Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading
Abstract
:1. Introduction
2. Specimen and Materials
2.1. Specimen
2.2. Material Characterization
2.3. Test Setup
3. Results and Discussion
3.1. Load–Displacement Relationship
3.2. Failure Mechanism
3.2.1. Unreinforced Rammed Earth Wall (U-RE)
3.2.2. Mesh-Wrapped Strengthened Rammed Earth Wall (Mesh-RE)
3.2.3. Timber-Framed Strengthened Rammed Earth Wall (Timber-RE)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DCHS. Damage Assessment of Rammed Earth Buildings-After the September 18: 2011 Earthquake; Division for Conservation of Heritage Sites, Department of Culture, Ministry of Home and Cultural Affairs, Royal government of Bhutan: Thimphu, Bhutan, 2011.
- Miccoli, L.; Drougkas, A.; Müller, U. In-plane behaviour of rammed earth under cyclic loading: Experimental testing and finite element modelling. Eng. Struct. 2016, 125, 144–152. [Google Scholar] [CrossRef]
- Liu, K.; Wang, M.; Wang, Y. Seismic retrofitting of rural rammed earth buildings using externally bonded fibers. Constr. Build. Mater. 2015, 100, 91–101. [Google Scholar] [CrossRef]
- El-Nabouch, R.; Bui, Q.B.; Plé, O.; Perrotin, P. Assessing the in-plane seismic performance of rammed earth walls by using horizontal loading tests. Eng. Struct. 2017, 145, 153–161. [Google Scholar] [CrossRef]
- Shrestha, K.C.; Aoki, T.; Miyamoto, M.; Wangmo, P.; Pema. In-plane shear resistance between the rammed earth blocks with simple interventions: Experimentation and finite element study. Buildings 2020, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Arslan, M.E.; Emiroğlu, M.; Yalama, A. Structural behavior of rammed earth walls under lateral cyclic loading: A comparative experimental study. Constr. Build. Mater. 2017, 133, 433–442. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, B. Experimental study on the shaking table tests of a modern inner-reinforced rammed earth structure. Constr. Build. Mater. 2019, 203, 567–578. [Google Scholar] [CrossRef]
- Miccoli, L.; Oliveira, D.V.; Silva, R.A.; Müller, U.; Schueremans, L. Static behaviour of rammed earth: Experimental testing and finite element modelling. Mater. Struct. Constr. 2015, 48, 3443–3456. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Pospíšil, S. Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading. Constr. Build. Mater. 2017, 149, 29–36. [Google Scholar] [CrossRef]
- Hamilton, H.R.; McBride, J.; Grill, J. Cyclic testing of rammed-earth walls containing post-tensioned reinforcement. Earthq. Spectra 2006, 22, 937–959. [Google Scholar] [CrossRef]
- Miyamoto, M.; Pema; Aoki, T.; Tominaga, Y. Pull-down test of the rammed earth walls at Paga Lhakhang in the Kingdom of Bhutan. Int. J. Sustain. Constr. 2014, 2, 51–59. [Google Scholar] [CrossRef]
- Wangmo, P.; Shrestha, K.C.; Miyamoto, M.; Aoki, T. Assessment of out-of-plane behavior of rammed earth walls by pull-down tests. Int. J. Archit. Herit. 2019, 13, 273–287. [Google Scholar] [CrossRef]
- Shrestha, K.C.; Aoki, T.; Miyamoto, M.; Wangmo, P.; Pema; Zhang, J.; Takahashi, N. Strengthening of rammed earth structures with simple interventions. J. Build. Eng. 2020, 29, 101179. [Google Scholar] [CrossRef]
- Shrestha, K.C.; Aoki, T.; Konishi, T.; Miyamoto, M.; Zhang, J.; Takahashi, N.; Wangmo, P.; Aramaki, T.; Yuasa, N. Full–Scale Pull–Down Tests on a Two–Storied Rammed Earth Building with Possible Strengthening Interventions. In Proceedings of the Structural Analysis of Historical Constructions, Cusco, Peru, 11–13 September 2018; RILEM Bookseries. Elsevier: Amsterdam, The Netherlands, 2019; pp. 1557–1565. [Google Scholar]
- Bui, T.L.; Bui, T.T.; Bui, Q.B.; Nguyen, X.H.; Limam, A. Out-of-plane behavior of rammed earth walls under seismic loading: Finite element simulation. Structures 2020, 24, 191–208. [Google Scholar] [CrossRef]
- Dong, X.; Griffith, M.; Soebarto, V. Feasibility of rammed earth constructions for seismic loads in Australia. Aust. J. Struct. Eng. 2015, 16, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.B.; Bui, T.T.; El-Nabouch, R.; Thai, D.K. Vertical Rods as a Seismic Reinforcement Technique for Rammed Earth Walls: An Assessment. Adv. Civ. Eng. 2019, 2019, 1285937. [Google Scholar] [CrossRef]
- Cheah, J.S.; Morgan, T.K.K.B.; Ingham, J.M. Cyclic testing of a full-size stabilized, flax-fibre reinforced earth (uku) wall system with openings. In Proceedings of the 14th World Conference on Earthquake Engineering 2008, Beijing, China, 12–17 October 2008; pp. 1–8. [Google Scholar]
- Pang, M.; Yang, S.; Zhang, Y. Experimental study of cement mortar-steel fiber reinforced rammed earth wall. Sustainability 2012, 4, 2630–2638. [Google Scholar] [CrossRef] [Green Version]
- Wangmo, P.; Shrestha, K.C.; Aoki, T. Exploratory study of rammed earth walls under static element test. Constr. Build. Mater. 2020, 266, 121035. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Liu, K.; Pan, W.; Yang, X. Shaking table tests on seismic retrofitting of rammed-earth structures. Bull. Earthq. Eng. 2017, 15, 1037–1055. [Google Scholar] [CrossRef]
- Reyes, J.C.; Smith-Pardo, J.P.; Yamin, L.E.; Galvis, F.A.; Angel, C.C.; Sandoval, J.D.; Gonzalez, C.D. Seismic experimental assessment of steel and synthetic meshes for retrofitting heritage earthen structures. Eng. Struct. 2019, 198, 109477. [Google Scholar] [CrossRef]
- Reyes, J.C.; Rincon, R.; Yamin, L.E.; Correal, J.F.; Martinez, J.G.; Sandoval, J.D.; Gonzalez, C.D.; Angel, C.C. Seismic retrofitting of existing earthen structures using steel plates. Constr. Build. Mater. 2020, 230, 117039. [Google Scholar] [CrossRef]
- Roberto, P.; De Filippi, F.; Bosetti, M.; Aoki, T.; Wangmo, P. Influence of Traditional Building Practices in Seismic Vulnerability of Bhutanese Vernacular Rammed Earth Architecture. Int. J. Archit. Herit. 2020, 1–20. [Google Scholar] [CrossRef]
- ASTM. Standard E8/E8M Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- J.I.S. Z2101 Methods of Test for Woods. Jpn. Wood Res. Soc. 2009. Available online: https://infostore.saiglobal.com/en-us/Standards/JIS-Z-2101-2009-627076_SAIG_JSA_JSA_1456446/ (accessed on 10 September 2020).
- ASTM. C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens: C39/C39M-18; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM. C496 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Bui, Q.B.; Morel, J.C. Assessing the anisotropy of rammed earth. Constr. Build. Mater. 2009, 23, 3005–3011. [Google Scholar] [CrossRef]
- Bui, Q.B.; Morel, J.C.; Hans, S.; Meunier, N. Compression behaviour of non-industrial materials in civil engineering by three scale experiments: The case of rammed earth. Mater. Struct. Constr. 2009, 42, 1101–1116. [Google Scholar] [CrossRef]
Specimen | Bulk Density (kg/m3) | Compressive Strength (MPa) | Tensile Strength (MPa) | Elastic Modulus (MPa) | ||||
---|---|---|---|---|---|---|---|---|
Mean | CoV | Mean | CoV | Mean | CoV | Mean | CoV | |
U-RE | 2033 | 0.14 | 0.52 | 0.27 | 0.05 | 0.25 | 220 | 0.92 |
Mesh-RE | 2045 | 0.02 | 0.86 | 0.15 | 0.15 | 0.18 | 351 | 0.12 |
Timber-RE | 1926 | 0.11 | 0.68 | 0.08 | 0.17 | 0.06 | 358 | 0.01 |
Stabilized earth-based mortar | 1809 | 0.02 | 4.61 | 0.38 | - | - | 1105 | 0.37 |
Specimen | Peak Load (kN) | K (kN/mm) | Δpeak (mm) | Ψ (kN-mm) |
---|---|---|---|---|
U-RE | 29.99 | 14.51 | 5.95 | 810.6 |
Mesh-RE | 51.47 | 26.35 | 46.17 | 3517.5 |
Timber-RE | 32.64 | 44.57 | 78.95 | 2551.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangmo, P.; Shrestha, K.C.; Aoki, T.; Miyamoto, M.; Pema. Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading. CivilEng 2020, 1, 229-242. https://doi.org/10.3390/civileng1030014
Wangmo P, Shrestha KC, Aoki T, Miyamoto M, Pema. Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading. CivilEng. 2020; 1(3):229-242. https://doi.org/10.3390/civileng1030014
Chicago/Turabian StyleWangmo, Phuntsho, Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, and Pema. 2020. "Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading" CivilEng 1, no. 3: 229-242. https://doi.org/10.3390/civileng1030014
APA StyleWangmo, P., Shrestha, K. C., Aoki, T., Miyamoto, M., & Pema. (2020). Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading. CivilEng, 1(3), 229-242. https://doi.org/10.3390/civileng1030014