACI 440.2R-08 predictions show that the guidelines provide conservative estimates, suggesting that NSM-BFRP strengthening can safely achieve higher performance than standard conservative predictions.
- Overall, this study confirms that NSM-BFRP rope strengthening is a reliable and practical approach for improving the structural resilience, ductility, and load-bearing capacity of RC beams, with clear implications for both design and rehabilitation application.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferdous, W.; Manalo, A.; Wong, H.S.; Abousnina, R.; AlAjarmeh, O.S.; Zhuge, Y.; Schubel, P. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr. Build. Mater. 2020, 232, 117229. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Al-Nsour, R.; Shatarat, N.; Hasan, H.; Al-zu’bi, H. Thermal Effect on the Flexural Performance of Lightweight Reinforced Concrete Beams Using Expanded Polystyrene Beads and Pozzolana Aggregate. Eng. Sci 2023, 27, 1029. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Shatarat, N.; Katkhuda, H.; Al-zu’bi, H.; Al-Nsour, R.; Alhnifat, R.; Al-Qaisia, A. Influence of Temperature on Shear Behavior of Lightweight Reinforced Concrete Beams Using Pozzolana Aggregate and Expanded Polystyrene Beads. CivilEng 2023, 4, 1036–1051. [Google Scholar] [CrossRef]
- Price, S.J.; Figueira, R.B. Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings 2017, 7, 25. [Google Scholar] [CrossRef]
- Noman, M.; Yaqub, M. Restoration of dynamic characteristics of RC T-beams exposed to fire using post fire curing technique. Eng. Struct. 2021, 249, 113339. [Google Scholar] [CrossRef]
- Al-Saidy, A.H.; Al-Harthy, A.S.; Al-Jabri, K.S.; Abdul-Halim, M.; Al-Shidi, N.M. Structural performance of corroded RC beams repaired with CFRP sheets. Compos. Struct. 2010, 92, 1931–1938. [Google Scholar] [CrossRef]
- Frappa, G.; Pauletta, M.; Di Marco, C.; Russo, G. Experimental tests for the assessment of residual strength of rc structures after fire—Case study. Eng. Struct. 2022, 252, 113681. [Google Scholar] [CrossRef]
- Frappa, G.; Pauletta, M. Seismic retrofitting of a reinforced concrete building with strongly different stiffness in the main directions. FIB Symp. Proc. 2024, 7, 499–508. [Google Scholar]
- Salh, L. Analysis and Behavior of Structural Concrete Reinforced with Sustainable Materials. Master’s Thesis, University of Liverpool, Liverpool, UK, 2014. Available online: http://livrepository.liverpool.ac.uk/id/eprint/16333 (accessed on 29 October 2025).
- Zhang, Y.; Elsayed, M.; Zhang, L.V.; Nehdi, M.L. Flexural behavior of reinforced concrete T-section beams strengthened by NSM FRP bars. Eng. Struct. 2021, 233, 111922. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.T. Influence of externally bonded CFRP on the shear behavior of strengthened and rehabilitated reinforced concrete T-beams containing shear stirrups. Fibers 2021, 9, 87. [Google Scholar] [CrossRef]
- Hassan, S.K.H.; Abdel-Jaber, M.S.; Alqam, M. Rehabilitation of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers (CFRP). Mod. Appl. Sci. 2018, 12, 179–194. [Google Scholar] [CrossRef]
- Al-zu’bi, H.; Abdel-Jaber, M.; Katkhuda, H. Flexural Strengthening of Reinforced Concrete Beams with Variable Compressive Strength Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips [NSM-CFRP]. Fibers 2022, 10, 86. [Google Scholar] [CrossRef]
- Al-khreisat, A.; Abdel-Jaber, M.; Ashteyat, A. Shear Strengthening and Repairing of Reinforced Concrete Deep Beams Damaged by Heat Using NSM–CFRP Ropes. Fibers 2023, 11, 35. [Google Scholar] [CrossRef]
- Obaidat, A.T.; Ashteyat, A.M.; Obaidat, Y.T.; Al-Btoush, A.Y.; Hanandeh, S. Experimental and numerical study of strengthening and repairing heat-damaged RC circular column using hybrid system of CFRP. Case Stud. Constr. Mater. 2021, 15, e00742. [Google Scholar] [CrossRef]
- Al Rjoub, Y.; Obaidat, A.; Ashteyat, A.; Alshboul, K. Experimental and analytical investigation of using externally bonded, hybrid, fiber-reinforced polymers to repair and strengthen heated, damaged RC beams in flexure. J. Struct. Fire Eng. 2022, 13, 391–417. [Google Scholar] [CrossRef]
- Shehabat, M.; Ashteyat, A.; Abdel-Jaber, M. Repairing of One-Way Solid Slab Exposed to Thermal Shock Using CFRP: Experimental and Analytical Study. Fibers 2024, 12, 18. [Google Scholar] [CrossRef]
- Ali, H.; Assih, J.; Li, A. Flexural capacity of continuous reinforced concrete beams strengthened or repaired by CFRP/GFRP sheets. Int. J. Adhes. Adhes. 2021, 104, 102759. [Google Scholar] [CrossRef]
- Abdallah, M.; Al Mahmoud, F.; Khelil, A.; Mercier, J.; Almassri, B. Assessment of the flexural behavior of continuous RC beams strengthened with NSM-FRP bars, experimental and analytical study. Compos. Struct. 2020, 242, 112127. [Google Scholar] [CrossRef]
- Hasan, M.A.; Akiyama, M.; Kojima, K.; Izumi, N. Flexural behavior of reinforced concrete beams repaired using a hybrid scheme with stainless steel rebars and CFRP sheets. Constr. Build. Mater. 2023, 363, 129817. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Kar, S.; Biswal, K.C. External shear strengthening of RC beams with basalt fiber sheets: An experimental study. Structures 2021, 31, 305–315. [Google Scholar] [CrossRef]
- Al-Nsour, R.; Abdel-Jaber, M.; Ashteyat, A.; Shatarat, N. Flexural repairing of heat damaged reinforced concrete beams using NSM-BFRP bars and NSM-CFRP ropes. Compos. Part C Open Access 2023, 12, 100404. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Liu, X.; Tao, J.; Wu, Z. Investigation on the shear behavior of RC beams strengthened with BFRP grids and PCM. Eng. Struct. 2025, 322, 119173. [Google Scholar] [CrossRef]
- Lei, Y.; Li, D.; Jin, L.; Du, X. Experimental study on torsional size effect of BFRP bars-RC beams. Eng. Struct. 2025, 326, 119595. [Google Scholar] [CrossRef]
- Zhang, A.; Fan, X.C.; Gao, X.; Ge, T. Flexural behavior of BFRP bar–hybrid steel fiber reinforced UHPC beams. Structures 2024, 66, 106838. [Google Scholar] [CrossRef]
- Aljidda, O.; Alnahhal, W.; El Refai, A. Flexural strengthening of one-way reinforced concrete slabs using near surface-mounted BFRP bars. Eng. Struct. 2024, 303, 117507. [Google Scholar] [CrossRef]
- Liang, K.; Chen, L.; Su, R.K.L. Seismic behavior of BFRP bar reinforced shear walls strengthened with ultra-high-performance concrete boundary elements. Eng. Struct. 2024, 304, 117697. [Google Scholar] [CrossRef]
- Cui, J.; Xing, G.; Miao, P.; Zhang, Y.; Chang, Z.; Khan, A.Q. Flexural behavior of RC beams strengthened with BFRP bars and CFRP U-jackets: Experimental and numerical analysis. J. Build. Eng. 2024, 97, 110932. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Al-Nsour, R.; Almahameed, A.; Ashteyat, A. Comparative analysis of shear behavior in continuous low-strength RC beams strengthened with BFRP and CFRP: An experimental and numerical investigation. Compos. Part C Open Access 2025, 16, 100575. [Google Scholar] [CrossRef]
- Madotto, R.; Van Engelen, N.C.; Das, S.; Russo, G.; Pauletta, M. Shear and flexural strengthening of RC beams using BFRP fabrics. Eng. Struct. 2021, 229, 111606. [Google Scholar] [CrossRef]
- Saribiyik, A.; Abodan, B.; Balci, M.T. Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods. Eng. Sci. Technol. Int. J. 2021, 24, 192–204. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Al-Nsour, R.; Ashteyat, A. Flexural strengthening and rehabilitation of continuous reinforced concrete beams using BFRP sheets: Experimental and analytical techniques. Compos. Part C Open Access 2025, 16, 100556. [Google Scholar] [CrossRef]
- Test, C.C.; Aggregate, C.; Aggregate, F.; Content, A.; Rooms, M.; Concrete, P. Astm C192. Management 2002, 4, 1–8. [Google Scholar]
- ASTM A615/A615M-12; American Association State Highway and Transportation Officials Standard Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International: West Conshohocken, PA, USA, 2012.
- ACI Committee. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-11); ACI Committee: Baltimore, MD, USA, 2011. [Google Scholar]
- Li, G.; Zhang, A.; Guo, Y. Effect of preload level on flexural load-carrying capacity of RC beams strengthened by externally bonded FRP sheets. Open Civ. Eng. J. 2015, 9, 426–434. [Google Scholar] [CrossRef]
- Zhang, A.H.; Jin, W.L.; Li, G.B. Behavior of preloaded RC beams strengthened with CFRP laminates. J. Zhejiang Univ. Sci. A 2016, 7, 1280–1286. [Google Scholar] [CrossRef]
- Arduini, M.; Di Tommaso, A.; Nanni, A. Brittle failure in FRP plate and sheet bonded beams. ACI Struct. J. 1997, 94, 363–370. [Google Scholar] [CrossRef]
- Tajaddini, M. Investigation of moment redistribution in FRP strengthened continuous RC members. Ph.D. Thesis, University of Bath, Bath, UK, 2007. [Google Scholar]
- El Refai, A.; Abed, F.; Al-Rahmani, A. Structural performance and serviceability of hybrid GFRP-steel reinforced concrete continuous beams. Compos. Struct. 2020, 240, 111998. [Google Scholar]
- Spadea, G.; Bencardino, F.; Swamy, R.N. Structural behavior of composite RC beams with externally bonded CFRP. J. Compos. Constr. 1998, 2, 132–137. [Google Scholar] [CrossRef]
- Dassault Systèmes Simulia. Abaqus 6.12 analysis user’s manual: Prescribed conditions, constraints & interactions. Abaqus 2012, 5, 831. [Google Scholar]
- Soudki, K.; Alkhrdaji, T. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-02); American Concrete Institute: Baltimore, MD, USA, 2005. [Google Scholar] [CrossRef]


























| Components | Low-Strength | Medium-Strength |
|---|---|---|
| Ordinary Portland Cement (OPC) (kg/m3) | 205 | 260 |
| Coarse Aggregates (kg/m3) | 365 | 365 |
| Medium Aggregates (kg/m3) | 590 | 590 |
| Silica Sand (kg/m3) | 750 | 700 |
| Crushed Fine Aggregates (kg/m3) | 305 | 300 |
| MICSHIELD SPG 251 (kg/m3) | 5.7 | 7.28 |
| Water-to-Cement Ratio (w/c) | 0.79 | 0.63 |
| Diameter/width (mm) | 3.5 |
| Tensile Strength (MPa) | 1300 |
| Elastic Modulus (MPa) | 65,000 |
| Elongation (%) | ≤2.2 |
| fc′ (MPa) | Specimens | PExp (kN) | PTheo (kN) | PFE (kN) | Exp Deflection (mm) | FE Deflection (mm) | Enhancement % in Load-Carrying Capacity | Failure Mode |
|---|---|---|---|---|---|---|---|---|
| 20 | CL | 218 | 201.1 | 217.1 | 7.88 | 7.4 | - | Flexural ductile failure |
| RR*L | 258.6 | 232 | 247.65 | 7.68 | 6.46 | 18.62 | Flexural ductile failure, without debonding of BFRP ropes | |
| SR*L | 283.7 | 240 | 271.5 | 9.94 | 5.96 | 30.14 | Flexural ductile failure, without debonding of BFRP ropes | |
| 32 | CM | 263.25 | 218 | 263.58 | 11.52 | 10.6 | - | Flexural ductile failure |
| RR*M | 317.8 | 304.6 | 313.53 | 8.74 | 6.14 | 20.7 | Flexural ductile failure, without debonding of BFRP ropes | |
| SR*M | 379 | 330 | 351.44 | 9.34 | 8.2 | 44 | Flexural ductile failure, without debonding of BFRP ropes |
| Beams | µ 1 | Λ 2 | γu 3 | γy 4 |
|---|---|---|---|---|
| CL | 2.02 | - | 7.88 | 3.9 |
| SR*L | 2.2 | 1.09 | 7.68 | 3.5 |
| RR*L | 2.42 | 1.2 | 9.94 | 4.1 |
| CM | 2 | - | 11.52 | 5.76 |
| SR*M | 2.22 | 1.11 | 8.74 | 3.94 |
| RR*M | 2.26 | 1.13 | 9.34 | 4.1 |
| Part | Modeling Spacing | Shape |
|---|---|---|
| Concrete | 3D | Solid |
| Steel reinforcement | 3D | Wire |
| Plates (Loading & Supports) | 3D | Solid |
| Rope (Top& Bottom) | 3D | Wire |
| Material | Density (kg/m3) | Modulus of Elasticity (MPa) | Poisson’s Ratio | Yield Stress |
|---|---|---|---|---|
| BFRP ropes | 2100 | 65,000 | 0.2 | - |
| Steel reinforcement | 7850 | 200,000 | 0.3 | 500 in low-strength concrete |
| 535 in medium-strength concrete |
| fc′ (MPa) | Samples | PFE (Two Ropes) (kN) | Deflection (Two Ropes) (mm) | PFE (Single Bottom with Sides) (kN) | Deflection (Single Bottom with Sides) (mm) | Enhancement % in Load Carrying Using Two Ropes | Enhancement% in Load Carrying Using Side Ropes |
|---|---|---|---|---|---|---|---|
| 20 | RR*L | 409.85 | 9.47 | 391.54 | 5.06 | 65 | 58.1 |
| SR*L | 426.72 | 8.43 | 410.73 | 5.41 | 58 | 51.3 | |
| 32 | RR*M | 429.8 | 5.85 | 401.5 | 4.6 | 37 | 28 |
| SR*M | 461.15 | 7.68 | 449.24 | 6.71 | 31 | 21.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Jaber, M.; Al-Nsour, R.; Ashteyat, A. Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach. CivilEng 2025, 6, 58. https://doi.org/10.3390/civileng6040058
Abdel-Jaber M, Al-Nsour R, Ashteyat A. Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach. CivilEng. 2025; 6(4):58. https://doi.org/10.3390/civileng6040058
Chicago/Turabian StyleAbdel-Jaber, Mu’tasim, Rawand Al-Nsour, and Ahmed Ashteyat. 2025. "Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach" CivilEng 6, no. 4: 58. https://doi.org/10.3390/civileng6040058
APA StyleAbdel-Jaber, M., Al-Nsour, R., & Ashteyat, A. (2025). Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach. CivilEng, 6(4), 58. https://doi.org/10.3390/civileng6040058

