The Metabolic Mind: Revisiting Glucose Metabolism and Justice Involvement in Neurolaw
Abstract
1. Introduction
2. Glucose Metabolism
3. Research in Forensic Populations
4. Research in Non-Forensic Populations
5. Glucose Administration, Transport
6. Acute Glucose vs. Dietary Patterns
7. Microbiome and Omics
8. Future Directions
- I.
- Mechanistic & Basic Science Research
- 1.
- Expansion of preclinical mechanistic research, including efforts that help to identify potential causal links between carbohydrate metabolism, specific biological markers, and justice-related behavior.
- 2.
- In preclinical models, identify microbial signatures might help to explain postprandial glucose responses and divergences in cognition and behavior; expand preclinical fecal transplant studies (with objective metabolic, immune, and neurochemical markers) to include human donors with impulse control disorders, aggression, anger attacks, or intermittent explosive disorder [109].
- 3.
- Scrutinize glucose transporter expression, cerebral glucose use, and possible links to aggression, impulsivity, and other behaviors.
- 4.
- Examine the role of glucose metabolism in mitochondrial dysfunction and behavioral changes.
- 5.
- Investigate the differences between acute vs. chronic glucose administration and high/low glycemic index dietary patterns on behavior and reward circuits and prefrontal control.
- II.
- Clinical and Intervention Studies
- 1.
- Intervention studies should be conducted that include dietary changes, markers of glucose metabolism, and cognitive–behavioral outcomes. Research shows that targeted interventions can be effective in reducing dietary sugar intake [149], although research in this area is limited for justice-involved populations [150].
- 2.
- Research designs should incorporate continuous glucose monitoring (CGM), especially in projects intended to explore relationships between diet, cognition, and behavior [48]. This includes designs with a laboratory stressor or real-world outcomes. Indeed, CGM could be used to study some of the controversies surrounding the so-called “hungry judge effect”—hunger and blood glucose as predictors of harsh judgements by decision-makers operating in the criminal justice system [22]. CGM can also be used to examine mindfulness and contemplative practices as possible interventions for glucose regulation [151].
- 3.
- In human populations, identifying microbial signatures might help to explain postprandial glucose responses and divergences in cognition and behavior. Recent studies have identified differences in gut microbiota in adults in prison confinement [152,153], and much of the early work on glucose metabolism and criminal behavior involved adults in carceral settings. However, insofar as diet, social exclusion, and the isolating conditions of confinement influence the gut microbiome [154] and blood glucose [155], causal connections are difficult to tease apart.
- 4.
- The topic of glucose metabolism and forensic neuropsychiatry should be considered through an exposome lens. Advances in exposome science allow for scrutiny of biological responses to total lived experiences (i.e., life course exposures, both positive and negative) as they interact with genes over time [156]. Exposome science can help identify how psychosocial factors—ranging from marginalization and toxic/pollutant exposures to adverse childhood experiences and food deserts—can explain both glucose dysregulation [157] and criminality [158].
- 5.
- Glucose metabolism, impulsivity, and risk-taking should be evaluated in healthy and at-risk populations [159,160]. How might glucose metabolism differ between people engaged in so-called white-collar crimes (which have been linked to genetics [161,162] and higher risks of recidivism [163]) and other forms of crime?
- 6.
- The role of glucose metabolism should be scrutinized as a possible (partial) explanation for the observed links between obesity and aggressive behavior, conduct disorder, antisocial personality disorder, and impulsivity [164,165,166]. Recent prospective cohort research demonstrating that early life obesity is linked with higher rates of lifetime criminal behavior (independent of race) requires further study [167].
- 7.
- Laboratory research designs, intended to provoke social stress and cognitive demands, could combine continuous glucose monitoring with challenge meals (or oral GTT). Research using fMRI shows that in healthy adults engaged in cognitively demanding tasks, the lab induction of hypoglycemia is associated with impaired cognitive function and task-specific localized reductions in brain activation. As cognitive load increases under hypoglycemic conditions, neuroimaging indicates that there is increased activity in planning areas and recruitment of brain regions in an effort to limit dysfunction [168]. Given the findings of previous neuroimaging studies in adults with histories of aggression and violence—e.g., reduced activity in prefrontal structures and overactivity in the limbic system [169,170]—there is a need to better understand how hypoglycemia (or other metabolic changes) might influence both neuroimaging and outcomes such as impulsivity and aggression in at-risk populations.
- III.
- Technological and Omics Applications
- 1.
- Research must establish causal links between microbe-manufactured chemicals, glucose regulation, and cognition and behavior. In addition to the previously mentioned examples of uric acid and bilirubin, the gut microbe-produced chemical propionic acid has been linked to metabolic disruptions [171] and behavioral disturbances [172,173]. Research shows that in adults with disorders of gut–brain interaction (DGBI), oral glucose beverages (75 g) induce a range of symptoms associated with carbohydrate intolerance [174]. Given overlaps between DGBI and glucose dysregulation [175] and mental disorders [176], this is an area ripe for research.
- 2.
- Multi-omics approaches should be incorporated into future research. Metabolomics and other omics technologies can provide explanatory power to previous observations. For example, Finnish researchers found that the combination of high insulin resistance, low insulin sensitivity, and high beta cell activity indices in adults with antisocial personality disorder appears to be mediated by the serotonin 2B (5-HT2B) receptor (carriers of a common 5-HT2B receptor gene mutation appeared protected) [177]. Contemporary multi-omics analyses can provide a more detailed understanding of the links between genetics, energy metabolism, and neuropsychiatric risk [178].
- 3.
- Future studies should study the extent to which (and the mechanisms by which) psychotropic medications could curb risks of justice involvement via glycemic control [179]. For example, emergent research has found that adherence to ADHD medications is associated with diminished risk of subsequent criminality [180,181]. Given that ADHD is associated with poor glycemic control [182], and medications may have a mild hyperglycemic effect [183] and increase cerebral glucose uptake [184], this is an area worthy of scrutiny.
- 4.
- The potential value of the revolutionary glucagon-like peptide 1 receptor (GLP-1) agonist drugs in at-risk and forensic populations should be assessed. Emergent research suggests that the GLP-1 class may have a benefit in reducing impulsivity [185]. Although these agents have a relatively low risk of inducing hypoglycemia [186], it is critical to examine whether baseline glucose metabolism could help determine who might benefit. In a recent case involving genetically driven obesity (Smith–Magenis syndrome), clinicians reported that associated aggression and violence were attenuated by the introduction of an injectable GLP-1 agent, worsened with a switch to poorly absorbed oral form, and reduced again with the reintroduction of the subcutaneous GLP-1 agonist [187].
- 5.
- Neuroimaging and electroencephalogram testing, in concert with omics, microbial signatures, and interventions targeting healthy glucose metabolism should be incorporated into future work. For example, neuroimaging studies have shown that unhealthy dietary patterns are associated with smaller hippocampal and brain volumes [188,189], whereas healthy dietary patterns are associated with increased cortical thickness [190] and enhanced functional connectivity in the frontoparietal and temporo-occipital regions [191]. Remarkably, even a short-term (four-day) diet rich in added sugars and saturated fat compromises hippocampal-dependent learning and memory in adults [192]. While single ultra-processed and fast-food meals can lead to changes in post-prandial physiology [193,194] and cognition [195], there is a need to examine the role of glucose metabolism as part of any observed differences in neuroimaging. Moreover, there is a need to tease apart the place of carbohydrates and added sugars in discussions of ultra-processed foods. It could be that levels of processing are far less important than added sugar [196].
- 6.
- The potential value of glucose metabolism and metabolomic markers in addition to and alongside certain forensic risk assessments should be considered. In one Finnish study, basal insulin levels were equivalent to or better than the commonly used Psychopathy Checklist Revised (PCL-R) as a predictor of recidivism in adults with a history of violent crime and alcohol use disorder [148]. Currently, even when setting aside the publication bias and poor-quality research behind common criminogenic risk assessments, the overall accuracy of many commonly used risk assessment instruments used in parole, probation, and sentencing is often in the range of poor to fair [197]. We suggest that biological markers could provide additional data about risk when combined with the results of common risk assessments.
- IV.
- Legal, Ethical, and Policy Implications
- 1.
- With appropriate informed consent and ethical guardrails in place [198], the greater inclusion of at-risk and justice-involved individuals, including those in carceral settings, in metabolic research is needed.
- 2.
- A ‘justice lens’ should be incorporated into neuroscience and metabolism research. The topic of prison systems, and the criminal justice system writ large, often sits at the periphery of neuropsychiatric discourse. Yet, prison systems are being used as poorly prepared alternatives to mental health institutions [47]. For example, compared to military veterans without posttraumatic stress disorder (PTSD), veterans with PTSD are 59% more likely to be arrested for a violent offense, and 61% more likely to be justice-involved [199]. Given links between PTSD and glucose dysregulation [200], a justice lens can help to underscore the importance of transdisciplinary research.
- 3.
- Future work should consider the implications of glucose metabolism research to professionals and decision-makers working within the criminal justice system. For example, burnout is a significant issue among law enforcement officers, lawyers, and judges [22]. Burnout has been linked with poor occupational performance, and among police officers, use of excessive force [201]. At the same time, burnout has been associated with insulin resistance [202], and adults with severe burnout symptoms exhibit significantly elevated levels of both glucose and insulin in response to an oral GTT [203].
- 4.
- Future research should engage diverse populations with cross-jurisdictional data integration. Synchronize metabolomics, behavioral, and legal outcome datasets across countries and legal systems to understand how cultural, dietary, environmental, and policy differences modulate metabolism and behavior relationships.
- 5.
- Education and scientific literacy should be enhanced moving forward. When used as a defense or mitigation strategy, findings from biological criminology and legal biopsychology can lead to heightened perceptions and assumptions surrounding a person’s future dangerousness [204,205]. The erroneous idea that biological aspects of criminal behavior are permanent, or that genetic influences equate to individual destiny, is enduring. The solution to this is not to ignore or suppress scientific realities (such as glucose dysregulation) or to label biological criminology as inherently wrong. Research shows that potential jurors with higher levels of scientific knowledge are less likely to support harsh sentencing in vignettes of violent crime [206]. This suggests that, among many factors, the problem of mass incarceration (and its associated problems) may be facilitated, at least partially, by deficits in scientific literacy [207].
- 6.
- We must anticipate the ethical and legal implications of rapidly growing scientific research that demonstrates the degree to which biology influences justice involvement [208,209]. It is important to acknowledge that pseudoscientific biological theories (e.g., Cesear Lombroso and others in the late 19th through mid-20th centuries) have resulted in a variety of social harms, especially those related to eugenics [210]. However, with appropriate 21st century ethical approaches, evidence-based biological considerations can be incorporated into neurolaw and frameworks of non-retributive fairness [211].
- 7.
- The emerging research connecting neuromicrobiology and omics with justice-related behaviors (i.e., the legalome) is already posing difficult questions for the courts, including matters of legal responsibility and punishment [212]. If the existing research on metabolic dysfunction and behavior is replicated and expanded upon, it will add strength to the field of neurolaw [213]. Up to now, courts have largely kept neurobehavioral sciences at arm’s length; however, as the evidence mounts, this stance may be increasingly viewed as anti-science and untenable [158]. Institutional and social responses to robust neuroscientific evidence will require new frameworks, deeper collaborations, and cultural shifts in how responsibility, punishment, and public safety are considered. A neurolaw of metabolism that stops at individual responsibility would be incomplete; if states and institutions help create obesogenic, hyper-processed food environments and then punish the behavioral sequelae of those environments, questions of structural responsibility and distributive fairness inevitably arise.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilder, J. Sugar metabolism and its relation to criminology. In Handbook of Correctional Psychology; Lindner, R.M., Seliger, R.V., Eds.; Philosophical Library: New York, NY, USA, 1947; pp. 98–129. [Google Scholar]
- Wilder, J. Problems of criminal psychology related to hypoglycemic states. J. Criminol. Psychopathol. 1940, 1, 219–233. [Google Scholar]
- Wilder, J. Psychological problems in hypoglycemia. Am. J. Dig. Dis. 1943, 10, 428–435. [Google Scholar] [CrossRef]
- Salzer, H.M. Relative hypoglycemia as a cause of neuropsychiatric illness. J. Natl. Med. Assoc. 1966, 58, 12–17. [Google Scholar]
- Hill, D.; Sargant, W.; Heppenstall, M. A case of matricide. Lancet 1943, 241, 526–527. [Google Scholar] [CrossRef]
- Canadian Press International. Blood sugar murder: Psychiatrists’ gadget proves slayer insane. The Winnipeg Tribune, 4 May 1943; p. 11. [Google Scholar]
- Sunday Telegraph Press. Science Saves Young Killer From Gallows. The Daily Telegraph, 25 April 1943; p. 24. [Google Scholar]
- Anon. Inspector goes free: Not guilty of murder or manslaughter says jury. Sevenoaks Chronicle, 17 July 1964; p. 1. [Google Scholar]
- Podolsky, E. The chemistry of murder. Pak. Med. J. 1964, 15, 9–14. [Google Scholar]
- Anon. Disease made constable go berserk: Not responsible for vicious attack on girl. Liverpool Echo, 13 February 1969; p. 1. [Google Scholar]
- Clapham, B. An interesting case of hypoglycaemia. Med. Leg. J. 1965, 33, 72–73. [Google Scholar] [CrossRef]
- Matheson, J.C. Abnormalities of Memory in Criminal Cases. Med. Leg. J. 1952, 20, 39–54. [Google Scholar] [CrossRef]
- Anon. Court pledge to stop dieting: Woman freed on shoplifting charge. The Daily Telegraph, 20 July 1951; p. 5. [Google Scholar]
- Bovill, D. A case of functional hypoglycaemia—A medico-legal problem. Br. J. Psychiatry 1973, 123, 353–358. [Google Scholar] [CrossRef]
- Bolton, R. The hypoglycemia-aggression hypothesis: Debate versus research. Curr. Anthropol. 1984, 25, 1–28. [Google Scholar] [CrossRef]
- Prescott, S.L.; Holton, K.F.; Lowry, C.A.; Nicholson, J.J.; Logan, A.C. The intersection of ultra-processed foods, neuropsychiatric disorders, and neurolaw: Implications for criminal justice. NeuroSci 2024, 5, 354–377. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Tang, Q.; Zhang, Y.; Shao, T. Glucose metabolic abnormality: A crosstalk between depression and Alzheimer’s disease. Curr. Neuropharmacol. 2025, 23, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, S.; Wani, S.U.; Krishna, K.L.; Kinattingal, N.; Roohi, T.F. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem. Biophys. Rep. 2023, 36, 101571. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martínez, C.; Paolassini-Guesnier, P.; Fezeu, L.; Srour, B.; Hercberg, S.; Touvier, M.; Babio, N.; Salas-Salvadó, J.; Péneau, S. Trait impulsivity is associated with an increased risk of type 2 diabetes incidence in adults over 8 years of follow-up: Results from the NutriNet-Santé cohort. BMC Med. 2024, 22, 332. [Google Scholar] [CrossRef] [PubMed]
- Callender, J.S. Neuroscience and Criminal Justice: Time for a “Copernican Revolution?”. William Mary Law Rev. 2021, 63, 1119–1166. [Google Scholar]
- Logan, A.C.; Caruso, G.D.; Prescott, S.L. The Bell Tolls for Folk Psychology: Are Societies Ready for a Public Health Quarantine Model of Criminal Justice? Societies 2025, 15, 305. [Google Scholar] [CrossRef]
- Logan, A.C.; Berryessa, C.M.; Mishra, P.; Prescott, S.L. On Gastronomic Jurisprudence and Judicial Wellness as a Matter of Competence. Laws 2025, 14, 39. [Google Scholar] [CrossRef]
- Abi-Saab, W.M.; Maggs, D.G.; Jones, T.; Jacob, R.; Srihari, V.; Thompson, J.; Kerr, D.; Leone, P.; Krystal, J.H.; Spencer, D.D.; et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: Effects of hyperglycemia and hypoglycemia. J. Cereb. Blood Flow Metab. 2002, 22, 271–279. [Google Scholar] [CrossRef]
- Dienel, G.A. Brain glucose metabolism: Integration of energetics with function. Physiol. Rev. 2019, 99, 949–1045. [Google Scholar] [CrossRef]
- Cacciatore, M.; Grasso, E.A.; Tripodi, R.; Chiarelli, F. Impact of glucose metabolism on the developing brain. Front. Endocrinol. 2022, 13, 1047545. [Google Scholar] [CrossRef]
- Zhang, S.; Lachance, B.B.; Mattson, M.P.; Jia, X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog. Neurobiol. 2021, 204, 102089. [Google Scholar] [CrossRef]
- Wyke, B. Electroencephalographic studies in the syndrome of relative cerebral hypoglycemia. Electroencephalogr. Clin. Neurophysiol. 1959, 11, 602. [Google Scholar]
- Gjedde, A.; Crone, C. Blood-brain glucose transfer: Repression in chronic hyperglycemia. Science 1981, 214, 456–457. [Google Scholar] [CrossRef]
- Hwang, J.J.; Jiang, L.; Hamza, M.; Sanchez Rangel, E.; Dai, F.; Belfort-DeAguiar, R.; Parikh, L.; Koo, B.B.; Rothman, D.L.; Mason, G.; et al. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. J. Clin. Investig. 2017, 2, e95913. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, F.; Matson, B.C.; Coppoli, A.; Jiang, L.; Ding, Y.; Perry, R.; Sanchez-Rangel, E.; DeAguiar, R.B.; Behar, K.L.; Rothman, D.L.; et al. Deficits in brain glucose transport among younger adults with obesity. Obesity 2024, 32, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Rippere, V. Can hypoglycaemia cause obsessions and ruminations? Med. Hypotheses 1984, 15, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E.; King, W.H. Functional hypoglycemia: A potential cause of unconsciousness in flight. Aerosp. Med. 1972, 43, 76–78. [Google Scholar]
- Virkkunen, M. Insulin secretion during the glucose tolerance test among habitually violent and impulsive offenders. Aggress. Behav. 1986, 12, 303–310. [Google Scholar] [CrossRef]
- Virkkunen, M. Reactive hypoglycemic tendency among arsonists. Acta Psychiatr. Scand. 1984, 69, 445–452. [Google Scholar] [CrossRef]
- Virkkunen, M.; Kallio, E. Low blood glucose nadir in the glucose tolerance test and homicidal spouse abuse. Aggress. Behav. 1987, 13, 59–66. [Google Scholar] [CrossRef]
- Virkkunen, M.; Huttunen, M.O. Evidence for abnormal glucose tolerance test among violent offenders. Neuropsychobiology 1982, 8, 30–34. [Google Scholar] [CrossRef]
- Virkkunen, M. Reactive Hypoglyceinic Tendency among Habitually Violent Offenders: A Further Study by Means of the Glucose Tolerance Test. Neuropsychobiology 1982, 8, 35–40. [Google Scholar] [CrossRef]
- Virkkunen, M. Insulin secretion during the glucose tolerance test in antisocial personality. Br. J. Psychiatry 1983, 142, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M.; Närvänen, S. Plasma insulin, tryptophan and serotonin levels during the glucose tolerance test among habitually violent and impulsive offenders. Neuropsychobiology 1987, 17, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M.; Rawlings, R.; Tokola, R.; Poland, R.E.; Guidotti, A.; Nemeroff, C.; Bissette, G.; Kalogeras, K.; Karonen, S.L.; Linnoila, M. CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch. Gen. Psychiatry 1994, 51, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M.; Rissanen, A.; Franssila-Kallunki, A.; Tiihonen, J. Low non-oxidative glucose metabolism and violent offending: An 8-year prospective follow-up study. Psychiatry Res. 2009, 168, 26–31. [Google Scholar] [CrossRef]
- Westling, S.; Ahrén, B.; Träskman-Bendz, L.; Westrin, Å. High CSF-insulin in violent suicide attempters. Psychiatry Res. 2004, 129, 249–255. [Google Scholar] [CrossRef]
- Bendix, M.; Uvnäs-Moberg, K.; Petersson, M.; Kaldo, V.; Åsberg, M.; Jokinen, J. Insulin and glucagon in plasma and cerebrospinal fluid in suicide attempters and healthy controls. Psychoneuroendocrinology 2017, 81, 1–7. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, H.X.; Chen, D.C.; Wang, D.M.; Zhang, X.Y. Association between suicidal behavior and impaired glucose metabolism in first-episode drug-naïve patients with schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 129, 110900. [Google Scholar] [CrossRef]
- Rolling, C.A.; Vaughn, M.G.; Velez, D.; Jackson, D.B.; Holzer, K.J.; Jaegers, L.; Boutwell, B.B. Prevalence and correlates of diabetes among criminal justice–involved individuals in the United States. Ann. Epidemiol. 2019, 36, 55–61. [Google Scholar] [CrossRef]
- Langevin, R.; Langevin, M.; Curnoe, S.; Bain, J. The prevalence of diabetes among sexual and violent offenders and its co-occurrence with cognitive impairment, mania, psychotic symptoms and aggressive behavior. Int. J. Prison. Health 2008, 4, 83–95. [Google Scholar] [CrossRef]
- Al-Rousan, T.; Rubenstein, L.; Sieleni, B.; Deol, H.; Wallace, R.B. Inside the nation’s largest mental health institution: A prevalence study in a state prison system. BMC Public Health 2017, 17, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.C.; McIntyre, R.S. The Role of Continuous Glucose Monitoring (CGM) in Psychiatric Symptom Management. CNS Spectr. CNS Spectr. 2025, 30, 1–20. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Aoyama, N.; Jinnouchi, Y.; Inoue, M.; Eguchi, E.; Ohira, T. Associations of fluctuations in blood glucose and insulin with hypoglycemic symptoms. Sci. Rep. 2025, 15, 11579. [Google Scholar] [CrossRef] [PubMed]
- Pant, V.; Mathema, S.; Jha, S.; Paudel, S.D.; Baral, S. The Detection of Postprandial Hypoglycemia with 5-Hour Oral Glucose Tolerance Test. EJIFCC 2021, 32, 451–457. [Google Scholar] [PubMed]
- Hall, M.; Walicka, M.; Panczyk, M.; Traczyk, I. Metabolic parameters in patients with suspected reactive hypoglycemia. J. Pers. Med. 2021, 11, 276. [Google Scholar] [CrossRef]
- Benton, D.; Kumari, N.; Brain, P.F. Mild hypoglycaemia and questionnaire measures of aggression. Biol. Psychol. 1982, 14, 129–135. [Google Scholar] [CrossRef]
- Donohoe, R.T.; Benton, D. Blood glucose control and aggressiveness in females. Personal. Individ. Differ. 1999, 26, 905–911. [Google Scholar] [CrossRef]
- Butterfield, W.J.; Sells, R.A.; Abrams, M.E.; Sterky, G.; Whichelow, M.J. Insulin sensitivity of the human brain. Lancet 1966, 287, 557–560. [Google Scholar] [CrossRef]
- Gold, A.E.; MacLeod, K.M.; Frier, B.M.; Deary, I.J. Changes in mood during acute hypoglycemia in healthy participants. J. Personal. Soc. Psychol. 1995, 68, 498–504. [Google Scholar] [CrossRef]
- Merbis, M.A.; Snoek, F.J.; Kanc, K.; Heine, R.J. Hypoglycaemia induces emotional disruption. Patient Educ. Couns. 1996, 29, 117–122. [Google Scholar] [CrossRef]
- McCrimmon, R.J.; Ewing, F.M.; Frier, B.M.; Deary, I.J. Anger state during acute insulin-induced hypoglycaemia. Physiol. Behav. 1999, 67, 35–39. [Google Scholar] [CrossRef]
- Bushman, B.J.; Dewall, C.N.; Pond, R.S., Jr.; Hanus, M.D. Low glucose relates to greater aggression in married couples. Proc. Natl. Acad. Sci. USA 2014, 111, 6254–6257. [Google Scholar] [CrossRef]
- Benton, D.; Owens, D. Is raised blood glucose associated with the relief of tension? J. Psychosom. Res. 1993, 37, 723–735. [Google Scholar] [CrossRef]
- Pfundmair, M.; DeWall, C.N.; Fries, V.; Geiger, B.; Krämer, T.; Krug, S.; Frey, D.; Aydin, N. Sugar or spice: Using I3 metatheory to understand how and why glucose reduces rejection-related aggression. Aggress. Behav. 2015, 41, 537–543. [Google Scholar] [CrossRef]
- Gailliot, M.T.; Baumeister, R.F.; DeWall, C.N.; Maner, J.K.; Plant, E.A.; Tice, D.M.; Brewer, L.E.; Schmeichel, B.J. Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. J. Personal. Soc. Psychol. 2007, 92, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang, M.E. Crimes of violence. In the President’s Commission on Law Enforcement and the Administration of Justice; United States Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Wyke, B. Principle of General Neurology; Elsevier: London, UK, 1969; p. 586. [Google Scholar]
- Peng, W.; Tan, C.; Mo, L.; Jiang, J.; Zhou, W.; Du, J.; Zhou, X.; Liu, X.; Chen, L. Glucose transporter 3 in neuronal glucose metabolism: Health and diseases. Metabolism 2021, 123, 154869. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, G.C.; Almos, P.; McNeill, R.V.; Jansch, C.; Lesch, K.P. Cellular effects and clinical implications of SLC2A3 copy number variation. J. Cell. Physiol. 2020, 235, 9021–9036. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.C.; Cepeda, C.; Eghbali, M.; Byun, S.Y.; Levine, M.S.; Devaskar, S.U. Adult glut3 homozygous null mice survive to demonstrate neural excitability and altered neurobehavioral responses reminiscent of neurodevelopmental disorders. Exp. Neurol. 2021, 338, 113603. [Google Scholar] [CrossRef]
- Shin, B.C.; Cepeda, C.; Estrada-Sánchez, A.M.; Levine, M.S.; Hodaei, L.; Dai, Y.; Jung, J.; Ganguly, A.; Clark, P.; Devaskar, S.U. Neural deletion of glucose transporter isoform 3 creates distinct postnatal and adult neurobehavioral phenotypes. J. Neurosci. 2018, 38, 9579–9599. [Google Scholar] [CrossRef]
- Ouyang, X.; Wang, Z.; Luo, M.; Wang, M.; Liu, X.; Chen, J.; Feng, J.; Jia, J.; Wang, X. Ketamine ameliorates depressive-like behaviors in mice through increasing glucose uptake regulated by the ERK/GLUT3 signaling pathway. Sci. Rep. 2021, 11, 18181. [Google Scholar] [CrossRef]
- Li, H.; Guglielmetti, C.; Sei, Y.J.; Zilberter, M.; Le Page, L.M.; Shields, L.; Yang, J.; Nguyen, K.; Tiret, B.; Gao, X.; et al. Neurons require glucose uptake and glycolysis in vivo. Cell Rep. 2023, 42, 112335. [Google Scholar] [CrossRef]
- Bolaños, J.P.; Magistretti, P.J. The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease. Nat. Metab. 2025, 1–10. [Google Scholar] [CrossRef]
- Galizzi, G.; Di Carlo, M. Insulin and its key role for mitochondrial function/dysfunction and quality control: A shared link between dysmetabolism and neurodegeneration. Biology 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, J.; Wang, L.; Zou, W. Glucose metabolism impairment in major depressive disorder. Brain Res. Bull. 2025, 221, 111191. [Google Scholar] [CrossRef] [PubMed]
- Lara, I.; de Lima, R.M.; Elgbeili, G.; Zhang, T.Y.; O’Toole, N.; Meaney, M.; Pokhvisneva, I.; Andreazza, A.; Rabin, R.; Silveira, P.P. Mitochondria-associated gene network-environment interaction effect on the risk of impulsive behavior and substance dependence over the life course. Eur. Neuropsychopharmacol. 2023, 75, S227–S228. [Google Scholar] [CrossRef]
- Coxon, C.; Rufeger, M.; Hollamby, G.; Ashtree, D.N.; Orr, R.; Lane, M.M.; Hepsomali, P. Sugar intake is associated with increased odds of depression and anxiety: Evidence from a cross-sectional study. medRxiv 2025. medRxiv:09.25.25336623. [Google Scholar] [CrossRef]
- Barma, M.D.; Purohit, B.M.; Priya, H.; Malhotra, S.; Bhadauria, U.S.; Duggal, R. Sweet Misery: Association of Sugar Consumption With Anxiety and Depression—A Systematic Review. Obes. Rev. 2025, e70003. [Google Scholar] [CrossRef]
- Solnick, S.J.; Hemenway, D. The ‘Twinkie Defense’: The relationship between carbonated non-diet soft drinks and violence perpetration among Boston high school students. Inj. Prev. 2012, 18, 259–263. [Google Scholar] [CrossRef]
- Moore, S.C.; Carter, L.M.; Van Goozen, S.H. Confectionery consumption in childhood and adult violence. Br. J. Psychiatry 2009, 195, 366–367. [Google Scholar] [CrossRef]
- Jackson, D.B.; Vaughn, M.G. Diet quality and physical fighting among youth: A cross-national study. J. Interpers. Violence 2021, 36, NP1180-1192NP. [Google Scholar] [CrossRef]
- Gómez-Martínez, C.; Babio, N.; Camacho-Barcia, L.; Júlvez, J.; Nishi, S.K.; Vázquez, Z.; Forcano, L.; Álvarez-Sala, A.; Cuenca-Royo, A.; de la Torre, R.; et al. Glycated hemoglobin, type 2 diabetes, and poor diabetes control are positively associated with impulsivity changes in aged individuals with overweight or obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 2024, 1540, 211–224. [Google Scholar] [CrossRef]
- Steele, C.C.; Pirkle, J.R.; Kirkpatrick, K. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats. PLoS ONE 2017, 12, e0180510. [Google Scholar] [CrossRef]
- Jansen, E.C.; Miller, A.L.; Lumeng, J.C.; Kaciroti, N.; Brophy Herb, H.E.; Horodynski, M.A.; Contreras, D.; Peterson, K.E. Externalizing behavior is prospectively associated with intake of added sugar and sodium among low socioeconomic status preschoolers in a sex-specific manner. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jansen, E.C.; Miller, A.L.; Peterson, K.E.; Téllez-Rojo, M.M.; Watkins, D.; Schnaas, L.; del Carmen Hernandez Chavez, M.; Cantoral, A. Childhood emotional and behavioral characteristics are associated with soda intake: A prospective study in Mexico City. Pediatr. Obes. 2020, 15, e12682. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Qi, J.; Shi, F.; Guo, Z.; Li, H. Sugar Addiction: Neural Mechanisms and Health Implications. Brain Behav. 2025, 15, e70338. [Google Scholar] [CrossRef]
- Ein-Dor, T.; Coan, J.A.; Reizer, A.; Gross, E.B.; Dahan, D.; Wegener, M.A.; Carel, R.; Cloninger, C.R.; Zohar, A.H. Sugarcoated isolation: Evidence that social avoidance is linked to higher basal glucose levels and higher consumption of glucose. Front. Psychol. 2015, 6, 492. [Google Scholar] [CrossRef]
- LaFata, E.M.; Moran, A.J.; Volkow, N.D.; Gearhardt, A.N. Now is the time to recognize and respond to addiction to ultra-processed foods. Nat. Med. 2025, 31, 3586–3587. [Google Scholar] [CrossRef] [PubMed]
- Streb, J.; Deisenhofer, T.; Schneider, S.; Peters, V.; Dudeck, M. “Hangry” in Forensic Psychiatry? Analysis of the Relationship Between Eating Disorders and Aggressive Behavior in Patients with Substance Use Disorders. Brain Sci. 2025, 15, 836. [Google Scholar] [CrossRef]
- Rania, M.; Caroleo, M.; Carbone, E.A.; Ricchio, M.; Pelle, M.C.; Zaffina, I.; Condoleo, F.; de Filippis, R.; Aloi, M.; De Fazio, P.; et al. Reactive hypoglycemia in binge eating disorder, food addiction, and the comorbid phenotype: Unravelling the metabolic drive to disordered eating behaviours. J. Eat. Disord. 2023, 11, 162. [Google Scholar] [CrossRef]
- Wiss, D.A.; Tran, C.D.; LaFata, E.M. The association between cumulative adverse childhood experiences and ultra-processed food addiction is moderated by substance use disorder history among adults seeking outpatient nutrition counseling. Front. Psychiatry 2025, 16, 1543923. [Google Scholar] [CrossRef]
- Markus, C.R.; Panhuysen, G.; Tuiten, A.; Koppeschaar, H.; Fekkes, D.; Peters, M.L. Does carbohydrate-rich, protein-poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task? Appetite 1998, 31, 49–65. [Google Scholar] [CrossRef]
- Markus, R.; Panhuysen, G.; Tuiten, A.; Koppeschaar, H. Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress. Physiol. Behav. 2000, 70, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Strang, S.; Hoeber, C.; Uhl, O.; Koletzko, B.; Münte, T.F.; Lehnert, H.; Dolan, R.J.; Schmid, S.M.; Park, S.Q. Impact of nutrition on social decision making. Proc. Natl. Acad. Sci. USA 2017, 114, 6510–6514. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.; Choi, O.; Suen, Y.N.; Hui, C.L.; Lee, E.H.; Chan, S.K.; Chen, E.Y. Breakfast skipping and depressive symptoms in an epidemiological youth sample in Hong Kong: The mediating role of reduced attentional control. Front. Psychiatry 2025, 16, 1574119. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Amini, S.; Ehsani, H.; Ehsani, M.; Adineh, P.; Mohammadzadeh, H.; Hashemi, S. Evaluation of dietary food intakes and anthropometric measures in middle-aged men with aggressive symptoms. BMC Nutr. 2023, 9, 75. [Google Scholar] [CrossRef]
- Chandler-Laney, P.C.; Morrison, S.A.; Goree, L.L.; Ellis, A.C.; Casazza, K.; Desmond, R.; Gower, B.A. Return of hunger following a relatively high carbohydrate breakfast is associated with earlier recorded glucose peak and nadir. Appetite 2014, 80, 236–241. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Alsop, D.C.; Holsen, L.M.; Stern, E.; Rojas, R.; Ebbeling, C.B.; Goldstein, J.M.; Ludwig, D.S. Effects of dietary glycemic index on brain regions related to reward and craving in men1234. Am. J. Clin. Nutr. 2013, 98, 641–647. [Google Scholar] [CrossRef]
- Wyatt, P.; Berry, S.E.; Finlayson, G.; O’Driscoll, R.; Hadjigeorgiou, G.; Drew, D.A.; Khatib, H.A.; Nguyen, L.H.; Linenberg, I.; Chan, A.T.; et al. Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat. Metab. 2021, 3, 523–529. [Google Scholar] [CrossRef]
- Swami, V.; Hochstöger, S.; Kargl, E.; Stieger, S. Hangry in the field: An experience sampling study on the impact of hunger on anger, irritability, and affect. PLoS ONE 2022, 17, e0269629. [Google Scholar] [CrossRef]
- Ackermans, M.A.; Jonker, N.C.; Bennik, E.C.; De Jong, P.J. Hunger increases negative and decreases positive emotions in women with a healthy weight. Appetite 2022, 168, 105746. [Google Scholar] [CrossRef]
- Nettle, D. Does hunger contribute to socioeconomic gradients in behavior? Front. Psychol. 2017, 8, 358. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C.; LaFata, E.M.; Naik, A.; Nelson, D.H.; Robinson, M.B.; Soble, L. Crime and nourishment: A narrative review examining ultra-processed foods, brain, and behavior. Dietetics 2024, 3, 318–345. [Google Scholar] [CrossRef]
- Ghio, M.; Ali, A.; Simpson, J.T.; Campbell, A.; Duchesne, J.; Tatum, D.; Chaparro, M.P.; Constans, J.; Fleckman, J.; Theall, K.; et al. Firearm Homicide Mortality is Linked to Food Insecurity in Major US Metropolitan Cities. Am. Surg. 2025, 91, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.W.; Parnarouskis, L.; Slotnick, M.J.; Gearhardt, A.N. Food insecurity and food addiction in a large, national sample of lower-income adults. Curr. Dev. Nutr. 2023, 7, 102036. [Google Scholar] [CrossRef]
- Parnarouskis, L.; Gearhardt, A.N.; Mason, A.E.; Adler, N.E.; Laraia, B.A.; Epel, E.S.; Leung, C.W. Association of food insecurity and food addiction symptoms: A secondary analysis of two samples of low-income female adults. J. Acad. Nutr. Diet. 2022, 122, 1885–1892. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef]
- Guizar-Heredia, R.; Noriega, L.G.; Rivera, A.L.; Resendis-Antonio, O.; Guevara-Cruz, M.; Torres, N.; Tovar, A.R. A new approach to personalized nutrition: Postprandial glycemic response and its relationship to gut microbiota. Arch. Med. Res. 2023, 54, 176–188. [Google Scholar] [CrossRef]
- Fasano, A. The physiology of hunger. N. Engl. J. Med. 2025, 392, 372–381. [Google Scholar] [CrossRef]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef]
- Logan, A.C.; Rao, A.V.; Irani, D. Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Med. Hypotheses 2003, 60, 915–923. [Google Scholar] [CrossRef]
- Logan, A.C.; Cordell, B.; Pillai, S.D.; Robinson, J.M.; Prescott, S.L. From Bacillus Criminalis to the Legalome: Will Neuromicrobiology Impact 21st Century Criminal Justice? Brain Sci. 2025, 15, 984. [Google Scholar] [CrossRef]
- Mishra, P.; Logan, A.C.; Prescott, S.L. Reimagining Criminal Accountability: Microbial and Omics Perspectives in the Evolution of Legal Responsibility. J. Law Biosci. 2025, 12, lsaf022. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. The Legalome: Nutritional Psychology and Microbiome Sciences at the Intersection of Criminal Justice, Mens Rea, and Mitigation. Crim. Justice Behav. 2025, 52, 990–1004. [Google Scholar] [CrossRef]
- Arora, T.; Tremaroli, V. Therapeutic potential of butyrate for treatment of type 2 diabetes. Front. Endocrinol. 2021, 12, 761834. [Google Scholar] [CrossRef]
- González-Regueiro, J.A.; Moreno-Castañeda, L.; Uribe, M.; Chávez-Tapia, N.C. The role of bile acids in glucose metabolism and their relation with diabetes. Ann. Hepatol. 2018, 16, 15–20. [Google Scholar] [CrossRef]
- Grossi, S.; Giusti, E.M.; Veronesi, G.; Delaiti, S.; Mancini, A.; Migliaccio, L.; Genova, S.; Costanzo, S.; Tuohy, K.M.; Ferrario, M.M.; et al. Circulating bile acids and HOMA-IR: Cross-sectional results from the RoCAV population-based study. Front. Endocrinol. 2025, 16, 1656942. [Google Scholar] [CrossRef]
- Gojda, J.; Cahova, M. Gut microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules 2021, 11, 1414. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cen, Z.; Zhao, Z.; Li, Z.; Chen, S. BCAA dysmetabolism in the host and gut microbiome, a key player in the development of obesity and T2DM. Med. Microecol. 2023, 16, 100078. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, X.; Deng, X.; Xia, W.; Sun, T.; Huo, D.; Shi, L. The effects of Bifidobacterium animalis subsp. lactis BLa80 on glycemic control and gut microbiota in patients with T2DM: A randomized, double-blind, placebo-controlled trial. J Diabetes Complicat. 2025, 39, 109195. [Google Scholar] [CrossRef] [PubMed]
- Allam, A.R.; Helal, M.B.; Alhateem, M.S.; Shehab, M.A.; Elshaar, A.G.; Saeda, M.A.; Ibrahim, F.M.; Khalil, A.M.; Mahmoud, A.M. Network meta-analysis of randomized control trials evaluating the effectiveness of various probiotic formulations in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2025, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Mineshita, Y.; Sasaki, H.; Kim, H.K.; Shibata, S. Relationship between fasting and postprandial glucose levels and the gut microbiota. Metabolites 2022, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Søndertoft, N.B.; Vogt, J.K.; Arumugam, M.; Kristensen, M.; Gøbel, R.J.; Fan, Y.; Lyu, L.; Bahl, M.I.; Eriksen, C.; Ängquist, L.; et al. The intestinal microbiome is a co-determinant of the postprandial plasma glucose response. PLoS ONE 2020, 15, e0238648. [Google Scholar] [CrossRef] [PubMed]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017, 25, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Huang, B.; Jiao, Y.; Guan, Y.; Nuli, R. Barnesiella intestinihominis improves gut microbiota disruption and intestinal barrier integrity in mice with impaired glucose regulation. Front. Pharmacol 2025, 16, 1635579. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Cai, X.; Xing, X.; Shao, X.; Yin, A.; Zhao, Y.; Wang, M.; Fan, Y.N.; Liu, B.; et al. Gut commensal barnesiella intestinihominis ameliorates hyperglycemia and liver metabolic disorders. Adv. Sci. 2025, 12, 2411181. [Google Scholar] [CrossRef]
- Liang, L.; Li, S.; Huang, Y.; Zhou, J.; Xiong, D.; Li, S.; Li, H.; Zhu, B.; Li, X.; Ning, Y.; et al. Relationships among the gut microbiome, brain networks, and symptom severity in schizophrenia patients: A mediation analysis. NeuroImage Clin. 2024, 41, 103567. [Google Scholar] [CrossRef]
- Yin, Z.; Xie, H.; Liu, F.; Kong, X.; Chen, W.; Gong, Y.; Ge, W. Intestinal flora composition and fecal metabolic phenotype in elderly patients with sleep disorders combined with type 2 diabetes. Aging Med. 2024, 7, 689–698. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Gao, M.; Xue, M.; Wang, Z.; Liang, H. Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct. 2020, 11, 378–391. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, J.; Zhang, Y.; Li, Z.; Ke, Y.; Chen, H.; Wang, Y.; Yu, L. Bergenin suppresses the changes of gut microbiota and colitis induced by dextran sulfate sodium in KM mice. J. Funct. Foods 2025, 132, 106960. [Google Scholar] [CrossRef]
- Logan, A.C.; Mishra, P. Aggression and Justice Involvement: Does Uric Acid Play a Role? Brain Sci. 2025, 15, 268. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, M.; Zhao, J.; Chen, W.; Wang, G. The human gut microbiota and uric acid metabolism: Genes, metabolites, and diet. Crit. Rev. Food Sci. Nutr. 2025, 65, 7612–7632. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Stein, M.B.; Coccaro, E.F.; Meruelo, A.D. Exploring the metabolic signature of intermittent explosive disorder: Preliminary evidence and potential mechanisms for altered bilirubin metabolism. Compr. Psychoneuroendocrinol. 2025, 22, 100294. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ni, C.; Chang, B.; Jiang, Z.; Zhu, Y.; Tang, Y.; Li, Z.; Li, C.; Li, B. Association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 152, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, W.; Shang, H.; Wei, H.; Deng, C. The interplay between androgen and gut microbiota: Is there a microbiota-gut-testis axis. Reprod. Sci. 2022, 29, 1674–1684. [Google Scholar] [CrossRef]
- Pope, H.G., Jr.; Kanayama, G.; Hudson, J.I.; Kaufman, M.J. Anabolic-androgenic steroids, violence, and crime: Two cases and literature review. Am. J. Addict. 2021, 30, 423–432. [Google Scholar] [CrossRef]
- Rasmussen, J.J.; Schou, M.; Selmer, C.; Johansen, M.L.; Gustafsson, F.; Frystyk, J.; Dela, F.; Faber, J.; Kistorp, C. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids. Clin. Endocrinol. 2017, 87, 249–256. [Google Scholar] [CrossRef]
- Cohen, J.C. HICKMANR Insulin resistance and diminished glucose tolerance in powerlifters ingesting anabolic steroids. J. Clin. Endocrinol. Metab. 1987, 64, 960–963. [Google Scholar] [CrossRef]
- Armstrong, T.A.; Boisvert, D.L.; Wells, J.; Lewis, R.H.; Cooke, E.M.; Woeckener, M.; Kavish, N.; Vietto, N.; Harper, J.M. Testosterone, cortisol, and criminal behavior in men and women. Horm. Behav. 2022, 146, 105260. [Google Scholar] [CrossRef]
- Blankenstein, N.E.; de Rooij, M.; van Ginkel, J.; Wilderjans, T.F.; de Ruigh, E.L.; Oldenhof, H.C.; Zijlmans, J.; Jambroes, T.; Platje, E.; de Vries-Bouw, M.; et al. Neurobiological correlates of antisociality across adolescence and young adulthood: A multi-sample, multi-method study. Psychol. Med. 2023, 53, 1834–1849. [Google Scholar] [CrossRef]
- Hagenbeek, F.A.; Kluft, C.; Hankemeier, T.; Bartels, M.; Draisma, H.H.; Middeldorp, C.M.; Berger, R.; Noto, A.; Lussu, M.; Pool, R.; et al. Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 719–732. [Google Scholar] [CrossRef]
- Hagenbeek, F.A.; van Dongen, J.; Pool, R.; Boomsma, D.I. Twins and omics: The role of twin studies in multi-omics. In Twin Research for Everyone; Tarnocki, A., Tarnoki, D., Harris, J., Segal, N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 547–584. [Google Scholar]
- Hagenbeek, F.A.; van Dongen, J.; Pool, R.; Roetman, P.J.; Harms, A.C.; Hottenga, J.J.; Kluft, C.; Colins, O.F.; van Beijsterveldt, C.E.; Fanos, V.; et al. Integrative multi-omics analysis of childhood aggressive behavior. Behav. Genet. 2023, 53, 101–117. [Google Scholar] [CrossRef]
- Mohammadi-Shemirani, P.; Sood, T.; Paré, G. From omics to multi-omics technologies: The discovery of novel causal mediators. Curr. Atheroscler. Rep. 2023, 25, 55–65. [Google Scholar] [CrossRef]
- Zhao, X.; Peter, A.; Fritsche, J.; Elcnerova, M.; Fritsche, A.; Häing, H.U.; Schleicher, E.D.; Xu, G.; Lehmann, R. Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E384–E393. [Google Scholar] [CrossRef]
- Lopes, M.; Brejchova, K.; Riecan, M.; Novakova, M.; Rossmeisl, M.; Cajka, T.; Kuda, O. Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell Rep. 2021, 37, 109833. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ma, C.; Yang, Y.; Liu, X.; Wang, B.; Wang, Y.; Zhang, G.; Bian, X.; Zhang, N. The role and mechanism of probiotics supplementation in blood glucose regulation: A review. Foods 2024, 13, 2719. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhao, P.; Gao, J.; Suo, H.; Guo, X.; Han, M.; Zan, X.; Chen, C.; Lyu, X.; Wang, H.; et al. Probiotic supplementation contributes to glycemic control in adults with type 2 diabetes: A systematic review and network meta-analysis. Nutr. Res. 2025, 136, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, D.; Pease, S.E. Diet, nutrition, and aggression. J. Offender Rehabil. 1994, 21, 117–144. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Soczynska, J.K.; Konarski, J.Z.; Woldeyohannes, H.O.; Law, C.W.; Miranda, A.; Fulgosi, D.; Kennedy, S.H. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann. Clin. Psychiatry 2007, 19, 257–264. [Google Scholar] [CrossRef]
- Ojala, K.P.; Tiihonen, J.; Repo-Tiihonen, E.; Tikkanen, R.; Virkkunen, M. Basal insulin secretion, PCL-R and recidivism among impulsive violent alcoholic offenders. Psychiatry Res. 2015, 225, 420–424. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Shim, S.Y.; Park, C.G.; Lee, H. Sugar intake trajectories in adolescents: Evaluating behavioral change with group-based trajectory modeling. PLoS ONE 2025, 20, e0333389. [Google Scholar] [CrossRef]
- Logan, A.C.; Schoenthaler, S.J. Nutrition, behavior, and the criminal justice system: What took so long? An interview with Dr. Stephen J. Schoenthaler. Challenges 2023, 14, 37. [Google Scholar] [CrossRef]
- Rosenzweig, S.; Reibel, D.K.; Greeson, J.M.; Edman, J.S. Mindfulness-based stress reduction is associated with improved glycemic control in type 2 diabetes mellitus: A pilot study. Altern. Ther. Health Med. 2007, 13, 36–38. [Google Scholar] [PubMed]
- Langmajerová, M.; Ježková, J.; Kreisinger, J.; Semerád, J.; Titov, I.; Procházková, P.; Cajthaml, T.; Jiřička, V.; Vevera, J.; Roubalová, R. Gut microbiome in impulsively violent female convicts. Neuropsychobiology 2025, 84, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wu, X.; Yang, Y.; Gu, L.; Liu, L.; Yang, Y.; Zhou, J.; Wu, C.; Jin, F. Marked shifts in gut microbial structure and neurotransmitter metabolism in fresh inmates revealed a close link between gut microbiota and mental health: A case-controlled study. Int. J. Clin. Health Psychol. 2022, 22, 100323. [Google Scholar] [CrossRef]
- Feng, X.; Zhong, J.; Wang, J.; Lu, X.; Chen, Y.; Yao, Y.; Ji, X.; Zhao, M.; Jin, J.; Li, J.; et al. Identification of characteristic microbes and metabolites in confined environments population. Brain Behav. Immun. 2025, 130, 106114. [Google Scholar] [CrossRef]
- Floyd, K.; Veksler, A.E.; McEwan, B.; Hesse, C.; Boren, J.P.; Dinsmore, D.R.; Pavlich, C.A. Social inclusion predicts lower blood glucose and low-density lipoproteins in healthy adults. Health Commun. 2017, 32, 1039–1042. [Google Scholar] [CrossRef]
- Renz, H.; Holt, P.G.; Inouye, M.; Logan, A.C.; Prescott, S.L.; Sly, P.D. An exposome perspective: Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 2017, 140, 24–40. [Google Scholar] [CrossRef]
- Beulens, J.W.; Pinho, M.G.; Abreu, T.C.; den Braver, N.R.; Lam, T.M.; Huss, A.; Vlaanderen, J.; Sonnenschein, T.; Siddiqui, N.Z.; Yuan, Z.; et al. Environmental risk factors of type 2 diabetes—An exposome approach. Diabetologia 2022, 65, 263–274. [Google Scholar] [CrossRef]
- Logan, A.C.; Berryessa, C.M.; Callender, J.S.; Caruso, G.D.; Hagenbeek, F.A.; Mishra, P.; Prescott, S.L. The Land That Time Forgot? Planetary Health and the Criminal Justice System. Challenges 2025, 16, 29. [Google Scholar] [CrossRef]
- Laugero, K.D.; Keim, N.L. A diet pattern characterized by sugar-sweetened beverages is associated with lower decision-making performance in the Iowa gambling task, elevated stress exposure, and altered autonomic nervous system reactivity in men and women. Nutrients 2023, 15, 3930. [Google Scholar] [CrossRef]
- Chang, D.C.; Piaggi, P.; Burkholder, J.E.; Votruba, S.B.; Krakoff, J.; Gluck, M.E. Higher insulin and higher body fat via leptin are associated with disadvantageous decisions in the Iowa gambling task. Physiol. Behav. 2016, 167, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Maes, H.H.; Lönn, S.L.; Morris, N.A.; Lichtenstein, P.; Sundquist, J.; Sundquist, K. A Swedish national twin study of criminal behavior and its violent, white-collar and property subtypes. Psychol. Med. 2015, 45, 2253–2262. [Google Scholar] [CrossRef] [PubMed]
- Peled-Laskov, R. When personal rational decision-making fails: Examining the psychological limits of criminal punishment as a successful deterrent for white-collar offenders. J. Forensic Psychiatry Psychol. 2024, 35, 331–355. [Google Scholar] [CrossRef]
- Fredericks, K.A.; McComas, R.E.; Weatherby, G.A. White collar crime: Recidivism, deterrence, and social impact. Forensic Res. Criminol. Int. J. 2016, 2, 00039. [Google Scholar]
- Black, D.W.; Goldstein, R.; Mason, E.E.; Bell, S.E.; Blum, N. Depression and other mental disorders in the relatives of morbidly obese patients. J. Affect. Disord. 1992, 25, 91–95. [Google Scholar] [CrossRef]
- Hasler, G.; Pine, D.S.; Gamma, A.; Milos, G.; Ajdacic, V.; Eich, D.; Rössler, W.; Angst, J. The associations between psychopathology and being overweight: A 20-year prospective study. Psychol. Med. 2004, 34, 1047–1057. [Google Scholar] [CrossRef]
- Pine, D.S.; Cohen, P.; Brook, J.; Coplan, J.D. Psychiatric symptoms in adolescence as predictors of obesity in early adulthood: A longitudinal study. Am. J. Public Health 1997, 87, 1303–1310. [Google Scholar] [CrossRef]
- Powell, A.W.; Siegel, Z.; Kist, C.; Mays, W.A.; Kharofa, R.; Siegel, R. Pediatric youth who have obesity have high rates of adult criminal behavior and low rates of homeownership. SAGE Open Med. 2022, 10, 20503121221127884. [Google Scholar] [CrossRef]
- Rosenthal, J.M.; Amiel, S.A.; Yáguez, L.; Bullmore, E.; Hopkins, D.; Evans, M.; Pernet, A.; Reid, H.; Giampietro, V.; Andrew, C.M.; et al. The effect of acute hypoglycemia on brain function and activation: A functional magnetic resonance imaging study. Diabetes 2001, 50, 1618–1626. [Google Scholar] [CrossRef]
- Schiffer, B.; Müller, B.W.; Scherbaum, N.; Hodgins, S.; Forsting, M.; Wiltfang, J.; Gizewski, E.R.; Leygraf, N. Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch. Gen. Psychiatry 2011, 68, 1039–1049. [Google Scholar] [CrossRef]
- Romero-Martínez, Á.; González, M.; Lila, M.; Gracia, E.; Martí-Bonmatí, L.; Alberich-Bayarri, Á.; Maldonado-Puig, R.; Ten-Esteve, A.; Moya-Albiol, L. The brain resting-state functional connectivity underlying violence proneness: Is it a reliable marker for neurocriminology? A systematic review. Behav. Sci. 2019, 9, 11. [Google Scholar] [CrossRef]
- Adler, G.K.; Hornik, E.S.; Murray, G.; Bhandari, S.; Yadav, Y.; Heydarpour, M.; Basu, R.; Garg, R.; Tirosh, A. Acute effects of the food preservative propionic acid on glucose metabolism in humans. BMJ Open Diabetes Res. Care 2021, 9, e002336. [Google Scholar] [CrossRef]
- Al Suhaibani, A.; Ben Bacha, A.; Alonazi, M.; Bhat, R.S.; El-Ansary, A. Testing the combined effects of probiotics and prebiotics against neurotoxic effects of propionic acid orally administered to rat pups. Food Sci. Nutr. 2021, 9, 4440–4451. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L.; Logan, A.C. Commentary: Propionimicrobium lymphophilum in urine of children with monosymptomatic nocturnal enuresis. Front. Cell. Infect. Microbiol. 2025, 15, 1553911. [Google Scholar] [CrossRef] [PubMed]
- Mikhael-Moussa, H.; Desprez, C.; Gillibert, A.; Leroi, A.M.; Mion, F.; Gourcerol, G.; Melchior, C. Is Carbohydrate Intolerance associated with carbohydrate malabsorption in Disorders of Gut-Brain Interaction (DGBI)? Am. J. Gastroenterol. 2022, 10-14309. [Google Scholar] [CrossRef]
- van Gils, T.; Hreinsson, J.P.; Törnblom, H.; Tack, J.; Bangdiwala, S.I.; Palsson, O.S.; Sperber, A.D.; Simrén, M. Symptom profiles compatible with disorders of gut-brain interaction (DGBI) in organic gastrointestinal diseases: A global population-based study. United Eur. Gastroenterol. J. 2024, 12, 834–847. [Google Scholar] [CrossRef]
- Palsson, O.; Simren, M.; Sperber, A.D.; Bangdiwala, S.; Hreinsson, J.P.; Aziz, I. The prevalence and burden of Disorders of Gut-Brain Interaction (DGBI) before versus after the COVID-19 Pandemic. Clin. Gastroenterol. Hepatol. 2025, 74, A19. [Google Scholar]
- Tikkanen, R.; Saukkonen, T.; Fex, M.; Bennet, H.; Rautiainen, M.R.; Paunio, T.; Koskinen, M.; Panarsky, R.; Bevilacqua, L.; Sjöberg, R.L.; et al. The effects of a HTR2B stop codon and testosterone on energy metabolism and beta cell function among antisocial Finnish males. J. Psychiatr. Res. 2016, 81, 79–86. [Google Scholar] [CrossRef]
- Zou, S.; Mendes-Silva, A.P.; Dos Santos, F.C.; Ebrahimi, M.; Kennedy, J.L.; Goncalves, V.F. Multi-omics Analysis of Energy Metabolism Pathways Across Major Psychiatric Disorders. Mol. Neurobiol. 2025, 62, 13272–13285. [Google Scholar] [CrossRef]
- Scala, M.; Chiera, M.; Bortolotti, B.; Rodriguez-Jimenez, R.; Menchetti, M. Aggressive behaviour and diabetes: A clinical case of atypical metabolic improvement during clozapine treatment. J. Intellect. Disabil. 2024, 28, 872–879. [Google Scholar] [CrossRef]
- Li, L.; Coghill, D.; Sjölander, A.; Yao, H.; Zhang, L.; Kuja-Halkola, R.; Brikell, I.; Lichtenstein, P.; D’Onofrio, B.M.; Larsson, H.; et al. Increased Prescribing of Attention-Deficit/Hyperactivity Disorder Medication and Real-World Outcomes over Time. JAMA Psychiatry 2025, 82, 830–837. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, N.; Sjölander, A.; Nourredine, M.; Li, L.; Garcia-Argibay, M.; Kuja-Halkola, R.; Brikell, I.; Lichtenstein, P.; D’Onofrio, B.M.; et al. ADHD drug treatment and risk of suicidal behaviours, substance misuse, accidental injuries, transport accidents, and criminality: Emulation of target trials. BMJ 2025, 390, e083658. [Google Scholar] [CrossRef]
- Marcelli, I.; Capece, U.; Caturano, A. Bridging ADHD and Metabolic Disorders: Insights into Shared Mechanisms and Clinical Implications. Diabetology 2025, 6, 40. [Google Scholar] [CrossRef]
- Charach, G.; Karniel, E.; Grosskopf, I.; Rabinovich, A.; Charach, L. Methylphenidate has mild hyperglycemic and hypokalemia effects and increases leukocyte and neutrophil counts. Medicine 2020, 99, e20931. [Google Scholar] [CrossRef] [PubMed]
- Reus, G.Z.; Scaini, G.; Titus, S.E.; Furlanetto, C.B.; Wessler, L.B.; Ferreira, G.K.; Goncalves, C.L.; Jeremias, G.C.; Quevedo, J.; Streck, E.L. Methylphenidate increases glucose uptake in the brain of young and adult rats. Pharmacol. Rep. 2015, 67, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.M.; Farokhnia, M.; Farinelli, L.A.; Ferrulli, A.; Leggio, L. GLP-1 Therapeutics and Their Emerging Role in Alcohol and Substance Use Disorders: An Endocrinology Primer. J. Endocr. Soc. 2025, 9, bvaf141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tang, Y.; Hu, Y.; Zhu, H.; Chen, X.; Zhao, B. Hypoglycemia following the use of glucagon-like peptide-1 receptor agonists: A real-world analysis of post-marketing surveillance data. Ann. Transl. Med. 2021, 9, 1482. [Google Scholar] [CrossRef]
- Correia, J.C.; Frayling, T.; Pataky, Z. Weight Management in a Patient with Smith-Magenis Syndrome: The Role of GLP-1 Receptor Agonists. JCEM Case Rep. 2025, 3, luaf094. [Google Scholar] [CrossRef]
- Drouka, A.; Mamalaki, E.; Karavasilis, E.; Scarmeas, N.; Yannakoulia, M. Dietary and nutrient patterns and brain MRI biomarkers in dementia-free adults. Nutrients 2022, 14, 2345. [Google Scholar] [CrossRef]
- Akbaraly, T.; Sexton, C.; Zsoldos, E.; Mahmood, A.; Filippini, N.; Kerleau, C.; Verdier, J.M.; Virtanen, M.; Gabelle, A.; Ebmeier, K.P.; et al. Association of long-term diet quality with hippocampal volume: Longitudinal cohort study. Am. J. Med. 2018, 131, 1372–1381. [Google Scholar] [CrossRef]
- Samuelsson, J.; Stubbendorff, A.; Marseglia, A.; Lindberg, O.; Dartora, C.; Shams, S.; Cedres, N.; Kern, S.; Skoog, J.; Rydén, L.; et al. A comparative study of the EAT-Lancet diet and the Mediterranean diet in relation to neuroimaging biomarkers and cognitive performance. Alzheimer’s Dement. 2025, 21, e70191. [Google Scholar] [CrossRef] [PubMed]
- Karavasilis, E.; Balomenos, V.; Christidi, F.; Velonakis, G.; Angelopoulou, G.; Yannakoulia, M.; Mamalaki, E.; Drouka, A.; Brikou, D.; Tsapanou, A.; et al. Mediterranean diet and brain functional connectivity in a population without dementia. Front. Neuroimaging 2024, 3, 1473399. [Google Scholar] [CrossRef] [PubMed]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. Each meal matters in the exposome: Biological and community considerations in fast-food-socioeconomic associations. Econ. Hum. Biol. 2017, 27, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Osborn, L.J.; Orabi, D.; Goudzari, M.; Sangwan, N.; Banerjee, R.; Brown, A.L.; Kadam, A.; Gromovsky, A.D.; Linga, P.; Cresci, G.A.; et al. A single human-relevant Fast food meal rapidly reorganizes metabolomic and transcriptomic signatures in a gut microbiota-dependent manner. Immunometabolism 2021, 3, e210029. [Google Scholar] [CrossRef]
- Lucinian, Y.A.; Gagnon, C.; Latour, É.; Hamel, V.; Iglesies-Grau, J.; Nigam, A.; Harel, F.; Nozza, A.; Juneau, M.; Moubarac, J.C.; et al. Effect of a single ultra processed meal on myocardial endothelial function, adenosine mediated effects and cognitive performances. Sci. Rep. 2025, 15, 28671. [Google Scholar] [CrossRef]
- Ludwig, D.S. Ultraprocessed Food on an Ultrafast Track. N. Engl. J. Med. 2025, 393, 1046–1049. [Google Scholar] [CrossRef]
- van Dongen, J.D.; Haveman, Y.; Sergiou, C.S.; Choy, O. Neuroprediction of violence and criminal behavior using neuro-imaging data: From innovation to considerations for future directions. Aggress. Violent Behav. 2025, 80, 102008. [Google Scholar] [CrossRef]
- Ahalt, C.; Haney, C.; Kinner, S.; Williams, B. Balancing the rights to protection and participation: A call for expanded access to ethically conducted correctional health research. J. Gen. Intern. Med. 2018, 33, 764–768. [Google Scholar] [CrossRef]
- Taylor, E.N.; Timko, C.; Nash, A.; Owens, M.D.; Harris, A.H.; Finlay, A.K. Posttraumatic stress disorder and justice involvement among military veterans: A systematic review and meta-analysis. J. Trauma Stress 2020, 33, 804–812. [Google Scholar] [CrossRef]
- Xu, M.; Lin, Z.; Siegel, C.E.; Laska, E.M.; Abu-Amara, D.; Genfi, A.; Newman, J.; Jeffers, M.K.; Blessing, E.M.; Flanagan, S.R.; et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests. Transl. Psychiatry 2023, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.; Kaiseler, M.; Da Silva, A.L. Burnout as predictor of aggressivity among police officers. Eur. J. Pharm. Sci. 2013, 1, 110–134. [Google Scholar] [CrossRef]
- Fernandez-Montero, A.; García-Ros, D.; Sánchez-Tainta, A.; Rodriguez-Mourille, A.; Vela, A.; Kales, S.N. Burnout syndrome and increased insulin resistance. J. Occup. Environ. Med. 2019, 61, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Lennartsson, A.K.; Jonsdottir, I.H.; Jansson, P.A.; Sjörs Dahlman, A. Study of glucose homeostasis in burnout cases using an oral glucose tolerance test. Stress 2025, 28, 2438699. [Google Scholar] [CrossRef]
- Berryessa, C.M. Jury-eligible public attitudes toward biological risk factors for the development of criminal behavior and implications for capital sentencing. Crim. Justice Behav. 2017, 44, 1073–1100. [Google Scholar] [CrossRef]
- Berryessa, C.M. The effects of essentialist thinking toward biosocial risk factors for criminality and types of offending on lay punishment support. Behav. Sci. Law 2020, 38, 355–380. [Google Scholar] [CrossRef]
- Thomaidou, M.A.; Berryessa, C.M. A jury of scientists: Formal education in biobehavioral sciences reduces the odds of punitive criminal sentencing. Behav. Sci. Law 2022, 40, 787–817. [Google Scholar] [CrossRef]
- Logan, A.C.; Prescott, S.L. The Big Minority View: Do Prescientific Beliefs Underpin Criminal Justice Cruelty, and Is the Public Health Quarantine Model a Remedy? Int. J. Environ. Res. Public Health 2025, 22, 1170. [Google Scholar] [CrossRef]
- Sapolsky, R. Life without free will: Does it preclude possibilities? Possibility Stud. Soc. 2024, 2, 272–281. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Determined: A Science of Life Without Free Will; Penguin Press: London, UK, 2023. [Google Scholar]
- Arford, T.; Madfis, E. Whitewashing criminology: A critical tour of Cesare Lombroso’s Museum of Criminal Anthropology. Crit. Criminol. 2022, 30, 723–740. [Google Scholar] [CrossRef]
- Elzein, N. Crime, Public Health, and Inhumane Objectivity. J. Ethics Soc. Philos. 2024, 29, 188–218. [Google Scholar] [CrossRef]
- Logan, A.C.; Mishra, P.; Prescott, S.L. The Legalome: Microbiology, Omics and Criminal Justice. Microb. Biotechnol. 2025, 18, e70129. [Google Scholar] [CrossRef]
- Logan, A.C.; Mishra, P. The Promise of Neurolaw in Global Justice: An Interview with Dr. Pragya Mishra. Challenges 2025, 16, 15. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logan, A.C.; Berryessa, C.M.; Greeson, J.M.; Mishra, P.; Prescott, S.L. The Metabolic Mind: Revisiting Glucose Metabolism and Justice Involvement in Neurolaw. NeuroSci 2025, 6, 120. https://doi.org/10.3390/neurosci6040120
Logan AC, Berryessa CM, Greeson JM, Mishra P, Prescott SL. The Metabolic Mind: Revisiting Glucose Metabolism and Justice Involvement in Neurolaw. NeuroSci. 2025; 6(4):120. https://doi.org/10.3390/neurosci6040120
Chicago/Turabian StyleLogan, Alan C., Colleen M. Berryessa, Jeffrey M. Greeson, Pragya Mishra, and Susan L. Prescott. 2025. "The Metabolic Mind: Revisiting Glucose Metabolism and Justice Involvement in Neurolaw" NeuroSci 6, no. 4: 120. https://doi.org/10.3390/neurosci6040120
APA StyleLogan, A. C., Berryessa, C. M., Greeson, J. M., Mishra, P., & Prescott, S. L. (2025). The Metabolic Mind: Revisiting Glucose Metabolism and Justice Involvement in Neurolaw. NeuroSci, 6(4), 120. https://doi.org/10.3390/neurosci6040120

