Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy, Study Selection and Data Extraction
2.2. Polygenic Risk Score Methodology
2.3. AI Usage Statement
3. Results
4. Discussion
4.1. Lack of Longitudinal Studies
4.2. Epidemiological Evidence of Genetic Correlation
4.3. Genetic Contributors
4.4. Molecular Pathways Involved
4.5. Functional Roles and Contradictions in Gene–Pathway Interactions
4.6. Wnt/mTOR Signaling Pathway
4.7. Neuroinflammation and Oxidative Stress
4.8. Glycosylation
4.9. Controversy
4.10. Limitations: Role of Modifiable Risk Factors
4.11. Clinical Implications
4.12. Pharmacological Interventions
4.13. Precision Medicine Approaches
4.14. Emerging Therapeutic Strategies
4.15. Future Research Directions
4.16. Development of Detailed ADHD Polygenic Risk Profiles
4.17. Longitudinal Studies Tracking ADHD Populations
4.18. Retrospective Analyses of ADHD Symptomatology in AD Patients
5. Limitations
Need for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef]
- Martin, A.F.; Rubin, G.J.; Rogers, M.B.; Wessely, S.; Greenberg, N.; Hall, C.E.; Pitt, A.; Logan, P.E.; Lucas, R.; Brooks, S.K. The changing prevalence of ADHD? A systematic review. J. Affect. Disord. 2025, 388, 119427. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.S.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 2015, 1, 15020. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 2018, 24, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Gogtay, N.; Rapoport, J. Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Hum. Brain Mapp. 2010, 31, 917–925. [Google Scholar] [CrossRef]
- Katzman, M.A.; Bilkey, T.S.; Chokka, P.R.; Fallu, A.; Klassen, L.J. Adult ADHD and comorbid disorders: Clinical implications of a dimensional approach. BMC Psychiatry 2017, 17, 302. [Google Scholar] [CrossRef]
- Kessler, R.C.; Adler, L.; Barkley, R.; Biederman, J.; Conners, C.K.; Demler, O.; Faraone, S.V.; Greenhill, L.L.; Howes, M.J.; Secnik, K.; et al. The Prevalence and Correlates of Adult ADHD in the United States: Results From the National Comorbidity Survey Replication. Am. J. Psychiatry 2006, 163, 716–723. [Google Scholar] [CrossRef]
- Asherson, P.; Buitelaar, J.; Faraone, S.V.; A Rohde, L. Adult attention-deficit hyperactivity disorder: Key conceptual issues. Lancet Psychiatry 2016, 3, 568–578. [Google Scholar] [CrossRef]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.; de Wilde, A.; Ossenkoppele, R.; Pelkmans, W.; Bouwman, F.; Groot, C.; van Maurik, I.; Zwan, M.; Yaqub, M.; Barkhof, F.; et al. Applying the ATN scheme in a memory clinic population: The ABIDE project. Neurology 2019, 93, e1635–e1646. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, S.; Tao, J.; Liu, X.; Zhou, R.; Chen, S.; Vyas, P.; Yang, C.; Chen, B.; Qian, A.; et al. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front. Psychiatry 2022, 13, 1003542. [Google Scholar] [CrossRef]
- Leffa, D.T.; Ferrari-Souza, J.P.; Bellaver, B.; Tissot, C.; Ferreira, P.C.L.; Brum, W.S.; Caye, A.; Lord, J.; Proitsi, P.; Martins-Silva, T.; et al. Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer’s disease pathophysiology in cognitively unimpaired older adults. Mol. Psychiatry 2022, 28, 1248–1255. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2018, 51, 63–75. [Google Scholar] [CrossRef]
- Sillén, A.; Andrade, J.; Lilius, L.; Forsell, C.; Axelman, K.; Odeberg, J.; Winblad, B.; Graff, C. Expanded high-resolution genetic study of 109 Swedish families with Alzheimer’s disease. Eur. J. Hum. Genet. 2007, 16, 202–208. [Google Scholar] [CrossRef]
- Grünblatt, E.; Homolak, J.; Perhoc, A.B.; Davor, V.; Knezovic, A.; Barilar, J.O.; Riederer, P.; Walitza, S.; Tackenberg, C.; Salkovic-Petrisic, M. From attention-deficit hyperactivity disorder to sporadic Alzheimer’s disease—Wnt/mTOR pathways hypothesis. Front. Neurosci. 2023, 17, 1104985. [Google Scholar] [CrossRef]
- Tzeng, N.-S.; Chung, C.-H.; Lin, F.-H.; Yeh, C.-B.; Huang, S.-Y.; Lu, R.-B.; Chang, H.-A.; Kao, Y.-C.; Yeh, H.-W.; Chiang, W.-S.; et al. Risk of Dementia in Adults With ADHD: A Nationwide, Population-Based Cohort Study in Taiwan. J. Atten. Disord. 2017, 23, 995–1006. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Garcia-Argibay, M.; du Rietz, E.; Lu, Y.; Martin, J.; Haan, E.; Lehto, K.; Bergen, S.E.; Lichtenstein, P.; Larsson, H.; Brikell, I. The role of ADHD genetic risk in mid-to-late life somatic health conditions. Transl. Psychiatry 2022, 12, 152. [Google Scholar] [CrossRef]
- Vargha-Khadem, F.; Gadian, D.G.; Copp, A.; Mishkin, M. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 2005, 6, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, F.F.; Daoud, H.; Rochefort, D.; Piton, A.; Gauthier, J.; Langlois, M.; Foomani, G.; Dobrzeniecka, S.; Krebs, M.-O.; Joober, R.; et al. De Novo Mutations in FOXP1 in Cases with Intellectual Disability, Autism, and Language Impairment. Am. J. Hum. Genet. 2010, 87, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Gagneux, P. Biological Functions of Glycans. In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017; Chapter 7; pp. 77–88. [Google Scholar] [CrossRef]
- Pasterkamp, R.J.; Verhaagen, J. Semaphorins in axon regeneration: Developmental guidance molecules gone wrong? Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Hermey, G.; Hoffmeister-Ullerich, S.A.; Merz, B.; Groß, D.; Kuhl, D.; Kins, S. Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice. Biol. Chem. 2019, 400, 1181–1189. [Google Scholar] [CrossRef]
- Rizo, J.; Südhof, T.C. The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged? Annu. Rev. Cell Dev. Biol. 2012, 28, 279–308. [Google Scholar] [CrossRef]
- Cuadrado, A.; Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 2010, 429, 403–417. [Google Scholar] [CrossRef]
- Li, J.Z.; Absher, D.M.; Tang, H.; Southwick, A.M.; Casto, A.M.; Ramachandran, S.; Cann, H.M.; Barsh, G.S.; Feldman, M.; Cavalli-Sforza, L.L.; et al. Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation. Science 2008, 319, 1100–1104. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Xu, X.; Mill, J.; Zhou, K.; Brookes, K.; Chen, C.; Asherson, P. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention deficit hyperactivity disorder in UK and Taiwanese samples. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2006, 144B, 83–86. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Klein, M.; van der Voet, M.; Harich, B.; van Hulzen, K.J.E.; Onnink, A.M.H.; Hoogman, M.; Guadalupe, T.; Zwiers, M.; Groothuismink, J.M.; Verberkt, A.; et al. Converging evidence does not support GIT1 as an ADHD risk gene. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2015, 168, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.A.; Blazey, T.M.; Su, Y.; Hari-Raj, A.; Dincer, A.; Flores, S.; Christensen, J.; McDade, E.; Wang, G.; Xiong, C.; et al. Spatial Patterns of Neuroimaging Biomarker Change in Individuals from Families with Autosomal Dominant Alzheimer’s Disease: A Longitudinal Study. Lancet Neurol. 2018, 17, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bogari, N.M.; Amin, A.A.; Aljohani, A.; Dairi, G.; El-Readi, M.Z.; Dannoun, A.; Raja, U.; Adil, M.; Qutub, N.; Alhelfawi, S.; et al. Whole Exome Sequencing: Novel Genetic Polymorphisms in Saudi Arabian Attention Deficit Hyperactivity Disorder (ADHD) Children. Nat. Sci. 2019, 11, 45–60. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Toledo, E.M. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s Disease. Mol. Neurodegener. 2008, 3, 9. [Google Scholar] [CrossRef]
- Pagoni, P.; Dardani, C.; Leppert, B.; Korologou-Linden, R.; Smith, G.D.; Howe, L.D.; Anderson, E.L.; Stergiakouli, E. Exploring the causal effects of genetic liability to ADHD and Autism on Alzheimer’s disease. Transl. Psychiatry 2022, 12, 422. [Google Scholar] [CrossRef]
- Beehuspoteea, N.; Badrakalimuthu, V.R. Exploring the relationship between ADHD and dementia. Prog. Neurol. Psychiatry 2023, 27, 5–9. [Google Scholar] [CrossRef]
- Dallabrida, K.G.; Bender, J.M.d.O.; Chade, E.S.; Rodrigues, N.; Sampaio, T.B. Endocannabinoid System Changes throughout Life: Implications and Therapeutic Potential for Autism, ADHD, and Alzheimer’s Disease. Brain Sci. 2024, 14, 592. [Google Scholar] [CrossRef]
- Uddin, M.S.; Stachowiak, A.; Al Mamun, A.; Tzvetkov, N.T.; Takeda, S.; Atanasov, A.G.; Bergantin, L.B.; Abdel-Daim, M.M.; Stankiewicz, A.M. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications. Front. Aging Neurosci. 2018, 10, 4. [Google Scholar] [CrossRef]


| Study | Methodology | Population | ADHD Measure | PRS Source | AD Outcome/Biomarkers | Key Findings | Implications |
|---|---|---|---|---|---|---|---|
| Leffa et al., 2023 [15] | Polygenic risk score (PRS) analysis in 212 cognitively unimpaired older adults using ADHD-PRS, amyloid-beta (Aβ) PET imaging, and tau biomarkers. | 212 cognitively unimpaired older adults; included measures of amyloid-beta (Aβ) deposition and tau pathology through PET imaging | ADHD-PRS | PGC ADHD GWAS | Aβ PET, CSF p-tau181, MRI, cognition | ADHD-PRS was associated with progressive cognitive decline, increased tau pathology, and frontoparietal atrophy in Aβ-positive individuals | Suggests that genetic liability for ADHD may contribute to Alzheimer’s disease (AD) pathology, particularly in individuals with existing amyloid pathology, potentially accelerating progression. |
| García-Argibay et al., 2022 [21] | Polygenic risk score (PRS) analysis in a large twin cohort from Sweden, assessing the association of ADHD-PRS with 16 somatic conditions, including dementia, cardiometabolic, autoimmune, and neurological disorders. Mediation and moderation analyses explored effects of life-course factors like BMI, education, tobacco use, and alcohol misuse. | 10,645 Swedish twins born between 1911 and 1958. Outcomes assessed through national health registers, self-report data, and clinical diagnoses. Included conditions like dementia, heart failure, cerebrovascular disease, migraine, and obesity. | ADHD-PRS | PGC ADHD GWAS | Somatic conditions registry (incl. dementia) | ADHD-PRS was associated with modest risk increases for cardiometabolic outcomes (heart failure, cerebrovascular disease, obesity), autoimmune conditions (type 1 diabetes, rheumatoid arthritis), and neurological outcomes (migraine). Mediation effects through BMI, education, tobacco use, and alcohol misuse were significant for many outcomes. Dementia was not directly linked to ADHD-PRS. | Suggests that ADHD genetic liability influences several mid-to-late life somatic health conditions, primarily through modifiable risk factors like BMI and lifestyle. No direct genetic link to AD or dementia was found, contrasting with other studies that implicate ADHD-PRS in cognitive decline. |
| Gene | Encoded Protein | Function of the Protein | Author |
|---|---|---|---|
| FOXP2 | Forkhead Box P2 | Associated with synapse formation and learning. Highlights neural connectivity as a shared factor in ADHD and AD. | [16,22] |
| FOXP1 | Forkhead Box P1 | Involved in neurodevelopmental processes. Alterations linked to cognitive impairments and overlapping pathways with AD. | [16,23] |
| ST3GAL3 | ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 3 | Plays a role in glycoprotein biosynthesis and synaptic plasticity. Mutations associated with cognitive deficits in both conditions. | [14,24] |
| SEMA6D | Semaphorin 6D | Critical for neuronal development and axon guidance. Variants implicated in ADHD and AD pathologies | [16,25] |
| SORCS2 | Sortilin-Related VPS10 Domain | Encodes a receptor essential for neuronal viability. Linked to amyloid precursor protein (APP) processing | [16] |
| SORCS3 | Sortilin-Related VPS10 Domain | Encodes a receptor critical for neuronal plasticity and cognitive function. | [16] |
| SNAP25 | Synaptosomal-Associated Protein 25 | Crucial for synaptic vesicle fusion and neurotransmitter release. Linked to ADHD polymorphisms and reduced protein levels in AD | [27] |
| DUSP6 | Dual Specificity Phosphatase 6 | Regulator of dopamine homeostasis. Influences neurotransmitter pathways relevant to ADHD and AD. | [16,28] |
| MEF2C | Myocyte Enhancer Factor 2C | Regulates neuronal activity. Links severe cognitive impairments in ADHD and neurodegeneration in AD. | [16] |
| APOE ε4 | Apolipoprotein E ε4 | A well-established AD risk factor. Linked to cognitive dysfunction in ADHD, suggesting shared genetic vulnerability. | [30] |
| BDNF | Brain-Derived Neurotrophic Factor | Polymorphisms affect neuronal survival and plasticity, contributing to vulnerabilities in ADHD and AD. | [31,32] |
| APP | Amyloid Precursor Protein | Variants central to AD pathogenesis. Associated with cognitive deficits in ADHD, particularly in childhood | [30] |
| NUAK1 | AMPK-Related Protein Kinase | Involved in cortical amyloid-beta protein regulation and neuronal plasticity. Crucial for attention regulation in ADHD and cognitive decline in AD. | [34,35] |
| KIF21B | Kinesin Family Member 21B | Associated with neurodegenerative disorders and neuronal transport. Dysregulation linked to Alzheimer’s and ADHD. | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgonovo, R.; Nespoli, L.M.; Ceroni, M.; Arnaud, L.M.; Morellini, L.; Lissi, M.; Sacco, L. Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review. NeuroSci 2025, 6, 97. https://doi.org/10.3390/neurosci6040097
Borgonovo R, Nespoli LM, Ceroni M, Arnaud LM, Morellini L, Lissi M, Sacco L. Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review. NeuroSci. 2025; 6(4):97. https://doi.org/10.3390/neurosci6040097
Chicago/Turabian StyleBorgonovo, Riccardo, Lisa M. Nespoli, Martino Ceroni, Lisa M. Arnaud, Lucia Morellini, Marianna Lissi, and Leonardo Sacco. 2025. "Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review" NeuroSci 6, no. 4: 97. https://doi.org/10.3390/neurosci6040097
APA StyleBorgonovo, R., Nespoli, L. M., Ceroni, M., Arnaud, L. M., Morellini, L., Lissi, M., & Sacco, L. (2025). Potential Genetic Intersections Between ADHD and Alzheimer’s Disease: A Systematic Review. NeuroSci, 6(4), 97. https://doi.org/10.3390/neurosci6040097

