Effect of Plasticizer on Hydration and Rheological Behavior of Cement Pastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Isothermal Calorimetry
2.4. X-ray Diffraction Analysis
2.5. Consumption of Lignosulfonate LS
2.6. Rheological Protocol
3. Results
3.1. Effect of LS and Addition Time on Hydration
3.2. Effect on Rheological Behaviour
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Larrard, F.; Sedran, T. Mixture-proportioning of high-performance concrete. Cem. Concr. Res. 2002, 32, 1699–1704. [Google Scholar] [CrossRef]
- Lessard, M.; Dallaire, E.; Blouin, D.; Aitcin, P.C. High-performance concrete for McDonald’s. Concr. Int. 1994, 16, 47–50. [Google Scholar]
- Vinet, L.; Zhedanov, A. A “missing” family of classical orthogonal polynomials. J. Phys. A Math. Theor. 2011, 44, 85201. [Google Scholar] [CrossRef]
- Okamura, H.; Ozawa, K. Self-compacting high performance concrete. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 1996, 6, 269–270. [Google Scholar] [CrossRef]
- Scripture, E.W. Indurating Composition for Concrete. U.S. Patent 2081643 A, 25 May 1937. [Google Scholar]
- Aïtcin, P.C. Cements of yesterday and today—Concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Ouyang, X.; Qiu, X.; Chen, P. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282–283, 489–497. [Google Scholar] [CrossRef]
- Gelardi, G.; Flatt, R.J. Working mechanisms of water reducers and superplasticizers. In Science and Technology of Concrete Admixtures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 257–278. ISBN 9780081006962. [Google Scholar]
- Vikan, H. Rheology and Reactivity of Cementitious Binders with Plasticizers. 2005. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/244516 (accessed on 14 June 2022).
- Gargulak, J.D.; Lebo, S.E. Commercial Use of Lignin-Based Materials. ACS Symp. Ser. 2000, 742, 304–320. [Google Scholar]
- Danner, T.; Justnes, H.; Geiker, M.; Lauten, R.A. Phase changes during the early hydration of Portland cement with Ca-lignosulfonates. Cem. Concr. Res. 2015, 69, 50–60. [Google Scholar] [CrossRef]
- Colombo, A.; Geiker, M.; Justnes, H.; Lauten, R.A.; De Weerdt, K. On the mechanisms of consumption of calcium lignosulfonate by cement paste. Cem. Concr. Res. 2017, 98, 1–9. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Feldman, R.F. Effect of calcium lignosulfonate on tricalcium aluminate and its hydration products. Matér. Constr. 1972, 5, 67–76. [Google Scholar] [CrossRef]
- Milestone, N.B. The effect of lignosulphonate fractions on the hydration of tricalcium aluminate. Cem. Concr. Res. 1976, 6, 89–102. [Google Scholar] [CrossRef]
- Young, J.F. Hydration of tricalcium aluminate with lignosulphonate additives. Mag. Concr. Res. 1962, 14, 137–142. [Google Scholar] [CrossRef]
- Chatterji, S. Electron-optical and X-ray diffraction investigation of the effects of lignosulphonates on the hydration of C3A. Indian Concr. J. 1967, 41, 151–160. [Google Scholar]
- Ramachandran, V.S. Einfluss Von Zuckerfreien Ligninsulfonaten Auf Die Zement-Hydratation. Zem Kalk Gips 1978, 31, 206–210. [Google Scholar]
- Monosi, S.; Moriconi, G.; Collepardi, M. Combined effect of lignosulfonate and carbonate on pure portland clinker compounds hydration. III. Hydration of tricalcium silicate alone and in the presence of tricalcium aluminate. Cem. Concr. Res. 1982, 12, 425–435. [Google Scholar] [CrossRef]
- Bishop, M.; Barron, A.R. Cement hydration inhibition with sucrose, tartaric acid, and lignosulfonate: Analytical and spectroscopic study. Ind. Eng. Chem. Res. 2006, 45, 7042–7049. [Google Scholar] [CrossRef]
- Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D. Impact of admixtures on the hydration kinetics of Portland cement. Cem. Concr. Res. 2011, 41, 1289–1309. [Google Scholar] [CrossRef]
- Marchon, D.; Flatt, R.J. Impact of chemical admixtures on cement hydration. In Science and Technology of Concrete Admixtures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–304. ISBN 9780081006962. [Google Scholar]
- Recalde Lummer, N.; Plank, J. Combination of lignosulfonate and AMPS®-co-NNDMA water retention agent-An example for dual synergistic interaction between admixtures in cement. Cem. Concr. Res. 2012, 42, 728–735. [Google Scholar] [CrossRef]
- Colombo, A.; Geiker, M.; Justnes, H.; Lauten, R.A.; De Weerdt, K. The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem. Concr. Res. 2018, 107, 188–205. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Beaudoin, J.J.; Shihua, Z. Control of slump loss in superplasticized concrete. Mater. Struct. 1989, 22, 107–111. [Google Scholar] [CrossRef]
- Aiad, I. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes. Cem. Concr. Res. 2003, 33, 1229–1234. [Google Scholar] [CrossRef]
- Chiocchio, G.; Paolini, A.E. Optimum time for adding superplasticizer to Portland cement pastes. Cem. Concr. Res. 1985, 15, 901–908. [Google Scholar] [CrossRef]
- Flatt, R.J.; Houst, Y.F. A simplified view on chemical effects perturbing the action of superplasticizers. Cem. Concr. Res. 2001, 31, 1169–1176. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chiu, J.J.; Chen, S.D.; Tseng, Y.C. Effect of addition time of a superplasticizer on cement adsorption and on concrete workability. Cem. Concr. Compos. 1999, 21, 425–430. [Google Scholar] [CrossRef]
- Uchikawa, H.; Sawaki, D.; Hanehara, S. Influence of kind and added timing of organic admixture on the composition, structure and property of fresh cement paste. Cem. Concr. Res. 1995, 25, 353–364. [Google Scholar] [CrossRef]
- Colombo, A.; Geiker, M.R.; Justnes, H.; Lauten, R.A.; De Weerdt, K. On the effect of calcium lignosulfonate on the rheology and setting time of cement paste. Cem. Concr. Res. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Déjardin, P. Volume effect of the adsorbed layer on the determination of adsorption isotherms of macromolecules by the depletion method. J. Phys. Chem. 1982, 86, 2800–2801. [Google Scholar] [CrossRef]
- Aït-Kadi, A.; Marchal, P.; Choplin, L.; Chrissemant, A.S.; Bousmina, M. Quantitative analysis of mixer-type rheometers using the couette analogy. Can. J. Chem. Eng. 2002, 80, 1166–1174. [Google Scholar] [CrossRef]
- Mahaut, F.; Mokéddem, S.; Chateau, X.; Roussel, N.; Ovarlez, G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem. Concr. Res. 2008, 38, 1276–1285. [Google Scholar] [CrossRef]
- Dzuy, N.Q.; Boger, D.V. Direct Yield Stress Measurement with the Vane Method. J. Rheol. 1985, 29, 335–347. [Google Scholar] [CrossRef]
- Roussel, N.; Lemaître, A.; Flatt, R.J.; Coussot, P. Steady state flow of cement suspensions: A micromechanical state of the art. Cem. Concr. Res. 2010, 40, 77–84. [Google Scholar] [CrossRef]
- Hesse, C.; Goetz-Neunhoeffer, F.; Neubauer, J. A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cem. Concr. Res. 2011, 41, 123–128. [Google Scholar] [CrossRef]
- Sandberg, P.; Roberts, L.R. Studies of cement—Admixture interactions related to aluminate hydration control by isothermal calorimetry. Am. Concr. Inst. ACI Spec. Publ. 2003, SP-217, 529–542. [Google Scholar] [CrossRef]
- Aïtcin, P.C. Retarders. In Science and Technology of Concrete Admixtures; Elsevier: Amsterdamn, The Netherlands, 2016; pp. 395–404. ISBN 9780081006962. [Google Scholar]
- Houst, Y.F.; Flatt, R.J.; Bowen, P.; Hofmann, H.; Mader, U.; Widmer, J.; Sulser, U.; Bürge, T.A. Influence of Superplasticizer Adsorption on the Rheology of Cement Paste. In Proceedings of the International Conference on “The Role of Chemical Admixtures in High Performance Concrete”, Monterrey, Mexico, 21–26 March 1999; pp. 387–402. [Google Scholar]
- Emoto, T.; Bier, T.A. Rheological behavior as influenced by plasticizers and hydration kinetics. Cem. Concr. Res. 2007, 37, 647–654. [Google Scholar] [CrossRef]
Chemical Analysis a | CX | Phase Composition c | CX |
---|---|---|---|
Na2O | 0.20 | alite | 54.3 |
MgO | 2.40 | belite | 18.8 |
Al2O3 | 4.60 | aluminate cubic | 4.7 |
SiO2 | 20.00 | aluminate ortho | 2.4 |
P2O5 | 0.23 | ferrite | 6.5 |
SO3 | 3.60 | periclase | 1.1 |
K2O | 1.00 | calcite | 3.6/3.7 b |
CaO | 64.00 | portlandite | 2.6/2.5 b |
TiO2 | 0.25 | anhydrite | 2.1 |
Fe2O3 | 2.60 | hemihydrate | 1.8 |
arcanite | 0.6 | ||
aphtithalite | 0.7 | ||
thenardite | 0.8 | ||
CO2 b | 1.6 | ||
Ignition loss (900 °C) b | 3.3 |
Plasticizer | Mw (g/mol) | Mn (g/mol) | Total Sugar (%) |
---|---|---|---|
LS1 | 29,000 | 2100 | 8.3 |
LS2 | 6400 | 500 | 14.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Bitouri, Y.; Azéma, N.; Le Saoût, G.; Lauten, R.A.; De Weerdt, K. Effect of Plasticizer on Hydration and Rheological Behavior of Cement Pastes. CivilEng 2022, 3, 748-759. https://doi.org/10.3390/civileng3030043
El Bitouri Y, Azéma N, Le Saoût G, Lauten RA, De Weerdt K. Effect of Plasticizer on Hydration and Rheological Behavior of Cement Pastes. CivilEng. 2022; 3(3):748-759. https://doi.org/10.3390/civileng3030043
Chicago/Turabian StyleEl Bitouri, Youssef, Nathalie Azéma, Gwenn Le Saoût, Rolf Andreas Lauten, and Klaartje De Weerdt. 2022. "Effect of Plasticizer on Hydration and Rheological Behavior of Cement Pastes" CivilEng 3, no. 3: 748-759. https://doi.org/10.3390/civileng3030043
APA StyleEl Bitouri, Y., Azéma, N., Le Saoût, G., Lauten, R. A., & De Weerdt, K. (2022). Effect of Plasticizer on Hydration and Rheological Behavior of Cement Pastes. CivilEng, 3(3), 748-759. https://doi.org/10.3390/civileng3030043