Frailty in Stroke Care in Germany Between 2016 and 2022—A Retrospective, Hospital-Based Nationwide Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Flow
2.2. Data Analysis
3. Results
3.1. Changes in Admissions in Relation to Frailty
3.2. Changes in Baseline Characteristics in Relation to Frailty
3.3. Changes in Rates of Treatment and In-Hospital Mortality in Relation to Frailty
4. Discussion
4.1. Changes in Frailty Levels
4.2. Changes in Baseline Characteristics in Relation to Frailty
4.3. Changes in Mortality Rates in Relation to Frailty
4.4. Changes in LOS in Relation to Frailty
4.5. Changes in Rates of Treatment in Relation to Frailty
4.6. The Role of the HFRS in AIS Frailty Assessment
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability Statement
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Taylor-Rowan, M.; Hafdi, M.; Drozdowska, B.; Elliott, E.; Wardlaw, J.; Quinn, T.J. Physical and brain frailty in ischaemic stroke or TIA: Shared occurrence and outcomes. A cohort study. Eur. Stroke. J. 2023, 8, 1011–1020. [Google Scholar] [CrossRef]
- Kilkenny, M.F.; Phan, H.T.; Lindley, R.I.; Kim, J.; Lopez, D.; Dalli, L.L.; Grimley, R.; Sundararajan, V.; Thrift, A.G.; Andrew, N.E.; et al. Utility of the Hospital Frailty Risk Score Derived from Administrative Data and the Association with Stroke Outcomes. Stroke 2021, 52, 2874–2881. [Google Scholar] [CrossRef]
- Burton, J.K.; Stewart, J.; Blair, M.; Oxley, S.; Wass, A.; Taylor-Rowan, M.; Quinn, T.J. Prevalence and implications of frailty in acute stroke: Systematic review & meta-analysis. Age Ageing 2022, 51, afac064. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.; Vetrano, D.L.; Padua, L.; Romano, V.; Rivoiro, C.; Scelfo, B.; Marengoni, A.; Bernabei, R.; Onder, G. Frailty Syndromes in Persons With Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 1255. [Google Scholar] [CrossRef]
- Pinho, J.; Küppers, C.; Nikoubashman, O.; Wiesmann, M.; Schulz, J.B.; Reich, A.; Werner, C.J. Frailty is an outcome predictor in patients with acute ischemic stroke receiving endovascular treatment. Age Ageing 2021, 50, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Schnieder, M.; Bähr, M.; Kirsch, M.; Maier, I.; Behme, D.; Riedel, C.H.; Psychogios, M.N.; Brehm, A.; Liman, J.; von Arnim, C.A.F. Analysis of Frailty in Geriatric Patients as a Prognostic Factor in Endovascular Treated Patients with Large Vessel Occlusion Strokes. J. Clin. Med. 2021, 10, 2171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Anderson, C.S.; Kilkenny, M.F.; Kim, J.; Dewey, H.M.; Andrew, N.E.; Lannin, N.A.; Thrift, A.G.; Grimley, R.; Sundararajan, V.; et al. Hospital admissions prior to primary intracerebral haemorrhage and relevant factors associated with survival. J. Stroke Cerebrovasc. Dis. 2020, 29, 105026. [Google Scholar] [CrossRef]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, S.; Roberts, H.C.; et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Tran, H.M.; Ngo, T.K.T. Comparative clinical frailty scale and hospital frailty risk score in identifying frailty and predicting mid-term outcomes in older patients with acute coronary syndrome: A multicenter cohort study in Vietnam. BMC Geriatr. 2025, 25, 125. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Hori, S.; Ushida, K.; Shirai, Y.; Shimizu, M.; Kato, Y.; Momosaki, R. Impact of Frailty Risk on Functional Outcome after Aneurysmal Subarachnoid Hemorrhage: A Historical Cohort Study. Neurol. Med. Chir. Tokyo. 2024, 64, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Renedo, D.; Acosta, J.N.; Koo, A.B.; Rivier, C.; Sujijantarat, N.; de Havenon, A.; Sharma, R.; Gill, T.M.; Sheth, K.N.; Falcone, G.J.; et al. Higher Hospital Frailty Risk Score is Associated with Increased Risk of Stroke: Observational and Genetic Analyses. Stroke 2023, 54, 1538–1547. [Google Scholar] [CrossRef]
- Kim, D.; Yang, P.S.; Sung, J.H.; Jang, E.; Yu, H.T.; Kim, T.H.; Uhm, J.S.; Kim, J.Y.; Pak, H.N.; Lee, M.H.; et al. Effectiveness and Safety of Anticoagulation Therapy in Frail Patients with Atrial Fibrillation. Stroke 2022, 53, 1873–1882. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs; Population Division. 2022 World Population Prospects 2022; World Population Prospects 2022: Summary of Results. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 15 January 2024).
- Dengler, J.; Prass, K.; Palm, F.; Hohenstein, S.; Pellisier, V.; Stoffel, M.; Hong, B.; Meier-Hellmann, A.; Kuhlen, R.; Bollmann, A.; et al. Changes in nationwide in-hospital stroke care during the first four waves of COVID-19 in Germany. Eur. Stroke J. 2022, 7, 166–174. [Google Scholar] [CrossRef]
- Garner, I.W.; Varey, S.; Navarro-Pardo, E.; Marr, C.; Holland, C.A. An observational cohort study of longitudinal impacts on frailty and well-being of COVID-19 lockdowns in older adults in England and Spain. Health Soc. Care Community 2022, 30, e2905–e2916. [Google Scholar] [CrossRef]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Otobe, Y.; Suzuki, M.; Koyama, S.; Kikuchi, T.; Kusumi, H.; Arai, H. The Influence of the COVID-19 Pandemic on Physical Activity and New Incidence of Frailty among Initially Non-Frail Older Adults in Japan: A Follow-Up Online Survey. J. Nutr. Health Aging. 2021, 25, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, I.; Lenga, P.; Jóźwiak, K.; Thürmann, P.; Meier-Hellmann, A.; Kuhlen, R.; Brederlau, J.; Bauer, T.; Tebbenjohanns, J.; Schwegmann, K.; et al. Clinical course and factors associated with outcomes among 1904 patients hospitalized with COVID-19 in Germany: An observational study. Clin. Microbiol. Infect. 2020, 26, 1663–1669. [Google Scholar] [CrossRef]
- Moore, B.; White, S.; Wahington, R.; Coenen, N.; Elixhauser, A. Identifying increased risk of readmission and in-hospital mortality using hospital administrative data. Med. Care 2017, 55, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Baayen, R.H.; Davidson, D.J.; Bates, D.M. Mixed-Effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 2008, 59, 390–412. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hong, B.; Allam, A.; Heese, O.; Gerlach, R.; Gheewala, H.; Rosahl, S.K.; Stoffel, M.; Ryang, Y.M.; Burger, R.; Carl, B.; et al. Trends in frailty in brain tumor care during the COVID-19 pandemic in a nationwide hospital network in Germany. Eur. Geriatr. Med. 2023, 14, 1383–1391. [Google Scholar] [CrossRef]
- Dengler, J.; Gheewala, H.; Kraft, C.N.; Hegewald, A.A.; Dörre, R.; Heese, O.; Gerlach, R.; Rosahl, S.; Maier, B.; Burger, R.; et al. Changes in frailty among patients hospitalized for spine pathologies during the COVID-19 pandemic in Germany-a nationwide observational study. Eur. Spine J. 2024, 33, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Ono, S.; Seko, H.; Tsukamoto, T.; Kurita, Y.; Kubo, A.; Omote, T.; Omote, S. Trajectories of frailty, physical function, and physical activity levels in elderly patients with heart failure: Impacts of interruption and resumption of outpatient cardiac rehabilitation due to COVID-19. Int. J. Rehabil. Res. 2021, 44, 200–204. [Google Scholar]
- Seligman, B.; Wysham, K.D.; Shahoumian, T.; Orkaby, A.R.; Goetz, M.B.; Osborne, T.F.; Smith, V.A.; Maciejewski, M.L.; Hynes, D.M.; Boyko, E.J.; et al. Change in frailty among older COVID-19 survivors. J. Am. Geriatr. Soc. 2024, 72, 3800–3809. [Google Scholar] [CrossRef]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The effect of frailty on survival in patients with COVID-19 (COPE): A multicentre, European, observational cohort study. Lancet Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef]
- Yafasova, A.; Fosbøl, E.L.; Christiansen, M.N.; Vinding, N.E.; Andersson, C.; Kruuse, C.; Johnsen, S.P.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; et al. Time trends in incidence, comorbidity, and mortality of ischemic stroke in Denmark (1996–2016). Neurology 2020, 95, e2343–e2353. [Google Scholar] [CrossRef]
- Veronese, N. Frailty as Cardiovascular Risk Factor (and Vice Versa). Adv. Exp. Med. Biol. 2020, 1216, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Kim, M.G.; Gandhi, C.; Azizkhanian, I.; Epstein, B.; Mittal, A.; Lee, N.; Santarelli, J.; Schmidt, M.; Al-Mufti, F.; Bowers, C.A. Frailty and spontaneous intracerebral hemorrhage: Does the modified frailty index predict mortality? Clin. Neurol. Neurosurg. 2020, 194, 105816. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.R.; Wall, J.; To, B.; Wallis, S.J.; Romero-Ortuno, R.; Warburton, E.A. Clinical frailty independently predicts early mortality after ischaemic stroke. Age Ageing 2020, 49, 588–591. [Google Scholar] [CrossRef]
- Imaoka, Y.; Kawano, T.; Hashiguchi, A.; Fujimoto, K.; Yamamoto, K.; Nishi, T.; Otsuka, T.; Yano, S.; Mukasa, A. Modified frailty index predicts postoperative outcomes of spontaneous intracerebral hemorrhage. Clin. Neurol. Neurosurg. 2018, 175, 137–143. [Google Scholar] [CrossRef]
- Joyce, N.; Atkinson, T.; Mc Guire, K.; Wiggam, M.I.; Gordon, P.L.; Kerr, E.L.; Patterson, C.E.; McILmoyle, J.; Roberts, G.E.; Flynn, P.A.; et al. Frailty and stroke thrombectomy outcomes-an observational cohort study. Age Ageing 2022, 51, afab260. [Google Scholar] [CrossRef]
- Taylor-Rowan, M.; Keir, R.; Cuthbertson, G.; Shaw, R.; Drozdowska, B.; Elliott, E.; Evans, J.; Stott, D.; Quinn, T.J. Pre-Stroke Frailty is Independently Associated with Post-Stroke Cognition: A Cross-Sectional Study. J. Int. Neuropsychol. Soc. 2019, 25, 501–506. [Google Scholar] [CrossRef]
- Noguchi, M.; Kubo, H.; Kanai, M.; Nozoe, M.; Shimada, S. Relationship between pre-stroke frailty status and short-term functional outcome in older patients with acute stroke-A mediation analysis. Arch. Gerontol. Geriatr. 2021, 94, 104370. [Google Scholar] [CrossRef] [PubMed]
- Seamon, B.A.; Simpson, K.N. The Effect of Frailty on Discharge Location for Medicare Beneficiaries After Acute Stroke. Arch. Phys. Med. Rehabil. 2019, 100, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Katsoularis, I.; Fonseca-Rodríguez, O.; Farrington, P.; Lindmark, K.; Fors Connolly, A.M. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: A self-controlled case series and matched cohort study. Lancet 2021, 398, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Shahjouei, S.; Anyaehie, M.; Koza, E.; Tsivgoulis, G.; Naderi, S.; Mowla, A.; Avula, V.; Vafaei Sadr, A.; Chaudhary, D.; Farahmand, G.; et al. SARS-CoV-2 Is a Culprit for Some, but Not All Acute Ischemic Strokes: A Report from the Multinational COVID-19 Stroke Study Group. J. Clin. Med. 2021, 10, 931. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. American Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Feigin, V.L.; Owolabi, M.O.; World Stroke Organization–Lancet Neurology Commission Stroke Collaboration Group. Pragmatic solutions to reduce the global burden of stroke: A World Stroke Organization-Lancet Neurology Commission. Lancet Neurol. 2023, 22, 1160–1206. [Google Scholar] [CrossRef]
- Schlögl, M.; Quinn, T.J.; International Stroke Recovery and Rehabilitation Alliance (SRRRA) Frailty Stroke Group. Pragmatic solutions for the global burden of stroke. Lancet Neurol. 2024, 23, 333–334. [Google Scholar] [CrossRef]
- Kutrani, H.; Briggs, J.; Prytherch, D.; Spice, C. Using the Hospital Frailty Risk Score to predict length of stay across all adult ages. PLoS ONE 2025, 20, e0317234. [Google Scholar] [CrossRef]
- Mete, B.; Tanır, F.; Demirhindi, H.; İnaltekin, A.; Kanat, C. Impact of the COVID-19 Pandemic on Frailty in Older Adults. Eur. J. Geriatric. Gerontol. 2022, 4, 79–84. [Google Scholar] [CrossRef]
Prepandemic Period (n = 59,377) | Pandemic Period (n = 41,747) | Percentage Change Per Frailty Group | p †‡ | |
---|---|---|---|---|
Daily admissions, total, n (SD) | 40.6 (9.1) | 38.4 (8.4) | - | 0.01 |
low frailty (SD) | 9.8 (3.9) | 10.6 (3.9) | +8.2% | <0.01 |
intermediate frailty (SD) | 20.0 (5.3) | 19.2 (5.1) | −4.0% | <0.01 |
high frailty (SD) | 10.8 (3.6) | 8.6 (3.2) | −20.4% | ref. |
Hospital Frailty Risk Score median (IQR) | 9.3 (5.2–15.5) | 8.4 (4.4–14.2) | - | <0.01 |
Age, mean (SD) | 73.9 (12.7) | 73.9 (12.9) | - | 0.25 |
Sex, male, n (%) | 30,783 (51.8) | 22,065 (52.9) | - | |
female, n (%) | 28,594 (48.2) | 19,682 (47.1) | - | <0.01 |
Elixhauser Comorbidity Index, mean (SD) | 10.5 (10.3) | 9.8 (9.9) | - | <0.01 |
low frailty | 3.1 (6.3) | 3.1 (6.0) | 0% | 0.33 |
intermediate frailty | 9.8 (8.6) | 9.6 (8.2) | −2.0% | <0.01 |
high frailty | 18.4 (10.5) | 18.6 (10.7) | +1.1% | ref. |
Cohort | Prepandemic Period | Pandemic Peroiod | p-Value |
---|---|---|---|
Total, median (IQR) | 7.0 (5, 13) | 6.0 (4, 11) | <0.01 |
low frailty, median (IQR) | 5.0 (4, 7) | 4.0 (3, 6) | <0.01 |
intermediate frailty, median (IQR) | 7.0 (5, 11) | 6.0 (4, 10) | <0.01 |
high frailty, median (IQR) | 13.0 (7, 20) | 13.0 (7, 20) | ref. |
Treatment | Prepandemic Period | Pandemic Period | Odds Ratio (95% CI) | p †‡ |
---|---|---|---|---|
Thrombolysis, % (n) | 14.0 (8287) | 14.9 (6221) | 1.04 (1.00–1.08) | 0.053 |
low frailty, % (n) | 8.2 (1172) | 9.5 (1088) | 1.14 (1.02–1.28) | 0.020 |
intermediate frailty, % (n) | 16.1 (4700) | 17,5 (3659) | 1.06 (0.98–1.16) | 0.158 |
high frailty, % (n) | 15.2 (2415) | 15.7 (1474) | ref. | |
Thrombectomy, % (n) | 5.1 (3021) | 6.9 (2871) | 1.40 (1.32–1.48) | <0.001 |
low frailty, % (n) | 0.5 (75) | 1.1 (121) | 1.35 (1.00–1.83) | 0.047 |
intermediate frailty, % (n) | 5.3 (1543) | 8.0 (1663) | 1.08 (0.96–1.22) | 0.204 |
high frailty, % (n) | 8.9 (1403) | 11.6 (1087) | ref. | |
Hemicraniectomy, % (n) | 0.1 (41) | 0.1 (42) | 1.45 (0.94–2.23) | 0.092 |
low frailty, % (n) | 0.0 (3) | 0.1 (7) | 2.38 (0.47–12.05) | 0.295 |
intermediate frailty, % (n) | 0.1 (28) | 0.1 (28) | 1.13 (0.38–3.32) | 0.828 |
high frailty, % (n) | 0.1 (10) | 0.1 (7) | ref. | |
Mechanical ventilation, % (n) | 4.3 (2575) | 4.2 (1751) | 0.98 (0.92–1.04) | 0.543 |
low frailty, % (n) | 0.5 (68) | 0.6 (64) | 1.06 (0.76–1.50) | 0.721 |
intermediate frailty, % (n) | 3.2 (950) | 3.4 (719) | 0.95 (0.84–1.09) | 0.482 |
high frailty, % (n) | 9.8 (1557) | 10.3 (968) | ref. | |
Stroke unit, % (n) | 57.2 (32,493) | 62.4 (24,954) | 1.28 (1.23–1.34) | <0.001 |
low frailty, % (n) | 56.2 (7991) | 63.3 (7221) | 1.06 (0.94–1.19) | 0.326 |
intermediate frailty, % (n) | 58.3 (16,492) | 63.8 (12,864) | 1.01 (0.90–1.12) | 0.907 |
high frailty, % (n) | 56.1 (8010) | 57.8 (4869) | ref. | |
In-hospital mortality, % (n) | 6.3 (3353) | 6.6 (2481) | 1.05 (1.00–1.11) | 0.070 |
low frailty, % (n) | 0.8 (105) | 1.0 (115) | 1.23 (0.93–1.62) | 0.143 |
intermediate frailty, % (n) | 5.8 (1542) | 6.5 (1227) | 1.00 (0.89–1.12) | 0.995 |
high frailty, % (n) | 12.8 (1706) | 14.3 (1139) | ref. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dengler, J.; Abdullah, B.; Kukolja, J.; Kuhlen, R.; Hohenstein, S.; Dengler, N.F.; Bollmann, A.; Palm, F. Frailty in Stroke Care in Germany Between 2016 and 2022—A Retrospective, Hospital-Based Nationwide Cohort Study. NeuroSci 2025, 6, 88. https://doi.org/10.3390/neurosci6030088
Dengler J, Abdullah B, Kukolja J, Kuhlen R, Hohenstein S, Dengler NF, Bollmann A, Palm F. Frailty in Stroke Care in Germany Between 2016 and 2022—A Retrospective, Hospital-Based Nationwide Cohort Study. NeuroSci. 2025; 6(3):88. https://doi.org/10.3390/neurosci6030088
Chicago/Turabian StyleDengler, Julius, Bassam Abdullah, Juraj Kukolja, Ralf Kuhlen, Sven Hohenstein, Nora F. Dengler, Andreas Bollmann, and Frederick Palm. 2025. "Frailty in Stroke Care in Germany Between 2016 and 2022—A Retrospective, Hospital-Based Nationwide Cohort Study" NeuroSci 6, no. 3: 88. https://doi.org/10.3390/neurosci6030088
APA StyleDengler, J., Abdullah, B., Kukolja, J., Kuhlen, R., Hohenstein, S., Dengler, N. F., Bollmann, A., & Palm, F. (2025). Frailty in Stroke Care in Germany Between 2016 and 2022—A Retrospective, Hospital-Based Nationwide Cohort Study. NeuroSci, 6(3), 88. https://doi.org/10.3390/neurosci6030088