Surgical Site Infection Rate in Sutured Versus Stapled Wound Closure After Orthopedic Limb Surgeries: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Study Design
2.4. Sample Size
2.5. Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSI | Surgical Site Infection |
LOS | Length of Hospital Stay |
AOR | Adjusted Odds Ratio |
CI | Confidence Interval |
CDC | Centers for Disease Control and Prevention |
IRB | Institutional Review Board |
HIV | Human Immunodeficiency Virus |
BMI | Body Mass Index |
DM | Diabetes Mellitus |
NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
MRSA | Methicillin-Resistant Staphylococcus aureus |
RCT | Randomized Controlled Trial |
MDR | Multidrug-Resistant |
WHO | World Health Organization |
References
- Owens, C.D.; Stoessel, K. Surgical Site Infections: Epidemiology, Microbiology and Prevention. J. Hosp. Infect. 2008, 70, 3–10. [Google Scholar] [CrossRef]
- Whitehouse, J.D.; Friedman, N.D.; Kirkland, K.B.; Richardson, W.J.; Sexton, D.J. The Impact of Surgical-Site Infections Following Orthopedic Surgery at a Community Hospital and a University Hospital Adverse Quality of Life, Excess Length of Stay, and Extra Cost. Infect. Control Hosp. Epidemiol. 2002, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R.; The Hospital Infection Control Practices Advisory Committee. Guideline for Prevention of Surgical Site Infection, 1999. Infect. Control Hosp. Epidemiol. 1999, 20, 247–280. [Google Scholar] [CrossRef] [PubMed]
- Scott, R. The Direct Medical Costs of Healthcare-Associated Infections in US Hospitals and the Benefits of Prevention. 2009. Available online: https://stacks.cdc.gov/view/cdc/11550/cdc_11550_DS1.pdf (accessed on 17 August 2025).
- O’Hara, L.M.; Thom, K.A.; Preas, M.A. Update to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the Prevention of Surgical Site Infection (2017): A Summary, Review, and Strategies for Implementation. Am. J. Infect. Control 2018, 46, 602–609. [Google Scholar] [CrossRef]
- Krishnan, R.; MacNeil, S.D.; Malvankar-Mehta, M.S. Comparing Sutures versus Staples for Skin Closure after Orthopaedic Surgery: Systematic Review and Meta-Analysis. BMJ Open 2016, 6, e009257. [Google Scholar] [CrossRef] [PubMed]
- Bachoura, A.; Guitton, T.G.; Malcolm Smith, R.; Vrahas, M.S.; Zurakowski, D.; Ring, D. Infirmity and Injury Complexity Are Risk Factors for Surgical-Site Infection after Operative Fracture Care. Clin. Orthop. Relat. Res. 2011, 469, 2621–2630. [Google Scholar] [CrossRef]
- Godau, B.; Jardim, A.; Pagan, E.; Hadisi, Z.; Dabiri, S.M.H.; Askari, E.; Walsh, T.; Hassani Najafabadi, A.; Manji, K.; Rostami, M.; et al. In Vivo Validation of a Smart Sensor-Enabled Dressing for Remote Wound Monitoring. Biosens. Bioelectron. 2025, 285, 117474. [Google Scholar] [CrossRef]
- Belkin, D.; Wysong, A. Wound Closure Technique. In Pediatric Dermatologic Surgery; Nouri, K., Benjamin, L., Alshaiji, J., Izakovic, J., Eds.; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Shetty, A.A.; Kumar, V.S.; Morgan-Hough, C.; Georgeu, G.A.; James, K.D.; Nicholl, J.E. Comparing Wound Complication Rates Following Closure of Hip Wounds with Metallic Skin Staples or Subcuticular Vicryl Suture: A Prospective Randomised Trial. J. Orthop. Surg. 2004, 12, 191–193. [Google Scholar] [CrossRef]
- Batra, J.; Bekal, R.K.; Byadgi, S.; Attresh, G.; Sambyal, S.; Vakade, C.D. Comparison of Skin Staples and Standard Sutures for Closing Incisions After Head and Neck Cancer Surgery: A Double-Blind, Randomized and Prospective Study. J. Maxillofac. Oral Surg. 2015, 15, 243–250. [Google Scholar] [CrossRef]
- Smith, T.O.; Sexton, D.; Mann, C.; Donell, S. Sutures versus Staples for Skin Closure in Orthopaedic Surgery: Meta-Analysis. BMJ 2010, 340, 747. [Google Scholar] [CrossRef]
- Shah, F.A.; Ali, M.A.; Khan, U.Z. Surgical Site Wound Complication. Prof. Med. J. 2018, 25, 1487–1491. [Google Scholar] [CrossRef]
- Patel, R.M.; Cayo, M.; Patel, A.; Albarillo, M.; Puri, L. Wound Complications in Joint Arthroplasty: Comparing Traditional and Modern Methods of Skin Closure. Orthopedics 2012, 35, e641–e646. [Google Scholar] [CrossRef]
- Kim, K.Y.; Anoushiravani, A.A.; Long, W.J.; Vigdorchik, J.M.; Fernandez-Madrid, I.; Schwarzkopf, R. A Meta-Analysis and Systematic Review Evaluating Skin Closure After Total Knee Arthroplasty—What Is the Best Method? J. Arthroplast. 2017, 32, 2920–2927. [Google Scholar] [CrossRef] [PubMed]
- Mallee, W.H.; Wijsbek, A.E.; Schafroth, M.U.; Wolkenfelt, J.; Baas, D.C.; Vervest, T.M.J.S. Wound Complications after Total Hip Arthroplasty: A Prospective, Randomised Controlled Trial Comparing Staples with Sutures. Hip Int. 2020, 35, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.J.; Crawford, E.J.; Syed, I.; Kim, P.; Rampersaud, Y.R.; Martin, J. Is the Risk of Infection Lower with Sutures than with Staples for Skin Closure After Orthopaedic Surgery? A Meta-Analysis of Randomized Trials. Clin. Orthop. Relat. Res. 2019, 477, 922. [Google Scholar] [CrossRef]
- van de Kuit, A.; Krishnan, R.J.; Mallee, W.H.; Goedhart, L.M.; Lambert, B.; Doornberg, J.N.; Vervest, T.M.J.S.; Martin, J. Surgical Site Infection after Wound Closure with Staples versus Sutures in Elective Knee and Hip Arthroplasty: A Systematic Review and Meta-Analysis. Arthroplasty 2022, 4, 12. [Google Scholar] [CrossRef]
- Prabhakar, G.; Bullock, T.S.; Martin, C.W.; Ryan, J.C.; Cabot, J.H.; Makhani, A.A.; Griffin, L.P.; Shah, K.; Zelle, B.A. Skin Closure with Surgical Staples in Ankle Fractures: A Safe and Reliable Method. Int. Orthop. 2021, 45, 275–280. [Google Scholar] [CrossRef]
- Rui, M.; Zheng, X.; Sun, S.S.; Li, C.Y.; Zhang, X.C.; Guo, K.J.; Zhao, F.C.; Pang, Y. A Prospective Randomised Comparison of 2 Skin Closure Techniques in Primary Total Hip Arthroplasty Surgery. Hip Int. 2017, 28, 101–105. [Google Scholar] [CrossRef]
- Elbardesy, H.; Gul, R.; Guerin, S. Subcuticular Sutures versus Staples for Skin Closure after Primary Hip Arthroplasty. Acta Orthop. Belg. 2021, 87, 55–64. [Google Scholar] [CrossRef]
- Herruzo-Cabrera, R.; López-Giménez, R.; Diez-Sebastian, J.; Lopez-Aciñero, M.J.; Banegas-Banegas, J.R. Surgical Site Infection of 7301 Traumatologic Inpatients (Divided in Two Sub-Cohorts, Study and Validation): Modifiable Determinants and Potential Benefit. Eur. J. Epidemiol. 2004, 19, 163–169. [Google Scholar] [CrossRef]
- Pulido, L.; Ghanem, E.; Joshi, A.; Purtill, J.J.; Parvizi, J. Periprosthetic Joint Infection: The Incidence, Timing, and Predisposing Factors. Clin. Orthop. Relat. Res. 2008, 466, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllopoulos, G.; Stundner, O.; Memtsoudis, S.; Poultsides, L.A. Patient, Surgery, and Hospital Related Risk Factors for Surgical Site Infections Following Total Hip Arthroplasty. Sci. World J. 2015, 2015, 979560. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, S.W.; Boldingh, Q.J.J.; Solomkin, J.S.; Dellinger, E.P.; Egger, M.; Salanti, G.; Allegranzi, B.; Boermeester, M.A. Effect of Postoperative Continuation of Antibiotic Prophylaxis on the Incidence of Surgical Site Infection: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2020, 20, 1182–1192. [Google Scholar] [CrossRef]
- Tan, T.L.; Shohat, N.; Rondon, A.J.; Foltz, C.; Goswami, K.; Ryan, S.P.; Seyler, T.M.; Parvizi, J. Perioperative Antibiotic Prophylaxis in Total Joint Arthroplasty: A Single Dose Is as Effective as Multiple Doses. J. Bone Jt. Surg.—Am. Vol. 2019, 101, 429–437. [Google Scholar] [CrossRef]
- Siddiqi, A.; Forte, S.A.; Docter, S.; Bryant, D.; Sheth, N.P.; Chen, A.F. Perioperative Antibiotic Prophylaxis in Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. J. Bone Jt. Surg.—Am. Vol. 2019, 101, 828–842. [Google Scholar] [CrossRef]
- Isaac, S.M.; Woods, A.; Danial, I.N.; Mourkus, H. Antibiotic Prophylaxis in Adults With Open Tibial Fractures: What Is the Evidence for Duration of Administration? A Systematic Review. J. Foot Ankle Surg. 2016, 55, 146–150. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Gillespie, W.J.; Walenkamp, G.H. Antibiotic Prophylaxis for Surgery for Proximal Femoral and Other Closed Long Bone Fractures. Cochrane Database Syst. Rev. 2010, 3, CD000244. [Google Scholar] [CrossRef]
- Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A.; et al. Antimicrobial Consumption and Resistance in Adult Hospital Inpatients in 53 Countries: Results of an Internet-Based Global Point Prevalence Survey. Lancet Glob. Health 2018, 6, e619–e629. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, H.; Yin, B.; Li, J.; Zhu, Y.; Zhang, Y. Risk Factors for Surgical Site Infection Following Operative Treatment of Ankle Fractures: A Systematic Review and Meta-Analysis. Int. J. Surg. 2018, 56, 124–132. [Google Scholar] [CrossRef]
- Thelwall, S.; Harrington, P.; Sheridan, E.; Lamagni, T. Impact of Obesity on the Risk of Wound Infection Following Surgery: Results from a Nationwide Prospective Multicentre Cohort Study in England. Clin. Microbiol. Infect. 2015, 21, 1008.e1–1008.e8. [Google Scholar] [CrossRef]
- Bradley, B.M.; Griffiths, S.N.; Stewart, K.J.; Higgins, G.A.; Hockings, M.; Isaac, D.L. The Effect of Obesity and Increasing Age on Operative Time and Length of Stay in Primary Hip and Knee Arthroplasty. J. Arthroplasty 2014, 29, 1906–1910. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kompoti, M. Obesity and Infection. Lancet Infect. Dis. 2006, 6, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Kabon, B.; Nagele, A.; Reddy, D.; Eagon, C.; Fleshman, J.W.; Sessler, D.I.; Kurz, A. Obesity Decreases Perioperative Tissue Oxygenation. Anesthesiology 2004, 100, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Parratte, S.; Pesenti, S.; Argenson, J.N. Obesity in Orthopedics and Trauma Surgery. Orthop. Traumatol. Surg. Res. 2014, 100, S91–S97. [Google Scholar] [CrossRef]
- Peppard, W.J.; Eberle, D.G.; Kugler, N.W.; Mabrey, D.M.; Weigelt, J.A. Association between Pre-Operative Cefazolin Dose and Surgical Site Infection in Obese Patients. Surg. Infect. 2017, 18, 485–490. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, J.; Cheng, J.; Liu, H.; Yang, C.; Yin, L.; Wang, H.; You, X.; Qu, Q. Incidence and Risk Factors for Surgical Site Infection after Open Reduction and Internal Fixation of Intra-Articular Fractures of Distal Femur: A Multicentre Study. Int. Wound J. 2019, 16, 473–478. [Google Scholar] [CrossRef]
- Shao, J.; Chang, H.; Zhu, Y.; Chen, W.; Zheng, Z.; Zhang, H.; Zhang, Y. Incidence and Risk Factors for Surgical Site Infection after Open Reduction and Internal Fixation of Tibial Plateau Fracture: A Systematic Review and Meta-Analysis. Int. J. Surg. 2017, 41, 176–182. [Google Scholar] [CrossRef]
- Kawata, M.; Sasabuchi, Y.; Taketomi, S.; Inui, H.; Matsui, H.; Fushimi, K.; Yasunaga, H.; Tanaka, S. Atopic Dermatitis Is a Novel Demographic Risk Factor for Surgical Site Infection after Anterior Cruciate Ligament Reconstruction. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 3699–3705. [Google Scholar] [CrossRef]
- Wang, Z.; Anderson, F.A.; Ward, M.; Bhattacharyya, T. Surgical Site Infections and Other Postoperative Complications Following Prophylactic Anticoagulation in Total Joint Arthroplasty. PLoS ONE 2014, 9, e91755. [Google Scholar] [CrossRef]
- Mardanpour, K.; Rahbar, M.; Mardanpour, S.; Mardanpour, N. Surgical Site Infections in Orthopedic Surgery: Incidence and Risk Factors at an Iranian Teaching Hospital. Clin. Trials Orthop. Disord. 2017, 2, 132. [Google Scholar] [CrossRef]
- Al-Mulhim, F.A.; Baragbah, M.A.; Sadat-Ali, M.; Alomran, A.S.; Azam, M.Q. Prevalence of Surgical Site Infection in Orthopedic Surgery: A 5-Year Analysis. Int. Surg. 2014, 99, 264–268. [Google Scholar] [CrossRef]
- Elifranji, Z.O.; Haddad, B.; Salameh, A.; Alzubaidi, S.; Yousef, N.; Al Nawaiseh, M.; Alkhatib, A.; Aburumman, R.; Karam, A.M.; Azzam, M.I.; et al. Microbiological Profile and Drug Resistance Analysis of Postoperative Infections Following Orthopedic Surgery: A 5-Year Retrospective Review. Adv. Orthop. 2022, 2022, 7648014. [Google Scholar] [CrossRef]
- Das, A.; Tripathy, S.K.; Mohapatra, I.; Poddar, N.; Pattnaik, D.; Panigrahi, K. Microbiological Profile and Outcome of Surgical Site Infections Following Orthopedic Surgeries in a Tertiary Care Hospital. Cureus 2025, 17, e76874. [Google Scholar] [CrossRef]
Staples (N = 404) | Sutures (N = 371) | p-Value | |
---|---|---|---|
Median age in years (IQR) | 59 (34–67) | 37 (28–53) | <0.001 |
Gender | |||
Male, N (%) | 226 (55.9) | 235 (63.3) | 0.036 |
Median BMI in kg/m2 (IQR) | 30.1 (25.7–35.0) | 28.0 (24.0–32.7) | <0.001 |
Smoking, N (%) | 47 (11.6) | 65 (17.5) | 0.020 |
Medical Comorbidity | |||
Diabetes, N (%) | 124 (30.7) | 68 (18.3) | <0.001 |
Renal Failure, N (%) | 15 (3.7) | 6 (1.6) | 0.073 |
Medications | |||
Steroids, N (%) | 26 (6.4) | 25 (6.7) | 0.865 |
NSAIDs, N (%) | 222 (55.0) | 123 (34.5) | <0.001 |
Antibiotics, N (%) | 76 (18.8) | 54 (14.6) | 0.113 |
Anticoagulants, N (%) | 215 (53.2) | 90 (24.3) | <0.001 |
Admission type | |||
Elective, N (%) | 326 (80.7) | 279 (75.2) | 0.065 |
Trauma, N (%) | 78 (19.3) | 92 (24.8) | |
Median length of surgery in minutes (IQR) | 180 (120–180) | 120 (90–180) | <0.001 |
Antibiotic prophylaxis measures | |||
Prophylaxis use, N (%) | 366 (90.6) | 316 (85.2) | 0.020 |
Preoperative prophylaxis, N (%) | 260 (64.5) | 169 (46.0) | <0.001 |
Intraoperative prophylaxis, N (%) | 252 (62.4) | 194 (52.7) | 0.007 |
Postoperative prophylaxis, N (%) | 354 (87.6) | 282 (76.6) | <0.001 |
Median duration of prophylaxis in days (IQR) | 1 (4–9) | 4.5 (1–7) | <0.001 |
Prophylactic medications | |||
Cefazolin, N (%) | 107 (27.8) | 93 (26.9) | 0.782 |
Cefuroxime, N (%) | 27 (7.0) | 63 (18.2) | <0.001 |
Cefazolin + Cefuroxime, N (%) | 139 (36.1) | 151 (43.6) | 0.038 |
Cefazolin + Other, N (%) | 42 (10.9) | 11 (3.2) | <0.001 |
Other, N (%) | 70 (18.2) | 28 (8.1) | <0.001 |
Surgery type | |||
Removal of pin/screw/wire/rod/plate/nail, N (%) | 29 (7.2) | 44 (11.9) | 0.026 |
Total Knee Arthroplasty, N (%) | 159 (39.4) | 19 (5.1) | <0.001 |
Repair of ligament or tendon, N (%) | 48 (11.9) | 27 (7.3) | 0.030 |
Open reduction with internal fixation, N (%) | 66 (16.3) | 64 (17.3) | 0.734 |
Osteotomy, N (%) | 4 (1.0) | 17 (4.6) | 0.002 |
Closed reduction, N (%) | 23 (5.7) | 9 (2.4) | 0.022 |
Arthroscopy, N (%) | 6 (1.5) | 45 (12.1) | <0.001 |
Excision of lesion/biopsy, N (%) | 11 (2.7) | 41 (11.1) | <0.001 |
Other, N (%) | 58 (14.4) | 105 (28.3) | <0.001 |
Time of surgery | |||
AM, N (%) | 240 (59.9) | 180 (49.3) | 0.003 |
PM, N (%) | 161 (40.1) | 185 (50.7) | |
Previous colonization, N (%) | 9 (2.2) | 11 (3.0) | 0.518 |
Staples (N= 404) | Sutures (N= 371) | p-Value | |
---|---|---|---|
SSI, N (%) | 14 (3.5) | 4 (1.1) | 0.028 |
SSI type a | |||
Superficial, N (%) | 9 (69.2) | 3 (100) | 0.267 |
Deep, N (%) | 4 (30.8) | 0 (0) | |
Wound discharge, N (%) | 18 (4.5) | 4 (1.1) | 0.005 |
Wound dehiscence, N (%) | 2 (0.5) | 2 (0.5) | 0.932 |
Median length of stay in nights (IQR) | 5 (2–7) | 1 (0–3) | <0.001 |
SSI (N = 18) | No SSI (N = 757) | p-Value | |
---|---|---|---|
Median age in years (IQR) | 59 (45.3–65.0) | 47 (30.0–63.0) | 0.177 |
Gender | |||
Male, N (%) | 6 (33.3) | 455 (60.1) | 0.002 |
Female, N (%) | 12 (66.7) | 302 (39.9) | |
Median BMI in kg/m2 (IQR) | 33.1 (30.9–39.0) | 29 (24.6–33.9) | 0.001 |
Smoking, N (%) | 4 (22.2) | 108 (14.3) | 0.343 |
Medical Comorbidity | |||
Diabetes, N (%) | 7 (38.9) | 185 (24.4) | 0.160 |
Renal Failure, N (%) | 0 (0.0) | 21 (2.8) | 0.474 |
Medications | |||
Steroids, N (%) | 1 (5.6) | 50 (6.6) | 0.859 |
NSAIDs, N (%) | 11 (61.1) | 339 (44.8) | 0.169 |
Antibiotics, N (%) | 10 (55.6) | 120 (15.9) | <0.001 |
Anticoagulants, N (%) | 13 (72.2) | 292 (33.4) | 0.004 |
Admission type | |||
Elective, N (%) | 13 (72.2) | 592 (78.2) | 0.544 |
Trauma, N (%) | 5 (27.8) | 165 (21.8) | |
Median length of surgery in minutes (IQR) | 180 (165–240) | 150 (120–180) | 0.012 |
Antibiotic prophylaxis measures | |||
Prophylaxis use, N (%) | 17 (94.4) | 665 (87.8) | 0.395 |
Preoperative prophylaxis, N (%) | 13 (72.2) | 416 (55.3) | 0.154 |
Intraoperative prophylaxis, N (%) | 12 (66.7) | 434 (57.6) | 0.439 |
Postoperative prophylaxis, N (%) | 15 (83.3) | 621 (82.4) | 0.915 |
Median duration of prophylaxis in days (IQR) | 10 (3–17) | 5 (2–7) | 0.030 |
Prophylactic medications | |||
Cefazolin, N (%) | 4 (22.2) | 196 (27.5) | 0.621 |
Cefuroxime, N (%) | 0 (0) | 90 (12.6) | 0.107 |
Cefazolin + Cefuroxime, N (%) | 7 (38.9) | 283 (39.7) | 0.945 |
Cefazolin + Other, N (%) | 2 (11.1) | 51 (7.2) | 0.522 |
Other, N (%) | 5 (27.8) | 93 (13.0) | 0.108 |
Surgery type | |||
Removal of pin/screw/wire/rod/plate/nail, N (%) | 0 (0) | 73 (9.6) | 0.166 |
Total Knee Arthroplasty, N (%) | 9 (50.0) | 169 (22.3) | 0.006 |
Repair of ligament or tendon, N (%) | 0 (0) | 75 (9.9) | 0.160 |
Open reduction with internal fixation, N (%) | 4 (22.2) | 126 (16.6) | 0.531 |
Osteotomy, N (%) | 0 (0) | 21 (2.8) | 0.474 |
Closed reduction, N (%) | 1 (5.6) | 31 (4.1) | 0.758 |
Arthroscopy, N (%) | 0 (0) | 51 (6.7) | 0.255 |
Excision of lesion/biopsy, N (%) | 0 (0) | 52 (6.9) | 0.250 |
Other, N (%) | 4 (22.2) | 159 (21.0) | 0.900 |
Time of Surgery | |||
AM, N (%) | 11 (61.1) | 409 (54.7) | 0.588 |
PM, N (%) | 7 (38.9) | 339 (45.3) | |
Previous colonization, N (%) | 1 (5.6) | 19 (2.5) | 0.421 |
Closure Technique | |||
Staples, N (%) | 14 (77.8) | 390 (51.5) | 0.028 |
Sutures, N (%) | 4 (22.2) | 367 (48.5) | |
Median length of stay in nights (IQR) | 6 (4.8–33) | 3 (0–6) | <0.001 |
SSI % | No SSI % | Adjusted OR (95% CI) | p-Value | |
---|---|---|---|---|
Gender | 0.531 | |||
Female | 66.7 | 39.9 | 0.654 (0.173–2.472) | |
Male | 33.3 | 60.1 | ||
Diabetes | 0.541 | |||
No | 61.1 | 75.6 | 1.468 (0.429–5.032) | |
Yes | 38.9 | 24.4 | ||
Steroids | 0.523 | |||
Yes | 5.6 | 6.6 | 0.482 (0.052–4.507) | |
No | 94.4 | 93.4 | ||
Closure technique | 0.928 | |||
Staples | 77.8 | 51.5 | 1.075 (0.222–5.198) | |
Sutures | 22.2 | 48.5 | ||
Admission type | 0.811 | |||
Elective | 72.2 | 78.2 | 1.251 (0.199–7.844) | |
Trauma | 27.8 | 21.8 | ||
BMI | 1.062 (0.999–1.129) | 0.054 | ||
Duration of antibiotic prophylaxis | 1.076 (1.010–1.147) | 0.023 | ||
Length of surgery | 1.004 (0.996–1.011) | 0.321 | ||
Length of stay | 1.047 (1.013–1.083) | 0.007 | ||
Anticoagulants | 1.069 (0.242–4.732) | 0.930 | ||
Antibiotics | 5.938 (1.693–20.820) | 0.005 | ||
Total knee arthroplasty | 0.414 (0.079–2.172) | 0.297 |
N (%) | |
---|---|
Culture-negative | 8 (44.44) |
Acinetobacter baumannii a | 1 (8.33) |
Corynebacterium | 1 (8.33) |
Citrobacter koseri a,b | 1 (8.33) |
Enterobacter cloacae a,b | 1 (8.33) |
Enterococcus faecalis | 1 (8.33) |
Klebsiella pneumoniae b,c | 2 (16.67) |
Methicillin-Resistant Staphylococcus Aureus (MRSA) | 2 (16.67) |
Pseudomonas aeruginosa | 2 (16.67) |
Rhizopus | 1 (8.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naaman, N.; Aljafari, D.; Allam, T.; Batouk, O.; Khan, M.A.; Zaidi, S.F.; Aldabbagh, M. Surgical Site Infection Rate in Sutured Versus Stapled Wound Closure After Orthopedic Limb Surgeries: A Prospective Cohort Study. Surgeries 2025, 6, 72. https://doi.org/10.3390/surgeries6030072
Naaman N, Aljafari D, Allam T, Batouk O, Khan MA, Zaidi SF, Aldabbagh M. Surgical Site Infection Rate in Sutured Versus Stapled Wound Closure After Orthopedic Limb Surgeries: A Prospective Cohort Study. Surgeries. 2025; 6(3):72. https://doi.org/10.3390/surgeries6030072
Chicago/Turabian StyleNaaman, Nada, Danya Aljafari, Tala Allam, Omar Batouk, Muhammad Anwar Khan, Syed Faisal Zaidi, and Mona Aldabbagh. 2025. "Surgical Site Infection Rate in Sutured Versus Stapled Wound Closure After Orthopedic Limb Surgeries: A Prospective Cohort Study" Surgeries 6, no. 3: 72. https://doi.org/10.3390/surgeries6030072
APA StyleNaaman, N., Aljafari, D., Allam, T., Batouk, O., Khan, M. A., Zaidi, S. F., & Aldabbagh, M. (2025). Surgical Site Infection Rate in Sutured Versus Stapled Wound Closure After Orthopedic Limb Surgeries: A Prospective Cohort Study. Surgeries, 6(3), 72. https://doi.org/10.3390/surgeries6030072