An Update on New Approaches to Cognitive Assessment in Multiple Sclerosis
Abstract
1. Introduction
2. A Traditional Person-Administered Cognitive Assessment—BICAMS
3. CNADs—Update from Wojcik and Colleagues (2019)
3.1. NeuroTrax
3.2. Processing Speed Test (PST)
3.3. Cogstate Brief Battery (CBB)
3.4. Cambridge Neuropsychological Test Automated Battery (CANTAB)
3.5. National Institute of Health Toolbox Cognition Battery (NIHTB-CB)
4. CNADs—New Tests Applied in MS After 2019
4.1. Auditory Test of Processing Speed (ATOPS)
4.2. Adaptive Cognitive Evaluation (ACE)
4.3. EVO Monitor
4.4. iCognition
4.5. Symbol Search and Dot Memory Ambulatory Cognitive Tests
4.6. Virtual Reality Attention Tracker (VRAT)
4.7. Brief Assessment of Cognitive Health (BACH)
4.8. MSReactor
4.9. Integrated Cognitive Assessment (ICA)
4.10. Brain on Track (BoT)
5. New Computerized Variants of the BICAMS
5.1. Multiple Screener
5.2. iCAMS
5.3. Brief Computerized Cognitive Assessment for MS (BCCAMS)
5.4. iBICAMS
5.5. Digital Assessment of Cognitive Impairment in Multiple Sclerosis (DIGICOG-MS)
6. New Computerized Variants of the SDMT
6.1. Konectom Cognitive Processing Speed (CPS) Test
6.2. elevateMS
6.3. Smartphone-Adapted SDMT (sSDMT)
6.4. Floodlight Open
6.5. Electronic SDMT (eSDMT)
6.6. Cognition Reaction (CoRe)
6.7. Mobile Cognition Test (MCT) (MSCopilot)
6.8. Modified SDMT (MD-SDMT)
6.9. Smartphone-Based SDMT (NeuFun)
6.10. Cognitive Fatigability Assessment Test (cFAST)
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef]
- Amato, M.; Hakiki, B.; Goretti, B.; Rossi, F.; Stromillo, M.L.; Giorgio, A.; Roscio, M.; Ghezzi, A.; Guidi, L.; Bartolozzi, M. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology 2012, 78, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; DeLuca, J.; Enzinger, C.; Geurts, J.J.; Krupp, L.B.; Rao, S.M. Neuropsychology of multiple sclerosis: Looking back and moving forward. J. Int. Neuropsychol. Soc. 2017, 23, 832–842. [Google Scholar] [CrossRef]
- Ruano, L.; Portaccio, E.; Goretti, B.; Niccolai, C.; Severo, M.; Patti, F.; Cilia, S.; Gallo, P.; Grossi, P.; Ghezzi, A. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult. Scler. J. 2017, 23, 1258–1267. [Google Scholar] [CrossRef]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P. Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol. 2021, 78, 414–425. [Google Scholar] [CrossRef]
- Vitturi, B.K.; Rahmani, A.; Dini, G.; Montecucco, A.; Debarbieri, N.; Sbragia, E.; Bandiera, P.; Ponzio, M.; Battaglia, M.A.; Manacorda, T. Occupational outcomes of people with multiple sclerosis: A scoping review. BMJ Open 2022, 12, e058948. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; Rodgers, J.D.; Emmert, N.; Kininger, R.; Weinstock-Guttman, B. Negative work events and accommodations in employed multiple sclerosis patients. Mult. Scler. J. 2014, 20, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Marafioti, G.; Cardile, D.; Culicetto, L.; Quartarone, A.; Lo Buono, V. The impact of social cognition deficits on quality of life in multiple sclerosis: A scoping review. Brain Sci. 2024, 14, 691. [Google Scholar] [CrossRef]
- Gómez-Melero, S.; Caballero-Villarraso, J.; Escribano, B.M.; Galvao-Carmona, A.; Túnez, I.; Agüera-Morales, E. Impact of Cognitive Impairment on Quality of Life in Multiple Sclerosis Patients—A Comprehensive Review. J. Clin. Med. 2024, 13, 3321. [Google Scholar] [CrossRef]
- Hakim, E.A.; Bakheit, A.; Bryant, T.; Roberts, M.; McIntosh-Michaelis, S.; Spackman, A.; Martin, J.; McLellan, D. The social impact of multiple sclerosis-a study of 305 patients and their relatives. Disabil. Rehabil. 2000, 22, 288–293. [Google Scholar] [CrossRef]
- Benedict, R.H.; Cox, D.; Thompson, L.L.; Foley, F.; Weinstock-Guttman, B.; Munschauer, F. Reliable screening for neuropsychological impairment in multiple sclerosis. Mult. Scler. J. 2004, 10, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Macaron, G.; Farah, N.; Charbonneau, S.; Morrow, S.A.; Zertal, A.; Saint-Amour, D.; Duquette, P.; Rouleau, I. Addressing patient-reported cognitive impairment in multiple sclerosis clinical practice: A challenging endeavor. Mult. Scler. J. 2025, 31, 13524585251334488. [Google Scholar] [CrossRef]
- Rao, S.M. A Manual for the Brief Repeatable Battery of Neuropsychological Tests in Multiple Sclerosis; Medical College of Wisconsin: Milwaukee, WI, USA, 1990; p. 1696. [Google Scholar]
- Benedict, R.H.; Fischer, J.S.; Archibald, C.J.; Arnett, P.A.; Beatty, W.W.; Bobholz, J.; Chelune, G.J.; Fisk, J.D.; Langdon, D.W.; Caruso, L. Minimal neuropsychological assessment of MS patients: A consensus approach. Clin. Neuropsychol. 2002, 16, 381–397. [Google Scholar] [CrossRef]
- Benedict, R.H.; Cookfair, D.; Gavett, R.; Gunther, M.; Munschauer, F.; Garg, N.; Weinstock-Guttman, B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J. Int. Neuropsychol. Soc. 2006, 12, 549–558. [Google Scholar] [CrossRef]
- Langdon, D.; Amato, M.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hämäläinen, P.; Hartung, H.; Krupp, L.; Penner, I. Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS). Mult. Scler. J. 2012, 18, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. Symbol Digit Modalities Test: Manual; Western Psychological Services: Los Angeles, CA, USA, 1982. [Google Scholar]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California verbal learning test. Assessment 2000. [Google Scholar] [CrossRef]
- Benedict, R.H. Brief visuospatial memory test--revised. Psychol. Assess. Resour. 1997. [Google Scholar]
- Benedict, R.H.; Amato, M.P.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hamalainen, P.; Hartung, H.; Krupp, L.; Penner, I.; et al. Brief International Cognitive Assessment for MS (BICAMS): International standards for validation. BMC Neurol. 2012, 12, 55. [Google Scholar] [CrossRef]
- Potticary, H.; Langdon, D. A systematic review and meta-analysis of the brief cognitive assessment for multiple sclerosis (BICAMS) international validations. J. Clin. Med. 2023, 12, 703. [Google Scholar] [CrossRef]
- Spiezia, A.L.; Pontillo, G.; Falco, F.; Eliano, M.; Lamagna, F.; Esposito, A.; Di Monaco, C.; Nicolella, V.; Novarella, F.; Moccia, M. Identifying neuropsychological phenotypes in multiple sclerosis using latent profile analysis. Eur. J. Neurol. 2025, 32, e70009. [Google Scholar] [CrossRef]
- Batista, S.; Zivadinov, R.; Hoogs, M.; Bergsland, N.; Heininen-Brown, M.; Dwyer, M.G.; Weinstock-Guttman, B.; Benedict, R.H. Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J. Neurol. 2012, 259, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, A.N.; Ayala, O.D.; García, J.R.; Montañés, P. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in a Colombian Population. Mult. Scler. Relat. Disord. 2020, 42, 102072. [Google Scholar] [CrossRef]
- Betscher, E.; Guenter, W.; Langdon, D.W.; Bonek, R. Polish validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS battery): Correlation of cognitive impairment with mood disorders and fatigue. Neurol. I Neurochir. Pol. 2021, 55, 59–66. [Google Scholar] [CrossRef]
- Botchorishvili, N.; Shiukashvili, N.; Mikeladze, N.; Dzagnidze, A.; Mikava, N.; Tighashvili, M.; Janelidze, M. Validity and reliability of the Georgian-language brief international cognitive assessment for multiple sclerosis (BICAMS). BMC Neurol. 2021, 21, 218. [Google Scholar] [CrossRef]
- Costers, L.; Gielen, J.; Eelen, P.L.; Schependom, J.V.; Laton, J.; Remoortel, A.V.; Vanzeir, E.; Wijmeersch, B.V.; Seeldrayers, P.; Haelewyck, M.C.; et al. Does including the full CVLT-II and BVMT-R improve BICAMS? Evidence from a Belgian (Dutch) validation study. Mult. Scler. Relat. Disord. 2017, 18, 33–40. [Google Scholar] [CrossRef]
- Darwish, H.; Zeinoun, P.; Farran, N.; Ghusn, H.; Yamout, B.; Khoury, S.J. The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS): Validation in Arabic and Lebanese Normative Values. J. Int. Neuropsychol. Soc. 2022, 28, 94–103. [Google Scholar] [CrossRef]
- Drulović, J.; Tončev, G.; Nadj, Č.; Obradović, D.; Eraković, J.; Mesaroš, Š.; Čukić, M.; Aleksić, D.; Andabaka, M.; Ivanović, J.; et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in a large cohort of relapsing-remitting MS patients. Acta Clin. Croat. 2022, 61, 62–69. [Google Scholar] [CrossRef]
- Dusankova, J.B.; Kalincik, T.; Havrdova, E.; Benedict, R.H. Cross cultural validation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clin. Neuropsychol. 2012, 26, 1186–1200. [Google Scholar] [CrossRef] [PubMed]
- Estiasari, R.; Fajrina, Y.; Lastri, D.N.; Melani, S.; Maharani, K.; Imran, D.; Pangeran, D.; Sitorus, F. Validity and Reliability of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Indonesia and the Correlation with Quality of Life. Neurol. Res. Int. 2019, 2019, 4290352. [Google Scholar] [CrossRef] [PubMed]
- Evdoshenko, E.; Laskova, K.; Shumilina, M.; Nekrashevich, E.; Andreeva, M.; Neofidov, N.; Kalinin, I.; Nikitchenko, D.; Rogozina, A.; Kupaeva, A.; et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in the Russian Population. J. Int. Neuropsychol. Soc. 2022, 28, 503–510. [Google Scholar] [CrossRef]
- Farghaly, M.; Langdon, D.W.; Shalaby, N.M.; Shehata, H.S.; Abokrysha, N.T.; Hassan, A.; Hegazy, M.I.; Elmazny, A.; Ahmed, S.; Shaheen, S. Reliability and validity of Arabic version of the brief international cognitive assessment for multiple sclerosis: Egyptian dialect. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 51. [Google Scholar] [CrossRef]
- Filser, M.; Schreiber, H.; Pöttgen, J.; Ullrich, S.; Lang, M.; Penner, I.K. The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS): Results from the German validation study. J. Neurol. 2018, 265, 2587–2593. [Google Scholar] [CrossRef]
- Giedraitienė, N.; Kizlaitienė, R.; Kaubrys, G. The BICAMS Battery for Assessment of Lithuanian-Speaking Multiple Sclerosis Patients: Relationship with Age, Education, Disease Disability, and Duration. Med. Sci. Monit. 2015, 21, 3853–3859. [Google Scholar] [CrossRef]
- Hämäläinen, P.; Leo, V.; Therman, S.; Ruutiainen, J. Validation of the Finnish version of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and evaluation of the applicability of the Multiple Sclerosis Neuropsychological Questionnaire (MSNQ) and the Fatigue Scale for Motor and Cognitive Functions (FSMC). Brain Behav. 2021, 11, e02087. [Google Scholar] [CrossRef] [PubMed]
- Marstrand, L.; Østerberg, O.; Walsted, T.; Skov, A.C.; Schreiber, K.I.; Sellebjerg, F. Brief international cognitive assessment for multiple sclerosis (BICAMS): A danish validation study of sensitivity in early stages of MS. Mult. Scler. Relat. Disord. 2020, 37, 101458. [Google Scholar] [CrossRef]
- Maubeuge, N.; Deloire, M.S.A.; Brochet, B.; Erhlé, N.; Charré-Morin, J.; Saubusse, A.; Ruet, A. French validation of the Brief International Cognitive Assessment for Multiple Sclerosis. Rev. Neurol. 2021, 177, 73–79. [Google Scholar] [CrossRef]
- Niino, M.; Fukazawa, T.; Kira, J.I.; Okuno, T.; Mori, M.; Sanjo, N.; Ohashi, T.; Fukaura, H.; Fujimori, J.; Shimizu, Y.; et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis in Japan. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317748972. [Google Scholar] [CrossRef]
- O’Connell, K.; Langdon, D.; Tubridy, N.; Hutchinson, M.; McGuigan, C. A preliminary validation of the brief international cognitive assessment for multiple sclerosis (BICAMS) tool in an Irish population with multiple sclerosis (MS). Mult. Scler. Relat. Disord. 2015, 4, 521–525. [Google Scholar] [CrossRef]
- Ozakbas, S.; Yigit, P.; Cinar, B.P.; Limoncu, H.; Kahraman, T.; Kösehasanoğulları, G. The Turkish validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) battery. BMC Neurol. 2017, 17, 208. [Google Scholar] [CrossRef]
- Polychroniadou, E.; Bakirtzis, C.; Langdon, D.; Lagoudaki, R.; Kesidou, E.; Theotokis, P.; Tsalikakis, D.; Poulatsidou, K.; Kyriazis, O.; Boziki, M.; et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Greek population with multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 9, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Sandi, D.; Rudisch, T.; Füvesi, J.; Fricska-Nagy, Z.; Huszka, H.; Biernacki, T.; Langdon, D.W.; Langane, É.; Vécsei, L.; Bencsik, K. The Hungarian validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) battery and the correlation of cognitive impairment with fatigue and quality of life. Mult. Scler. Relat. Disord. 2015, 4, 499–504. [Google Scholar] [CrossRef]
- Skorve, E.; Lundervold, A.J.; Torkildsen, Ø.; Myhr, K.M. The Norwegian translation of the brief international cognitive assessment for multiple sclerosis (BICAMS). Mult. Scler. Relat. Disord. 2019, 36, 101408. [Google Scholar] [CrossRef]
- Souissi, A.; Mrabet, S.; Ferchichi, W.; Gharbi, A.; Nasri, A.; Djebara, M.B.; Kacem, I.; Gouider, R. Tunisian version of the brief international cognitive assessment for multiple sclerosis: Validation and normative values. Mult. Scler. Relat. Disord. 2022, 58, 103444. [Google Scholar] [CrossRef]
- Sousa, C.; Rigueiro-Neves, M.; Miranda, T.; Alegria, P.; Vale, J.; Passos, A.M.; Langdon, D.; Sá, M.J. Validation of the brief international cognitive assessment for multiple sclerosis (BICAMS) in the Portuguese population with multiple sclerosis. BMC Neurol. 2018, 18, 172. [Google Scholar] [CrossRef]
- Spedo, C.T.; Frndak, S.E.; Marques, V.D.; Foss, M.P.; Pereira, D.A.; Carvalho Lde, F.; Guerreiro, C.T.; Conde, R.M.; Fusco, T.; Pereira, A.J.; et al. Cross-cultural Adaptation, Reliability, and Validity of the BICAMS in Brazil. Clin. Neuropsychol. 2015, 29, 836–846. [Google Scholar] [CrossRef]
- Vanotti, S.; Smerbeck, A.; Benedict, R.H.; Caceres, F. A new assessment tool for patients with multiple sclerosis from Spanish-speaking countries: Validation of the Brief International Cognitive Assessment for MS (BICAMS) in Argentina. Clin. Neuropsychol. 2016, 30, 1023–1031. [Google Scholar] [CrossRef]
- Walker, L.A.; Osman, L.; Berard, J.A.; Rees, L.M.; Freedman, M.S.; MacLean, H.; Cousineau, D. Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Canadian contribution to the international validation project. J. Neurol. Sci. 2016, 362, 147–152. [Google Scholar] [CrossRef]
- Goretti, B.; Niccolai, C.; Hakiki, B.; Sturchio, A.; Falautano, M.; Minacapelli, E.; Martinelli, V.; Incerti, C.; Nocentini, U.; Murgia, M. The brief international cognitive assessment for multiple sclerosis (BICAMS): Normative values with gender, age and education corrections in the Italian population. BMC Neurol. 2014, 14, 171. [Google Scholar] [CrossRef]
- Falco, F.; Lamagna, F.; Eliano, M.; di Monaco, C.; Trojano, L.; Lus, G.; Moccia, M.; Lauro, F.; Liccardo, T.; Chiodi, A. Normative values of the brief international cognitive assessment for multiple sclerosis (BICAMS) in an Italian young adolescent population: The influence of age, sex, and education. Neurol. Sci. 2025, 46, 1777–1782. [Google Scholar] [CrossRef]
- Alboudi, A.; Hadid, A.; Ali, A.R.; Alshaikh, F.; Aqleh, H. Normative values of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in an Arab population: Corrected for age, sex and education. Mult. Scler. Relat. Disord. 2020, 44, 102305. [Google Scholar] [CrossRef]
- Spedo, C.T.; de Assis Pereira, D.; Frndak, S.E.; Marques, V.D.; Barreira, A.A.; Smerbeck, A.; da Silva, P.H.R.; Benedict, R.H. Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Discrete and regression-based norms for the Brazilian context. Arq. Neuro-Psiquiatr. 2022, 80, 62–68. [Google Scholar] [CrossRef]
- Batum, M.; Sarıtaş, A.Ş.; Erdoğan, B.; Çelebi, N.; Ak, A.K.; Mavioğlu, H. The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Normative values with gender, age and education corrections in the Turkish population. Mult. Scler. Relat. Disord. 2025, 97, 106388. [Google Scholar] [CrossRef]
- Penner, I.; Baijot, J.; Filser, M.; Bätge, S.; Raithel, L.; Toth, E.; Renner, A.; Nagels, G. The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS): Regression-based norms for German-speaking countries. Eur. J. Neurol. 2025, 32, e16495. [Google Scholar] [CrossRef]
- Smerbeck, A.; Benedict, R.H.; Eshaghi, A.; Vanotti, S.; Spedo, C.; Blahova Dusankova, J.; Sahraian, M.A.; Marques, V.D.; Langdon, D. Influence of nationality on the brief international cognitive assessment for multiple sclerosis (BICAMS). Clin. Neuropsychol. 2018, 32, 54–62. [Google Scholar] [CrossRef]
- Feinstein, A.; Amato, M.P.; Brichetto, G.; Chataway, J.; Chiaravalloti, N.D.; Cutter, G.; Dalgas, U.; DeLuca, J.; Farrell, R.; Feys, P. Cognitive rehabilitation and aerobic exercise for cognitive impairment in people with progressive multiple sclerosis (CogEx): A randomised, blinded, sham-controlled trial. Lancet Neurol. 2023, 22, 912–924. [Google Scholar] [CrossRef]
- American Academy of Neurology. Multiple Sclerosis Quality Measurement Set. 2014. Available online: https://www.aan.com/siteassets/home-page/policy-and-guidelines/quality/quality-measures/14msmeasureset_pg.pdf (accessed on 14 June 2025).
- Sarnataro, A.; Cuomo, N.; Russo, C.V.; Carotenuto, A.; Lanzillo, R.; Moccia, M.; Petracca, M.; Morra, V.B.; Saccà, F. Integration of the expanded disability status scale with ambulation, visual and cognitive tests. Neurol. Sci. 2024, 45, 4799–4805. [Google Scholar] [CrossRef]
- Pyle, W.H. The Examination of School Children: A Manual of Directions and Norms; The Macmillan Co.: New York, NY, USA, 1913. [Google Scholar]
- Whipple, G.M. Manual of Mental and Physical Tests; Warwick & Sons: Baltimore, MD, USA, 1910. [Google Scholar]
- Wechsler, D. Wechsler-Bellevue Intelligence Scale; Psychological Corporation: New York, NY, USA, 1939. [Google Scholar]
- Wechsler, D. WAIS-R Manual; Psychological Corporation: New York, NY, USA, 1981. [Google Scholar]
- Benedict, R.H.; Weinstock-Guttman, B.; Fishman, I.; Sharma, J.; Tjoa, C.W.; Bakshi, R. Prediction of neuropsychological impairment in multiple sclerosis: Comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch. Neurol. 2004, 61, 226–230. [Google Scholar] [CrossRef]
- Drake, A.; Weinstock-Guttman, B.; Morrow, S.; Hojnacki, D.; Munschauer, F.; Benedict, R. Psychometrics and normative data for the Multiple Sclerosis Functional Composite: Replacing the PASAT with the Symbol Digit Modalities Test. Mult. Scler. J. 2010, 16, 228–237. [Google Scholar] [CrossRef]
- Brochet, B.; Deloire, M.; Bonnet, M.; Salort-Campana, E.; Ouallet, J.; Petry, K.; Dousset, V. Should SDMT substitute for PASAT in MSFC? A 5-year longitudinal study. Mult. Scler. J. 2008, 14, 1242–1249. [Google Scholar] [CrossRef]
- Benedict, R.H.; Morrow, S.; Rodgers, J.; Hojnacki, D.; Bucello, M.A.; Zivadinov, R.; Weinstock-Guttman, B. Characterizing cognitive function during relapse in multiple sclerosis. Mult. Scler. J. 2014, 20, 1745–1752. [Google Scholar] [CrossRef]
- McKay, K.A.; Bedri, S.K.; Manouchehrinia, A.; Stawiarz, L.; Olsson, T.; Hillert, J.; Fink, K. Reduction in cognitive processing speed surrounding multiple sclerosis relapse. Ann. Neurol. 2022, 91, 417–423. [Google Scholar] [CrossRef]
- Deluca, J.; Huang, D.; Cohen, J.; Cree, B.A.; Chen, Y.; Campagnolo, D.; Harvey, D.; Sheffield, J.K.; Comi, G.; Kappos, L. Assessment of Cognitive Processing Speed in the Phase 3 SUNBEAM Trial Demonstrates Sustained Improvement in Ozanimod-Treated Patients. In Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS); ACTRIMS: Madison, WI, USA, 2019. [Google Scholar]
- Benedict, R.H.B.; Tomic, D.; Cree, B.A.; Fox, R.; Giovannoni, G.; Bar-Or, A.; Gold, R.; Vermersch, P.; Pohlmann, H.; Wright, I.; et al. Siponimod and Cognition in Secondary Progressive Multiple Sclerosis: EXPAND Secondary Analyses. Neurology 2021, 96, e376–e386. [Google Scholar] [CrossRef]
- Kane, R.L.; Kay, G.G. Computerized assessment in neuropsychology: A review of tests and test batteries. Neuropsychol. Rev. 1992, 3, 1–117. [Google Scholar] [CrossRef]
- Wojcik, C.M.; Beier, M.; Costello, K.; DeLuca, J.; Feinstein, A.; Goverover, Y.; Gudesblatt, M.; Jaworski, M., III.; Kalb, R.; Kostich, L. Computerized neuropsychological assessment devices in multiple sclerosis: A systematic review. Mult. Scler. J. 2019, 25, 1848–1869. [Google Scholar] [CrossRef]
- Edgar, C.; Jongen, P.J.; Sanders, E.; Sindic, C.; Goffette, S.; Dupuis, M.; Jacquerye, P.; Guillaume, D.; Reznik, R.; Wesnes, K. Cognitive performance in relapsing remitting multiple sclerosis: A longitudinal study in daily practice using a brief computerized cognitive battery. BMC Neurol. 2011, 11, 68. [Google Scholar] [CrossRef]
- Darby, D.; Maruff, P.; Collie, A.; McStephen, M. Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 2002, 59, 1042–1046. [Google Scholar] [CrossRef]
- Achiron, A.; Doniger, G.M.; Harel, Y.; Appleboim-Gavish, N.; Lavie, M.; Simon, E.S. Prolonged response times characterize cognitive performance in multiple sclerosis. Eur. J. Neurol. 2007, 14, 1102–1108. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef]
- Akbar, N.; Honarmand, K.; Kou, N.; Feinstein, A. Validity of a computerized version of the symbol digit modalities test in multiple sclerosis. J. Neurol. 2011, 258, 373–379. [Google Scholar] [CrossRef]
- Rao, S.M.; Losinski, G.; Mourany, L.; Schindler, D.; Mamone, B.; Reece, C.; Kemeny, D.; Narayanan, S.; Miller, D.M.; Bethoux, F. Processing speed test: Validation of a self-administered, iPad®-based tool for screening cognitive dysfunction in a clinic setting. Mult. Scler. J. 2017, 23, 1929–1937. [Google Scholar] [CrossRef]
- Ruet, A.; Deloire, M.S.; Charré-Morin, J.; Hamel, D.; Brochet, B. A new computerised cognitive test for the detection of information processing speed impairment in multiple sclerosis. Mult. Scler. J. 2013, 19, 1665–1672. [Google Scholar] [CrossRef]
- Foong, Y.C.; Bridge, F.; Merlo, D.; Gresle, M.; Zhu, C.; Buzzard, K.; Butzkueven, H.; van der Walt, A. Smartphone monitoring of cognition in people with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2023, 73, 104674. [Google Scholar] [CrossRef] [PubMed]
- Denissen, S.; Van Laethem, D.; Baijot, J.; Costers, L.; Descamps, A.; Van Remoortel, A.; Van Merhaegen-Wieleman, A.; D’Hooghe, M.; D’Haeseleer, M.; Smeets, D.; et al. A New Smartphone-Based Cognitive Screening Battery for Multiple Sclerosis (icognition): Validation Study. J. Med. Internet Res. 2025, 27, e53503. [Google Scholar] [CrossRef]
- Lowe, C.; Rabbitt, P. Test\re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: Theoretical and practical issues. Neuropsychologia 1998, 36, 915–923. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Anderson, J.E.; Richler, J.; Wallner-Allen, K.; Beaumont, J.L.; Conway, K.P.; Gershon, R.; Weintraub, S. NIH Toolbox Cognition Battery (CB): Validation of executive function measures in adults. J. Int. Neuropsychol. Soc. 2014, 20, 620–629. [Google Scholar] [CrossRef]
- Bergmann, C.; Becker, S.; Watts, A.; Sullivan, C.; Wilken, J.; Golan, D.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; et al. Multiple sclerosis and quality of life: The role of cognitive impairment on quality of life in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 79, 104966. [Google Scholar] [CrossRef]
- Bogaardt, H.; Golan, D.; Barrera, M.A.; Attrill, S.; Kaczmarek, O.; Zarif, M.; Bumstead, B.; Buhse, M.; Wilken, J.; Doniger, G.M.; et al. Cognitive impairment, fatigue and depression in multiple sclerosis: Is there a difference between benign and non-benign MS? Mult. Scler. Relat. Disord. 2023, 73, 104630. [Google Scholar] [CrossRef]
- Covey, T.J.; Golan, D.; Doniger, G.M.; Sergott, R.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; Mebrahtu, S.; Bergmann, C.; et al. Longitudinal assessment of the relationship between visual evoked potentials and cognitive performance in multiple sclerosis. Clin. Neurophysiol. 2022, 137, 66–74. [Google Scholar] [CrossRef]
- Covey, T.J.; Golan, D.; Sergott, R.; Wilken, J.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; Doniger, G.M.; Penner, I.-K. Peering further into the mind’s eye: Combining visual evoked potential and optical coherence tomography measures enhances insight into the variance in cognitive functioning in multiple sclerosis. J. Neurol. 2024, 271, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Dreyer-Alster, S.; Gal, A.; Achiron, A. Optical Coherence Tomography Is Associated with Cognitive Impairment in Multiple Sclerosis. J. Neuro-Ophthalmol. 2022, 42, e14–e21. [Google Scholar] [CrossRef] [PubMed]
- Dreyer-Alster, S.; Menascu, S.; Aloni, R.; Givon, U.; Dolev, M.; Achiron, A.; Kalron, A. Motoric cognitive risk syndrome in people with multiple sclerosis: Prevalence and correlations with disease-related factors. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221109744. [Google Scholar] [CrossRef] [PubMed]
- Glen, M.; Doniger, P. Guide to Normative Data. 2014. Available online: https://portal.neurotrax.com/docs/norms_guide.pdf (accessed on 4 June 2025).
- Golan, D.; Doniger, G.M.; Srinivasan, J.; Sima, D.M.; Zarif, M.; Bumstead, B.; Buhse, M.; Van Hecke, W.; Wilken, J.; Gudesblatt, M. The association between MRI brain volumes and computerized cognitive scores of people with multiple sclerosis. Brain Cogn. 2020, 145, 105614. [Google Scholar] [CrossRef] [PubMed]
- Golan, D.; Wilken, J.; Doniger, G.M.; Fratto, T.; Kane, R.; Srinivasan, J.; Zarif, M.; Bumstead, B.; Buhse, M.; Fafard, L. Validity of a multi-domain computerized cognitive assessment battery for patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 154–162. [Google Scholar] [CrossRef]
- Jackson, D.A.; Nicholson, R.; Bergmann, C.; Wilken, J.; Kaczmarek, O.; Bumstead, B.; Buhse, M.; Zarif, M.; Penner, I.K.; Hancock, L.M.; et al. Cognitive impairment in people with multiple sclerosis: Perception vs. performance—Factors that drive perception of impairment differ for patients and clinicians. Mult. Scler. Relat. Disord. 2023, 69, 104410. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.M.; Cutter, G.; Golan, D.; Doniger, G.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; Sethi, A.; Covey, T.; et al. Measuring cognitive function by the SDMT across functional domains: Useful but not sufficient. Mult. Scler. Relat. Disord. 2022, 60, 103704. [Google Scholar] [CrossRef]
- Zanotto, T.; Pradeep Kumar, D.; Golan, D.; Wilken, J.; Doniger, G.M.; Zarif, M.; Bumstead, B.; Buhse, M.; Weller, J.; Morrow, S.A.; et al. Does cognitive performance explain the gap between physiological and perceived fall-risk in people with multiple sclerosis? Mult. Scler. Relat. Disord. 2025, 95, 106322. [Google Scholar] [CrossRef]
- Aboseif, A.; Amin, M.; Bena, J.; Nakamura, K.; Macaron, G.; Ontaneda, D. Association Between Disease-Modifying Therapy and Information Processing Speed in Multiple Sclerosis. Int. J. MS Care 2024, 26, 91–97. [Google Scholar] [CrossRef]
- Chan, C.K.; Tian, F.; Pimentel Maldonado, D.; Mowry, E.M.; Fitzgerald, K.C. Depression in multiple sclerosis across the adult lifespan. Mult. Scler. J. 2021, 27, 1771–1780. [Google Scholar] [CrossRef]
- Conway, D.S.; Bermel, R.A.; Planchon, S.M. The relationship between cognition, education, and employment in multiple sclerosis patients. Mult. Scler. J. Exp. Transl. Clin. 2022, 8, 20552173221118309. [Google Scholar] [CrossRef]
- Foong, Y.C.; Merlo, D.; Gresle, M.; Zhu, C.; Buzzard, K.; Lechner-Scott, J.; Barnett, M.; Wang, C.; Taylor, B.V.; Kalincik, T.; et al. Longitudinal Trajectories of Digital Cognitive Biomarkers for Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2025, 12, 842–850. [Google Scholar] [CrossRef]
- Galioto, R.; Macaron, G.; Lace, J.W.; Ontaneda, D.; Rao, S.M. Is computerized screening for processing speed impairment sufficient for identifying MS-related cognitive impairment in a clinical setting? Mult. Scler. Relat. Disord. 2021, 54, 103106. [Google Scholar] [CrossRef] [PubMed]
- Hechenberger, S.; Helmlinger, B.; Tinauer, C.; Jauk, E.; Ropele, S.; Heschl, B.; Wurth, S.; Damulina, A.; Eppinger, S.; Demjaha, R.; et al. Evaluation of a self-administered iPad(®)-based processing speed assessment for people with multiple sclerosis in a clinical routine setting. J. Neurol. 2024, 271, 3268–3278. [Google Scholar] [CrossRef]
- Jaworski, M.G., 3rd; Gillies, J.K.; Youngs, M.; Wojcik, C.; Santivasci, C.; Jakimovski, D.; Bergsland, N.; Weinstock-Guttman, B.; Benedict, R.H. Predicting employment deterioration with the Processing Speed Test (PST) and SDMT in multiple sclerosis. Mult. Scler. J. 2023, 29, 1327–1336. [Google Scholar] [CrossRef]
- Labiano-Fontcuberta, A.; Costa-Frossard, L.; Sainz de la Maza, S.; Rodríguez-Jorge, F.; Chico-García, J.L.; González, P.N.; Monreal, E. Predictive models of multiple sclerosis-related cognitive performance using routine clinical practice predictors. Mult. Scler. Relat. Disord. 2023, 76, 104849. [Google Scholar] [CrossRef]
- Labiano-Fontcuberta, A.; Costa-Frossard, L.; Sainz de la Maza, S.; Rodríguez-Jorge, F.; Chico-García, J.L.; Monreal, E. The effect of timing of high-efficacy therapy on processing speed performance in multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 64, 103959. [Google Scholar] [CrossRef]
- Macaron, G.; Baldassari, L.E.; Nakamura, K.; Rao, S.M.; McGinley, M.P.; Moss, B.P.; Li, H.; Miller, D.M.; Jones, S.E.; Bermel, R.A.; et al. Cognitive processing speed in multiple sclerosis clinical practice: Association with patient-reported outcomes, employment and magnetic resonance imaging metrics. Eur. J. Neurol. 2020, 27, 1238–1249. [Google Scholar] [CrossRef]
- Rao, S.M.; Galioto, R.; Sokolowski, M.; McGinley, M.; Freiburger, J.; Weber, M.; Dey, T.; Mourany, L.; Schindler, D.; Reece, C.; et al. Multiple Sclerosis Performance Test: Validation of self-administered neuroperformance modules. Eur. J. Neurol. 2020, 27, 878–886. [Google Scholar] [CrossRef]
- Rao, S.M.; Sokolowski, M.; Strober, L.B.; Miller, J.B.; Norman, M.A.; Levitt, N.; Williams, J.R.; de Moor, C. Multiple sclerosis performance test (MSPT): Normative study of 428 healthy participants ages 18 to 89. Mult. Scler. Relat. Disord. 2022, 59, 103644. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.K.; Schindler, D.; Rao, S.M.; Venegas, F.; Bruzik, E.T.; Gabel, W.; Williams, J.R.; Phillips, G.A.; Mullen, C.C.; Freiburger, J.L.; et al. Multiple Sclerosis Performance Test: Technical Development and Usability. Adv. Ther. 2019, 36, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Rudick, R.A.; Miller, D.; Bethoux, F.; Rao, S.M.; Lee, J.-C.; Stough, D.; Reece, C.; Schindler, D.; Mamone, B.; Alberts, J. The Multiple Sclerosis Performance Test (MSPT): An iPad-based disability assessment tool. J. Vis. Exp. JoVE 2014, 51318. [Google Scholar] [CrossRef]
- Banh, T.; Jin, C.; Neuhaus, J.; Mackin, R.S.; Maruff, P.; Stricker, N.; Weiner, M.W.; Nosheny, R.L. Unsupervised Performance of the CogState Brief Battery in the Brain Health Registry: Implications for Detecting Cognitive Decline. J. Prev. Alzheimer’s Dis. 2022, 9, 262–268. [Google Scholar] [CrossRef]
- Cho, H.; Pilloni, G.; Tahsin, R.; Best, P.; Krupp, L.; Oh, C.; Charvet, L. Moving intra-individual variability (IIV) towards clinical utility: IIV measured using a commercial testing platform. J. Neurol. Sci. 2023, 446, 120586. [Google Scholar] [CrossRef]
- Eilam-Stock, T.; Shaw, M.T.; Krupp, L.B.; Charvet, L.E. Early neuropsychological markers of cognitive involvement in multiple sclerosis. J. Neurol. Sci. 2021, 423, 117349. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, S.T.; Liu, Y.; Parra Corral, M.A.; Bangiyev, L.; Krupp, L.; Charvet, L.; Duong, T.Q. White matter correlates of slowed information processing speed in unimpaired multiple sclerosis patients with young age onset. Brain Imaging Behav. 2021, 15, 1460–1468. [Google Scholar] [CrossRef]
- Kalinowska-Lyszczarz, A.; Tillema, J.M.; Tobin, W.O.; Guo, Y.; Weigand, S.D.; Metz, I.; Brück, W.; Lassmann, H.; Giraldo-Chica, M.; Port, J.D.; et al. Long-term clinical, imaging and cognitive outcomes association with MS immunopathology. Ann. Clin. Transl. Neurol. 2023, 10, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; Waubant, E.; Waltz, M.; Casper, T.C.; Belman, A.; Wheeler, Y.; Ness, J.; Graves, J.; Gorman, M.; Benson, L.; et al. A new look at cognitive functioning in pediatric MS. Mult. Scler. J. 2023, 29, 140–149. [Google Scholar] [CrossRef]
- Pilloni, G.; Casper, T.C.; Mar, S.; Ness, J.; Schreiner, T.; Waltz, M.; Waubant, E.; Weinstock-Guttman, B.; Wheeler, Y.; Krupp, L.; et al. Increased intraindividual variability (IIV) in reaction time is the earliest indicator of cognitive change in MS: A two-year observational study. Int. J. Clin. Health Psychol. 2024, 24, 100486. [Google Scholar] [CrossRef]
- Stricker, N.H.; Lundt, E.S.; Alden, E.C.; Albertson, S.M.; Machulda, M.M.; Kremers, W.K.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. Longitudinal Comparison of in Clinic and at Home Administration of the Cogstate Brief Battery and Demonstrated Practice Effects in the Mayo Clinic Study of Aging. J. Prev. Alzheimer’s Dis. 2020, 7, 21–28. [Google Scholar] [CrossRef]
- Wojcik, C.M.; Rao, S.M.; Schembri, A.J.; Drake, A.S.; Maruff, P.; Schindler, D.; Alberts, J.; Yasin, F.; Pol, J.; Weinstock-Guttman, B.; et al. Necessity of technicians for computerized neuropsychological assessment devices in multiple sclerosis. Mult. Scler. J. 2020, 26, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Giedraitiene, N.; Kaubrys, G. Distinctive Pattern of Cognitive Disorders During Multiple Sclerosis Relapse and Recovery Based on Computerized CANTAB Tests. Front. Neurol. 2019, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, R.H.; Karr, J.E.; Saksvik, S.B.; Lundervold, A.J.; Hjemdal, O.; Olsen, A.; Iverson, G.L.; Skandsen, T. Examining 3-month test-retest reliability and reliable change using the Cambridge Neuropsychological Test Automated Battery. Appl. Neuropsychol. Adult 2022, 29, 146–154. [Google Scholar] [CrossRef]
- Lenehan, M.E.; Summers, M.J.; Saunders, N.L.; Summers, J.J.; Vickers, J.C. Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) Distinguish Between Cognitive Domains in Healthy Older Adults? Assessment 2016, 23, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Majdi, A.; Kamari, F.; Sadigh-Eteghad, S. The Cambridge Neuropsychological Test Automated Battery (CANTAB) Versus the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) for the Assessment of Cognitive Function in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102172. [Google Scholar] [CrossRef] [PubMed]
- LaForte, E.M.; Hook, J.N.; Giella, A.K. National Institutes of Health (NIH) Toolbox® V3 Technical Manual. 2024. [Google Scholar]
- Manglani, H.R.; Fisher, M.E.; Duraney, E.J.; Nicholas, J.A.; Prakash, R.S. A promising cognitive screener in multiple sclerosis: The NIH toolbox cognition battery concords with gold standard neuropsychological measures. Mult. Scler. J. 2022, 28, 1762–1772. [Google Scholar] [CrossRef]
- Jakimovski, D.; Zivadinov, R.; Weinstock, Z.; Burnham, A.; Wicks, T.R.; Suchan, C.; Sciortino, T.; Schweser, F.; Bergsland, N.; Dwyer, M.G. Cognitive function in severe progressive multiple sclerosis. Brain Commun. 2024, 6, fcae226. [Google Scholar] [CrossRef]
- Weinstock, Z.L.; Jaworski, M., 3rd; Dwyer, M.G.; Jakimovski, D.; Burnham, A.; Wicks, T.R.; Youngs, M.; Santivasci, C.; Cruz, S.; Gillies, J.; et al. Auditory Test of Processing Speed: Preliminary validation of a smartphone-based test of mental speed. Mult. Scler. J. 2023, 29, 1646–1658. [Google Scholar] [CrossRef]
- Hsu, W.-Y.; Rowles, W.; Anguera, J.A.; Anderson, A.; Younger, J.W.; Friedman, S.; Gazzaley, A.; Bove, R. Assessing cognitive function in multiple sclerosis with digital tools: Observational study. J. Med. Internet Res. 2021, 23, e25748. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.Y.; Rowles, W.; Anguera, J.A.; Zhao, C.; Anderson, A.; Alexander, A.; Sacco, S.; Henry, R.; Gazzaley, A.; Bove, R. Application of an Adaptive, Digital, Game-Based Approach for Cognitive Assessment in Multiple Sclerosis: Observational Study. J. Med. Internet Res. 2021, 23, e24356. [Google Scholar] [CrossRef]
- Nylander, A.; Anderson, A.; Rowles, W.; Hsu, S.; Lazar, A.A.; Mayoral, S.R.; Pease-Raissi, S.E.; Green, A.; Bove, R. Re-WRAP (Remyelination for women at risk of axonal loss and progression): A phase II randomized placebo-controlled delayed-start trial of Bazedoxifene for myelin repair in multiple sclerosis. Contemp. Clin. Trials 2023, 134, 107333. [Google Scholar] [CrossRef]
- Goga, J.J.; Ginell, K.M.; Ng, Y.T.; Ehde, D.M.; Alschuler, K.N.; Sliwinski, M.J.; Fritz, N.E.; Kratz, A.L. Feasibility, reliability, and validity of ambulatory smartphone-administered cognitive tests in multiple sclerosis. Mult. Scler. J. 2025, 31, 363–375. [Google Scholar] [CrossRef]
- Kratz, A.L.; Ehde, D.M.; Alschuler, K.N.; Pickup, K.; Ginell, K.; Fritz, N.E. Optimizing Detection and Prediction of Cognitive Function in Multiple Sclerosis with Ambulatory Cognitive Tests: Protocol for the Longitudinal Observational CogDetect-MS Study. JMIR Res. Protoc. 2024, 13, e59876. [Google Scholar] [CrossRef]
- Sliwinski, M.J.; Mogle, J.A.; Hyun, J.; Munoz, E.; Smyth, J.M.; Lipton, R.B. Reliability and Validity of Ambulatory Cognitive Assessments. Assessment 2018, 25, 14–30. [Google Scholar] [CrossRef]
- Valentine, T.R.; Kratz, A.L. Feasibility, reliability, and validity of ambulatory cognitive tests in fibromyalgia and matched controls. J. Int. Neuropsychol. Soc. 2023, 29, 893–901. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Anguera, J.A.; Rizzo, A.; Campusano, R.; Chiaravalloti, N.D.; DeLuca, J.; Gazzaley, A.; Bove, R.M. A virtual reality program to assess cognitive function in multiple sclerosis: A pilot study. Front. Hum. Neurosci. 2023, 17, 1139316. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Bowerly, T.; Buckwalter, J.G.; Klimchuk, D.; Mitura, R.; Parsons, T.D. A virtual reality scenario for all seasons: The virtual classroom. CNS Spectr. 2006, 11, 35–44. [Google Scholar] [CrossRef]
- Floden, D.P.; Hogue, O.; Postle, A.F.; Busch, R.M. Validation of Self-Administered Visual and Verbal Episodic Memory Tasks in Healthy Controls and a Clinical Sample. Assessment 2024, 31, 933–946. [Google Scholar] [CrossRef]
- Patrick, K.S.; Chakrabati, S.; Rhoads, T.; Busch, R.M.; Floden, D.P.; Galioto, R. Utility of the Brief Assessment of Cognitive Health (BACH) computerized screening tool in identifying MS-related cognitive impairment. Mult. Scler. Relat. Disord. 2024, 82, 105398. [Google Scholar] [CrossRef] [PubMed]
- Merlo, D.; Darby, D.; Kalincik, T.; Butzkueven, H.; van der Walt, A. The feasibility, reliability and concurrent validity of the MSReactor computerized cognitive screening tool in multiple sclerosis. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419859183. [Google Scholar] [CrossRef]
- Merlo, D.; Kalincik, T.; Zhu, C.; Gresle, M.; Lechner-Scott, J.; Kilpatrick, T.; Barnett, M.; Taylor, B.; Buzzard, K.; Darby, D.; et al. Subjective versus objective performance in people with multiple sclerosis using the MSReactor computerised cognitive tests. Mult. Scler. Relat. Disord. 2022, 58, 103393. [Google Scholar] [CrossRef] [PubMed]
- Yam, C.; Merlo, D.; Stankovich, J.; Darby, D.; Gresle, M.; Kalincik, T.; Kilpatrick, T.J.; Lechner-Scott, J.; Taylor, B.; Barnett, M.; et al. The MSReactor computerized cognitive battery correlates with the processing speed test in relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102212. [Google Scholar] [CrossRef] [PubMed]
- Khaligh-Razavi, S.-M.; Sadeghi, M.; Khanbagi, M.; Kalafatis, C.; Nabavi, S.M. A self-administered, artificial intelligence (AI) platform for cognitive assessment in multiple sclerosis (MS). BMC Neurol. 2020, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, S.; Ashtari, F.; Adibi, I.; Shaygannejad, V.; Ramezani, N.; Pourmohammadi, A.; Davanian, F.; Karimi, Z.; Khaligh-Razavi, S.M.; Sanayei, M. Effect of deep gray matter atrophy on information processing speed in early relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 71, 104560. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Branco, M.; Severo, M.; Sousa, A.; Castelo, J.; Araújo, I.; Pais, J.; Cerqueira, J.; Amato, M.P.; Lunet, N.; et al. Tracking cognitive impairment in multiple sclerosis using the Brain on Track test: A validation study. Neurol. Sci. 2020, 41, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Severo, M.; Sousa, A.; Ruano, C.; Branco, M.; Barreto, R.; Moreira, S.; Araújo, N.; Pinto, P.; Pais, J. Tracking cognitive performance in the general population and in patients with mild cognitive impairment with a self-applied computerized test (brain on track). J. Alzheimer’s Dis. 2019, 71, 541–548. [Google Scholar] [CrossRef]
- Ruano, L.; Sousa, A.; Severo, M.; Alves, I.; Colunas, M.; Barreto, R.; Mateus, C.; Moreira, S.; Conde, E.; Bento, V. Development of a self-administered web-based test for longitudinal cognitive assessment. Sci. Rep. 2016, 6, 19114. [Google Scholar] [CrossRef]
- van Dongen, L.; Westerik, B.; van der Hiele, K.; Visser, L.H.; Schoonheim, M.M.; Douw, L.; Twisk, J.W.R.; de Jong, B.A.; Geurts, J.J.G.; Hulst, H.E. Introducing Multiple Screener: An unsupervised digital screening tool for cognitive deficits in MS. Mult. Scler. Relat. Disord. 2020, 38, 101479. [Google Scholar] [CrossRef]
- Waskowiak, P.T.; de Jong, B.A.; Uitdehaag, B.M.J.; Saddal, S.R.D.; Aarts, J.; Roovers, A.A.M.; van Oirschot, P.; de Groot, V.; Schaafsma, F.G.; van der Hiele, K.; et al. Don’t be late! Timely identification of cognitive impairment in people with multiple sclerosis: A study protocol. BMC Neurol. 2024, 24, 26. [Google Scholar] [CrossRef]
- Beier, M.; Alschuler, K.; Amtmann, D.; Hughes, A.; Madathil, R.; Ehde, D. iCAMS: Assessing the Reliability of a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) Tablet Application. Int. J. MS Care 2020, 22, 67–74. [Google Scholar] [CrossRef]
- Maubeuge, N.; Deloire, M.S.; Brochet, B.; Charré-Morin, J.; Saubusse, A.; Ruet, A. Validation of a Brief Computerized Cognitive Assessment in Multiple Sclerosis (BCCAMS) and comparison with reference batteries. Mult. Scler. J. 2022, 28, 1112–1120. [Google Scholar] [CrossRef]
- Costabile, T.; Signoriello, E.; Lauro, F.; Altieri, M.; Ziello, A.R.; D’Ambrosio, A.; Bisecco, A.; Maniscalco, G.; Bonavita, S.; Gallo, A.; et al. Validation of an iPad version of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. Relat. Disord. 2023, 74, 104723. [Google Scholar] [CrossRef]
- Podda, J.; Tacchino, A.; Ponzio, M.; Di Antonio, F.; Susini, A.; Pedullà, L.; Battaglia, M.A.; Brichetto, G. Mobile health app (DIGICOG-MS) for self-assessment of cognitive impairment in people with multiple sclerosis: Instrument validation and usability study. JMIR Form. Res. 2024, 8, e56074. [Google Scholar] [CrossRef]
- Scaramozza, M.; Chiesa, P.A.; Zajac, L.; Sun, Z.; Tang, M.; Juraver, A.; Bartholomé, E.; Charré-Morin, J.; Saubusse, A.; Johnson, S.C.; et al. Konectom™ cognitive processing speed test enables reliable remote, unsupervised cognitive assessment in people with multiple sclerosis: Exploring the use of substitution time as a novel digital outcome measure. Mult. Scler. J. 2024, 30, 1193–1204. [Google Scholar] [CrossRef]
- Pratap, A.; Grant, D.; Vegesna, A.; Tummalacherla, M.; Cohan, S.; Deshpande, C.; Mangravite, L.; Omberg, L. Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons with Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study. JMIR Mhealth Uhealth 2020, 8, e22108. [Google Scholar] [CrossRef]
- Lam, K.H.; van Oirschot, P.; den Teuling, B.; Hulst, H.E.; de Jong, B.A.; Uitdehaag, B.; de Groot, V.; Killestein, J. Reliability, construct and concurrent validity of a smartphone-based cognition test in multiple sclerosis. Mult. Scler. J. 2022, 28, 300–308. [Google Scholar] [CrossRef] [PubMed]
- van Oirschot, P.; Heerings, M.; Wendrich, K.; den Teuling, B.; Martens, M.B.; Jongen, P.J. Symbol Digit Modalities Test Variant in a Smartphone App for Persons with Multiple Sclerosis: Validation Study. JMIR Mhealth Uhealth 2020, 8, e18160. [Google Scholar] [CrossRef] [PubMed]
- Galati, A.; Kriara, L.; Lindemann, M.; Lehner, R.; Jones, J.B. User Experience of a Large-Scale Smartphone-Based Observational Study in Multiple Sclerosis: Global, Open-Access, Digital-Only Study. JMIR Hum. Factors 2024, 11, e57033. [Google Scholar] [CrossRef]
- Midaglia, L.; Mulero, P.; Montalban, X.; Graves, J.; Hauser, S.L.; Julian, L.; Baker, M.; Schadrack, J.; Gossens, C.; Scotland, A.; et al. Adherence and Satisfaction of Smartphone- and Smartwatch-Based Remote Active Testing and Passive Monitoring in People with Multiple Sclerosis: Nonrandomized Interventional Feasibility Study. J. Med. Internet Res. 2019, 21, e14863. [Google Scholar] [CrossRef]
- Montalban, X.; Graves, J.; Midaglia, L.; Mulero, P.; Julian, L.; Baker, M.; Schadrack, J.; Gossens, C.; Ganzetti, M.; Scotland, A.; et al. A smartphone sensor-based digital outcome assessment of multiple sclerosis. Mult. Scler. J. 2022, 28, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Capezzuto, L.; Kriara, L.; Schjodt-Eriksen, J.; van Beek, J.; Bernasconi, C.; Montalban, X.; Butzkueven, H.; Kappos, L.; Giovannoni, G.; et al. Use of smartphone-based remote assessments of multiple sclerosis in Floodlight Open, a global, prospective, open-access study. Sci. Rep. 2024, 14, 122. [Google Scholar] [CrossRef]
- Woelfle, T.; Pless, S.; Wiencierz, A.; Kappos, L.; Naegelin, Y.; Lorscheider, J. Practice Effects of Mobile Tests of Cognition, Dexterity, and Mobility on Patients with Multiple Sclerosis: Data Analysis of a Smartphone-Based Observational Study. J. Med. Internet Res. 2021, 23, e30394. [Google Scholar] [CrossRef]
- Dini, M.; Gamberini, G.; Tacchini, M.; Boschetti, A.; Gradassi, A.; Chiveri, L.; Rodegher, M.; Comi, G.; Leocani, L. Development and validation of an electronic Symbol-Digit Modalities Test for remote monitoring of people with multiple sclerosis. Eur. J. Neurol. 2025, 32, e16454. [Google Scholar] [CrossRef] [PubMed]
- Middleton, R.M.; Pearson, O.R.; Ingram, G.; Craig, E.M.; Rodgers, W.J.; Downing-Wood, H.; Hill, J.; Tuite-Dalton, K.; Roberts, C.; Watson, L.; et al. A Rapid Electronic Cognitive Assessment Measure for Multiple Sclerosis: Validation of Cognitive Reaction, an Electronic Version of the Symbol Digit Modalities Test. J. Med. Internet Res. 2020, 22, e18234. [Google Scholar] [CrossRef] [PubMed]
- Maillart, E.; Labauge, P.; Cohen, M.; Maarouf, A.; Vukusic, S.; Donzé, C.; Gallien, P.; De Seze, J.; Bourre, B.; Moreau, T. MSCopilot, a new multiple sclerosis self-assessment digital solution: Results of a comparative study versus standard tests. Eur. J. Neurol. 2020, 27, 429–436. [Google Scholar] [CrossRef]
- Tanoh, I.-C.; Maillart, E.; Labauge, P.; Cohen, M.; Maarouf, A.; Vukusic, S.; Donzé, C.; Gallien, P.; De Sèze, J.; Bourre, B. MSCopilot: New smartphone-based digital biomarkers correlate with Expanded Disability Status Scale scores in people with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 55, 103164. [Google Scholar] [CrossRef]
- Seo, D.; So, J.M.; Kim, J.; Jung, H.; Jang, I.; Kim, H.; Kang, D.-W.; Lim, Y.-M.; Choi, J.; Lee, E.-J. Digital symbol-digit modalities test with modified flexible protocols in patients with CNS demyelinating diseases. Sci. Rep. 2024, 14, 14649. [Google Scholar] [CrossRef]
- Pham, L.; Harris, T.; Varosanec, M.; Morgan, V.; Kosa, P.; Bielekova, B. Smartphone-based symbol-digit modalities test reliably captures brain damage in multiple sclerosis. NPJ Digit. Med. 2021, 4, 36. [Google Scholar] [CrossRef]
- Barrios, L.; Amon, R.; Oldrati, P.; Hilty, M.; Holz, C.; Lutterotti, A. Cognitive fatigability assessment test (cFAST): Development of a new instrument to assess cognitive fatigability and pilot study on its association to perceived fatigue in multiple sclerosis. Digit. Health 2022, 8, 20552076221117740. [Google Scholar] [CrossRef]
- Kalb, R.; Beier, M.; Benedict, R.H.; Charvet, L.; Costello, K.; Feinstein, A.; Gingold, J.; Goverover, Y.; Halper, J.; Harris, C.; et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. J. 2018, 24, 1665–1680. [Google Scholar] [CrossRef]
- Benedict, R.H.; Duquin, J.; Jurgensen, S.; Rudick, R.; Feitcher, J.; Munschauer, F.; Panzara, M.; Weinstock-Guttman, B. Repeated assessment of neuropsychological deficits in multiple sclerosis using the Symbol Digit Modalities Test and the MS Neuropsychological Screening Questionnaire. Mult. Scler. J. 2008, 14, 940–946. [Google Scholar] [CrossRef]
- Morrow, S.; Jurgensen, S.; Forrestal, F.; Munchauer, F.E.; Benedict, R.H. Effects of acute relapses on neuropsychological status in multiple sclerosis patients. J. Neurol. 2011, 258, 1603–1608. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; DeLuca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Multiple Sclerosis Outcome Assessments Consortium. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; Cohan, S.; Lynch, S.G.; Riester, K.; Wang, P.; Castro-Borrero, W.; Elkins, J.; Sabatella, G. Improved cognitive outcomes in patients with relapsing–remitting multiple sclerosis treated with daclizumab beta: Results from the DECIDE study. Mult. Scler. J. 2018, 24, 795–804. [Google Scholar] [CrossRef]
- Benedict, R.H.; Kappos, L.; Miller, A.; Hartung, H.-P.; Overell, J.; Pei, J.; Dahlke, F.; Bernasconi, C.; Koendgen, H.; Wang, Q. Cognitive effects of ocrelizumab vs interferon β-1a in relapsing multiple sclerosis: A post hoc analysis of the OPERA I/II trials. Mult. Scler. Relat. Disord. 2025, 95, 106310. [Google Scholar] [CrossRef]
- Rao, S.M. Neuropsychological Screening Battery for Multiple Sclerosis; National Multiple Sclerosis Society: New York, NY, USA, 1991. [Google Scholar]
- Baldassari, L.E.; Nakamura, K.; Moss, B.P.; Macaron, G.; Li, H.; Weber, M.; Jones, S.E.; Rao, S.M.; Miller, D.; Conway, D.S. Technology-enabled comprehensive characterization of multiple sclerosis in clinical practice. Mult. Scler. Relat. Disord. 2020, 38, 101525. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.P.; Shen, L.; Rose, J.; Feinstein, A. Taking the tester out of the SDMT: A proof of concept fully automated approach to assessing processing speed in people with MS. Mult. Scler. J. 2019, 25, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, A.; Shen, L.; Rose, J.; Cayer, C.; Bockus, C.; Meza, C.; Puopolo, J.; Lapointe, E. A French version of a voice recognition symbol digit modalities test analog. Can. J. Neurol. Sci. 2023, 50, 925–928. [Google Scholar] [CrossRef]
- Wishart, M.; Everest, M.R.; Morrow, S.A.; Rose, J.; Shen, L.; Feinstein, A. Establishing the consistency of a voice recognition symbol digit modalities test analogue. Mult. Scler. J. 2023, 29, 1676–1679. [Google Scholar] [CrossRef]
- Ross, D.E.; Seabaugh, J.; Seabaugh, J.M.; Barcelona, J.; Seabaugh, D.; Wright, K.; Norwind, L.; King, Z.; Graham, T.J.; Baker, J. Updated review of the evidence supporting the medical and legal use of NeuroQuant® and NeuroGage® in patients with traumatic brain injury. Front. Hum. Neurosci. 2022, 16, 715807. [Google Scholar] [CrossRef]
- Roque, D.T.; Teixeira, R.A.A.; Zachi, E.C.; Ventura, D.F. The use of the Cambridge Neuropsychological Test Automated Battery (CANTAB) in neuropsychological assessment: Application in Brazilian research with control children and adults with neurological disorders. Psychol. Neurosci. 2011, 4, 255–265. [Google Scholar] [CrossRef]
- Lee, A.; Archer, J.; Wong, C.K.; Chen, S.H.; Qiu, A. Age-related decline in associative learning in healthy Chinese adults. PLoS ONE 2013, 8, e80648. [Google Scholar] [CrossRef]
- Abbott, R.A.; Skirrow, C.; Jokisch, M.; Timmers, M.; Streffer, J.; van Nueten, L.; Krams, M.; Winkler, A.; Pundt, N.; Nathan, P.J. Normative data from linear and nonlinear quantile regression in CANTAB: Cognition in mid-to-late life in an epidemiological sample. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 36–44. [Google Scholar] [CrossRef]
- Siew, S.K.; Han, M.F.; Mahendran, R.; Yu, J. Regression-based norms and validation of the cambridge neuropsychological test automated battery among community-living older adults in Singapore. Arch. Clin. Neuropsychol. 2022, 37, 457–472. [Google Scholar] [CrossRef]
- Casaletto, K.B.; Umlauf, A.; Marquine, M.; Beaumont, J.L.; Mungas, D.; Gershon, R.; Slotkin, J.; Akshoomoff, N.; Heaton, R.K. Demographically Corrected Normative Standards for the Spanish Language Version of the NIH Toolbox Cognition Battery. J. Int. Neuropsychol. Soc. 2016, 22, 364–374. [Google Scholar] [CrossRef] [PubMed]
- McHenry, M.S.; Roose, A.; Abuonji, E.; Nyalumbe, M.; Ayuku, D.; Ayodo, G.; Tran, T.M.; Kaat, A.J. A psychometric evaluation of the NIH Toolbox fluid cognition tests adapted for Swahili and Dholuo languages in Kenyan children and adolescents. J. Int. Neuropsychol. Soc. 2023, 29, 933–942. [Google Scholar] [CrossRef]
- Kuan, Y.-C.; Jhang, K.-M.; Wang, W.-F.; Yeh, Y.-C.; Chen, C.-S.; Yang, C.-C.; Hu, C.-J. Cogstate Brief Battery performance in assessing cognitive impairment in Taiwan: A prospective, multi-center study. J. Formos. Med. Assoc. 2025. [Google Scholar] [CrossRef]
- Yechoor, N.; Towe, S.L.; Robertson, K.R.; Westreich, D.; Nakasujja, N.; Meade, C.S. Utility of a brief computerized battery to assess HIV-associated neurocognitive impairment in a resource-limited setting. J. Neurovirol. 2016, 22, 808–815. [Google Scholar] [CrossRef]
- Bangirana, P.; Sikorskii, A.; Giordani, B.; Nakasujja, N.; Boivin, M.J. Validation of the CogState battery for rapid neurocognitive assessment in Ugandan school age children. Child Adolesc. Psychiatry Ment. Health 2015, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Niino, M.; Miyazaki, Y.; Altincatal, A.; Belviso, N.; Kanda, M.; Chinen, I.; Edwards, M.; de Moor, C.; Williams, J.R.; Rao, S.M. Processing speed test: Results from a Japanese normative sample of healthy participants compared with a US normative sample. Clin. Neurol. Neurosurg. 2023, 230, 107790. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Participants | Known-Groups Validity | Test–Retest Reliability ** | |||||
---|---|---|---|---|---|---|---|---|---|
PwMS | HVs | SDMT | CVLT2 | BVMTR | SDMT | CVLT2 | BVMTR | ||
Alarcón et al. [24] * | Colombia | 50 | 100 | 0.59 | 0.38 | 0.58 | 0.93 | 0.89 | 0.86 |
Betscher et al. [25] | Poland | 61 | 61 | 0.77 | 0.44 | 0.46 | 0.90 | 0.83 | 0.84 |
Botchorishvili et al. [26] | Georgia | 68 | 68 | 0.86 | 0.74 | 0.48 | 0.87 | 0.83 | 0.80 |
Costers et al. [27] | Belgium | 97 | 97 | 0.76 | 0.11 | 0.45 | NR | NR | NR |
Darwish et al. [28] * | Lebanon | 43 | 180 | 0.90 | 0.31 | 0.30 | 0.92 | 0.64 | 0.83 |
Drulovic et al. [29] | Serbia | 500 | 69 | 0.63 | 0.24 | 0.53 | 0.70 | 0.70 | 0.70 |
Dusankova et al. [30] | Czech Republic | 367 | 134 | 1.24 | 0.78 | 0.95 | NR | NR | NR |
Estiasari et al. [31] | Indonesia | 40 | 66 | 1.52 | 0.87 | 1.10 | 0.86 | 0.81 | 0.83 |
Evdoshenko et al. [32] | Russia | 98 | 86 | 0.73 | 0.30 | 0.19 | 0.82 | 0.85 | 0.70 |
Farghaly et al. [33] | Egypt | 90 | 85 | 0.96 | 0.62 | 0.64 | 0.85 | 0.61 | 0.68 |
Filser et al. [34] * | Germany | 172 | 100 | 0.74 | 0.02 | 0.42 | 0.85 | 0.72 | 0.71 |
Giedraitiene et al. [35] | Lithuania | 50 | 20 | 1.13 | 1.08 | 1.03 | 0.91 | 0.81 | 0.82 |
Hämäläinen et al. [36] | Finland | 65 | 45 | 1.21 | 0.74 | 0.73 | 0.86 | 0.84 | 0.71 |
Marstrand et al. [37] | Denmark | 65 | 65 | 0.51 | 0.38 | 0.45 | 0.90 | 0.82 | 0.68 |
Maubeuge et al. [38] * | France | 123 | 276 | 0.88 | 0.80 | 0.62 | 0.89 | 0.78 | 0.67 |
Niino et al. [39] | Japan | 156 | 126 | 1.07 | 0.61 | 0.67 | 0.93 | 0.82 | 0.77 |
O’Connell et al. [40] | Ireland | 67 | 66 | 0.85 | 0.86 | 0.44 | NR | NR | NR |
Ozakbas et al. [41] | Turkey | 173 | 153 | 0.92 | 0.84 | 0.63 | 0.86 | 0.90 | 0.87 |
Polychroniadou et al. [42] * | Greece | 44 | 79 | 1.10 | 0.44 | 0.50 | 0.96 | 0.97 | 0.95 |
Sandi et al. [43] | Hungary | 65 | 65 | 0.80 | 0.38 | 0.57 | 0.88 | 0.74 | 0.87 |
Skorve et al. [44] | Norway | 65 | 68 | 0.36 | 0.61 | 0.50 | NR | NR | NR |
Souissi et al. [45] * | Tunisia | 104 | 104 | 0.78 | 0.61 | 0.50 | NR | NR | NR |
Sousa et al. [46] | Portugal | 105 | 60 | 0.64 | 0.48 | 0.44 | 0.90 | 0.71 | 0.84 |
Spedo et al. [47] | Brazil | 58 | 58 | 0.79 | 0.97 | 0.48 | 0.86 | 0.84 | 0.77 |
Vanotti et al. [48] | Argentina | 50 | 100 | 0.90 | 0.89 | 0.42 | 0.95 | 0.87 | 0.82 |
Walker et al. [49] | Canada | 57 | 51 | 0.97 | 0.67 | 0.97 | 0.87 | 0.74 | 0.68 |
Mean (unweighted) | 109.0 | 91.6 | 0.9 | 0.6 | 0.6 | 0.9 | 0.8 | 0.8 |
Test | Stimulus Sensory Modality | Response Modality | Scoring Automated? | Normative Data | Technician Involvement if Applied in Clinic Setting |
---|---|---|---|---|---|
NeuroTrax [75,84,85,86,87,88,89,90,91,92,93,94,95] | Visual | Manual | Yes | Published norms | Oversight of testing; normalization automated |
PST [78,96,97,98,99,100,101,102,103,104,105,106,107,108,109] | Visual | Manual | Yes | Published norms | SA or oversight of testing; normalization automated |
CBB [74,110,111,112,113,114,115,116,117,118] | Visual | Manual | Yes | Published norms | SA or oversight of testing; normalization automated |
CANTAB [82,119,120,121,122] | Visual | Manual | Yes | Published norms for some tests | SA or oversight of testing; normalization automated |
NIHTB-CB [83,123,124] | Visual | Manual/Oral | Yes | Published norms | Administer/supervise tests; normalization automated |
ATOPS [125,126] | Auditory | Oral | Yes | HV descriptives in individual studies | Administer test; derive normed values |
ACE [127] | Visual | Manual | Yes | Not found | Oversight of testing |
EVO Monitor [128,129] | Visual | Manual | Yes | Not found | Oversight of testing |
iCognition [81] | Visual | Manual | Yes | Published norms | Oversight of testing; derive normed values |
Symbol Search/Dot Memory [130,131,132,133] | Visual | Manual | Yes | HV descriptives in individual studies | Oversight followed by SA; derive normed values |
VRAT [134,135] | Visual | Manual | Yes | HV descriptives in individual studies | Oversight of testing; derive normed values |
BACH [136,137] | Visual | Manual | Yes | HV descriptives in individual studies | SA; derive normed values |
MSReactor [138,139,140] | Visual | Manual | Yes | Not found | SA or oversight of testing |
ICA [141,142] | Visual | Manual | Yes | AI used to determine cognitive status | Oversight of testing; normalization automated |
BoT [143,144,145] | Auditory/Visual | Manual | Yes | HV descriptives in individual studies | Oversight followed by SA; derive normed values |
Multiple Screener [146,147] | Auditory/Visual | Manual | Yes | Published norms | SA; derive normed values |
iCAMS [148] | Auditory/Visual | Manual/Oral | Partially | Used traditional BICAMS norms | Administer tests; normalization automated |
BCCAMS [149] | Auditory/Visual | Manual/Oral | Partially | Published norms | Administer or supervise tests; derive normed values |
iBICAMS [150] | Auditory/Visual | Manual/Oral | Partially | Used traditional BICAMS norms | Administer tests; normalization automated |
DIGICOG-MS [151] | Auditory/Visual | Manual/Oral | Partially | Not found | Administer tests |
Konectom CPS Test [152] | Visual | Manual | Yes | HV descriptives in individual studies | Oversight followed by SA; derive normed values |
elevateMS [153] | Visual | Oral | Yes | Not found | SA |
sSDMT (MS Sherpa) [154,155] | Visual | Manual | Yes | HV descriptives in individual studies | SA; derive normed values |
Floodlight Open [156,157,158,159,160] | Visual | Manual | Yes | Dataset is publicly available online | SA; derive normed values |
eSDMT [161] | Visual | Manual | Yes | Not found | SA |
CoRe [162] | Visual | Manual | Yes | HV descriptives in individual studies | Oversight of testing; derive normed values |
MCT [163,164] | Visual | Manual | Yes | Not found | Oversight of testing |
MD-SDMT [165] | Visual | Manual | Yes | Not found | Oversight of testing |
NeuFun SDMT [166] | Visual | Manual | Yes | Dataset is publicly available online | SA or oversight of testing; derive normed values |
cFAST [167] | Visual | Manual | Yes | Not found | Oversight of testing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balconi, J.; Langdon, D.; Dhakal, B.; Benedict, R.H.B. An Update on New Approaches to Cognitive Assessment in Multiple Sclerosis. NeuroSci 2025, 6, 87. https://doi.org/10.3390/neurosci6030087
Balconi J, Langdon D, Dhakal B, Benedict RHB. An Update on New Approaches to Cognitive Assessment in Multiple Sclerosis. NeuroSci. 2025; 6(3):87. https://doi.org/10.3390/neurosci6030087
Chicago/Turabian StyleBalconi, Jacob, Dawn Langdon, Bishal Dhakal, and Ralph H. B. Benedict. 2025. "An Update on New Approaches to Cognitive Assessment in Multiple Sclerosis" NeuroSci 6, no. 3: 87. https://doi.org/10.3390/neurosci6030087
APA StyleBalconi, J., Langdon, D., Dhakal, B., & Benedict, R. H. B. (2025). An Update on New Approaches to Cognitive Assessment in Multiple Sclerosis. NeuroSci, 6(3), 87. https://doi.org/10.3390/neurosci6030087