Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS
Abstract
:1. Introduction
2. CR and ET Approaches for Managing Cognitive Impairment in MS
2.1. CR
2.2. ET
3. Enhancing CR and ET Approaches for Managing Cognitive Impairment in MS
4. VR as an Adjuvant for CR and ET Approaches for Cognitive Impairment in MS
4.1. VR for Enhancing Cognitive Improvements
4.1.1. VR for Strengthening Effects of CR
4.1.2. VR for Strengthening Effects of ET
4.2. VR for Enhancing Translation to Improvements in Everyday Function
4.2.1. VR for Everyday Functioning in CR
4.2.2. VR for Strengthening Effects of ET
5. Roadmap for Testing the Conceptual Framework in Clinical Trials
6. Summary/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of, MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Trapp, B.D.; Nave, K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Hopman, W.M.; Coo, H.; Edgar, C.M.; McBride, E.V.; Day, A.G.; Brunet, D.G. Factors associated with health-related quality of life in multiple sclerosis. Can. J. Neurol. Sci. 2007, 34, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Goverover, Y.; Genova, H.M.; DeLuca, J. Cognitive Efficacy of Pharmacologic Treatments in Multiple Sclerosis: A Systematic Review. CNS Drugs 2020, 34, 599–628. [Google Scholar] [CrossRef]
- DeLuca, J.; Chiaravalloti, N.D.; Sandroff, B.M. Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat. Rev. Neurol. 2020, 16, 319–332. [Google Scholar] [CrossRef]
- Clare, L.; Woods, B. Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. In Cochrane Database Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Wilson, B.A. Towards a comprehensive model of cognitive rehabilitation. Neuropsychol. Rehabil. 2002, 12, 97–110. [Google Scholar] [CrossRef]
- Taylor, L.A.; Mhizha-Murira, J.R.; Smith, L.; Potter, K.J.; Wong, D.; Evangelou, N.; Lincoln, N.B.; das Nair, R. Memory rehabilitation for people with multiple sclerosis. Cochrane Database Syst. Rev. 2021, 10, 102. [Google Scholar] [CrossRef]
- Prosperini, L.; Piattella, M.C.; Giannì, C.; Pantano, P. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis. Neural Plast. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosperini, L.; Di Filippo, M. Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Mult. Scler. J. 2019, 25, 1348–1362. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, K.T.; Beiske, A.G.; Landrø, N.I.; Hofoss, D.; Hessen, E. Cognitive rehabilitation in multiple sclerosis: A randomized controlled trial. Acta Neurol. Scand. 2015, 133, 30–40. [Google Scholar] [CrossRef]
- Pérez-Martín, M.Y.; González-Platas, M.; Eguía-Del Río, P.; Croissier-Elías, C.; Sosa, A.J. Efficacy of a short cognitive training program in patients with multiple sclerosis. Neuropsychiatr. Dis. Treat. 2017, 13, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flavia, M.; Stampatori, C.; Zanotti, D.; Parrinello, G.; Capra, R. Efficacy and specificity of intensive cognitive rehabilitation of attention and executive functions in multiple sclerosis. J. Neurol. Sci. 2010, 288, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Baumstarck-Barrau, K.; Simeoni, M.C.; Reuter, F.; Klemina, I.; Aghababian, V.; Pelletier, J.; Auquier, P. Cognitive function and quality of life in multiple sclerosis patients: A cross-sectional study. BMC Neurol. 2011, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Højsgaard Chow, H.; Schreiber, K.; Magyari, M.; Ammitzbøll, C.; Börnsen, L.; Romme Christensen, J.; Ratzer, R.; Sørensen, P.S.; Sellebjerg, F. Progressive multiple sclerosis, cognitive function, and quality of life. Brain Behav. 2018, 8, e00875. [Google Scholar] [CrossRef] [Green Version]
- Chiaravalloti, N.D.; Moore, N.B.; Nikelshpur, O.M.; DeLuca, J. An RCT to treat learning impairment in multiple sclerosis: The MEMREHAB trial. Neurology 2013, 81, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, V.M.; Wylie, G.R.; Girgis, P.A.; DeLuca, J.; Chiaravalloti, N.D. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav. 2014, 8, 394–402. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; Wylie, G.; Leavitt, V.; DeLuca, J. Increased cerebral activation after behavioral treatment for memory deficits in MS. J. Neurol. 2012, 259, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Goretti, B.; Viterbo, R.G.; Portaccio, E.; Niccolai, C.; Hakiki, B.; Iaffaldano, P.; Trojano, M. Computer-assisted rehabilitation of attention in patients with multiple sclerosis: Results of a randomized, double-blind trial. Mult. Scler. 2014, 20, 91–98. [Google Scholar] [CrossRef]
- Goverover, Y.; Chiaravalloti, N.D.; O’Brien, A.R.; DeLuca, J. Evidenced-Based Cognitive Rehabilitation for Persons With Multiple Sclerosis: An Updated Review of the Literature From 2007 to 2016. Arch. Phys. Med. Rehabil. 2018, 99, 390–407. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wόjcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.F.; Colcombe, S. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study—Revisited. Perspect. Psychol. Sci. 2018, 13, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandroff, B.M.; DeLuca, J. Will behavioral treatments for cognitive impairment in multiple sclerosis become standards-of-care? IInt. J. Psychophysiol. 2020, 154, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Langeskov-Christensen, M.; Hvid, L.G.; Jensen, H.B.; Nielsen, H.H.; Petersen, T.; Stenager, E.; Hämäläinen, P.; Dalgas, U. Efficacy of high-intensity aerobic exercise on cognitive performance in people with multiple sclerosis: A randomized controlled trial. Mult. Scler. J. 2021, 27, 1585–1596. [Google Scholar] [CrossRef]
- Langeskov-Christensen, M.; Hvid, L.G.; Jensen, H.B.; Nielsen, H.H.; Petersen, T.; Stenager, E.; Dalgas, U. Efficacy of high-intensity aerobic exercise on common multiple sclerosis symptoms. Acta Neurol. Scand. 2022, 145, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Langeskov-Christensen, M.; Stenager, E.; Riemenschneider, M.; Hvid, L.G. Exercise as Medicine in Multiple Sclerosis—Time for a Paradigm Shift: Preventive, Symptomatic, and Disease-Modifying Aspects and Perspectives. Curr. Neurol. Neurosci. Rep. 2019, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gharakhanlou, R.; Wesselmann, L.; Rademacher, A.; Lampit, A.; Negaresh, R.; Kaviani, M.; Oberste, M.; Motl, R.W.; Sandroff, B.N.; Bansi, J.; et al. Exercise training and cognitive performance in persons with multiple sclerosis: A systematic review and multilevel meta-analysis of clinical trials. Mult. Scler. J. 2021, 27, 1977–1993. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.; Motl, R.; Young, V.; Cutter, G.; Giovannoni, G. Exercise training in multiple sclerosis. Lancet Neurol. 2022, in press. [CrossRef]
- Motl, R.W.; Sandroff, B.M. Benefits of Exercise Training in Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Motl, R.W.; Scudder, M.R.; DeLuca, J. Systematic, Evidence-Based Review of Exercise, Physical Activity, and Physical Fitness Effects on Cognition in Persons with Multiple Sclerosis. Neuropsychol. Rev. 2016, 26, 271–294. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Bollaert, R.E.; Pilutti, L.A.; Peterson, M.L.; Baynard, T.; Fernhall, B.; McAuley, E.; Motl, R.W. Multimodal exercise training in multiple sclerosis: A randomized controlled trial in persons with substantial mobility disability. Contemp. Clin. Trials 2017, 61, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Wylie, G.R.; Baird, J.F.; Jones, C.D.; Diggs, M.D.; Genova, H.; Bamman, M.M.; Cutter, G.R.; DeLuca, J.; Motl, R.W. Effects of walking exercise training on learning and memory and hippocampal neuroimaging outcomes in MS: A targeted, pilot randomized controlled trial. Contemp. Clin. Trials 2021, 110, 106563. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Jones, C.D.; Baird, J.F.; Motl, R.W. Systematic Review on Exercise Training as a Neuroplasticity-Inducing Behavior in Multiple Sclerosis. Neurorehabil. Neural Repair 2020, 34, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Gosney, J.L. Effect of exercise training on quality of life in multiple sclerosis: A meta-analysis. Mult. Scler. 2008, 14, 129–135. [Google Scholar] [CrossRef]
- Kierkegaard, M.; Lundberg, I.E.; Olsson, T.; Johansson, S.; Ygberg, S.; Opava, C.; Holmqvist, L.W.; Piehl, F. High-intensity resistance training in multiple sclerosis-An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition. J. Neurol. Sci. 2016, 362, 251–257. [Google Scholar] [CrossRef]
- Wilson, B.; Gracey, F.; Evans, J.; Bateman, A. Neuropsychological Rehabilitation: Theory, Models, Therapy and Outcome, 1st ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Crayton, H.; Heyman, R.A.; Rossman, H.S. A multimodal approach to managing the symptoms of multiple sclerosis. Neurology 2004, 63, S12–S18. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.L.; Jessel, A.S. Virtual reality applications to work. Work 1998, 11, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Bryson, S. Approaches to the Successful Design and Implementation of VR Applications. Virtual Real. Appl. 1995, 9, 3–15. [Google Scholar]
- Caserman, P.; Garcia-Agundez, A.; Konrad, R.; Göbel, S.; Steinmetz, R. Real-time body tracking in virtual reality using a Vive tracker. Virtual Real. 2019, 23, 155–168. [Google Scholar] [CrossRef]
- Loureiro Krassmann, A.; Melo, M.; Peixoto, B.; Pinto, D.; Bessa, M.; Bercht, M. Learning in Virtual Reality: Investigating the Effects of Immersive Tendencies and Sense of Presence. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2020; Volume 12191 LNCS, pp. 270–286. [Google Scholar] [CrossRef]
- Sanchez-Vives, M.V.; Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.G.; Seibel, E.J.; Richards, T.L.; Furness, T.A.; Patterson, D.R.; Sharar, S.R. Virtual Reality Helmet Display Quality Influences the Magnitude of Virtual Reality Analgesia. J. Pain 2006, 7, 843–850. [Google Scholar] [CrossRef]
- Triberti, S.; Repetto, C.; Riva, G. Psychological factors influencing the effectiveness of virtual reality-based analgesia: A systematic review. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.T.; Krch, D.; Lange, B.S.; Rizzo, A. Virtual reality and rehabilitation. In Handbook of Rehabilitation Psychology, 3rd ed.; American Psychological Association: Washington, DC, USA, 2019; pp. 521–539. [Google Scholar] [CrossRef]
- Rizzo, A.S.; Koenig, S.T. Is clinical virtual reality ready for primetime? Neuropsychology 2017, 31, 877–899. [Google Scholar] [CrossRef] [Green Version]
- Lombard, M.; Ditton, T. At the heart of it all: The concept of presence. J. Comput. Commun. 1997, 3, JCMC321. [Google Scholar] [CrossRef]
- Lavie, N.; Hirst, A.; De Fockert, J.W.; Viding, E. Load theory of selective attention and cognitive control. J. Exp. Psychol. Gen. 2004, 133, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Roper, Z.J.J.; Cosman, J.D.; Vecera, S.P. Perceptual load corresponds with factors known to influence visual search. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 1340–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquet, L.; Craig, G.L. Evidence for selective target processing with a low perceptual lead flankers task. Mem. Cogn. 1997, 25, 182–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, N.; Beck, D.M.; Konstantinou, N. Blinded by the load: Attention, awareness and the role of perceptual load. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, S.; Lavie, N. Harnessing the wandering mind: The role of perceptual load. Cognition 2009, 111, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, I. The Ultimate Display. In Proceedings of the IFIP Congress; IFIP: New York, NY, USA, 1965; Volume 65, pp. 506–508. [Google Scholar]
- Ahmadpour, N.; Randall, H.; Choksi, H.; Gao, A.; Vaughan, C.; Poronnik, P. Virtual Reality interventions for acute and chronic pain management. Int. J. Biochem. Cell Biol. 2019, 114, 105568. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.D. The Analgesic Effects of Virtual Reality for People with Chronic Pain: A Scoping Review. Pain Med. 2022, 23, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, I.L.; Emmelkamp, P.M.G.; Hartanto, D.; Brinkman, W.P.; Zijlstra, B.J.H.; Morina, N. Exposure to virtual social interactions in the treatment of social anxiety disorder: A randomized controlled trial. Behav. Res. Ther. 2016, 77, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Opriş, D.; Pintea, S.; García-Palacios, A.; Botella, C.; Szamosközi, Ş.; David, D. Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depress. Anxiety 2012, 29, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Maples-Keller, J.L.; Yasinski, C.; Manjin, N.; Rothbaum, B.O. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress. Neurotherapeutics 2017, 14, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, T.F.; Mühlberger, A.; Kümpers, F. Inferiority or even superiority of virtual reality exposure therapy in phobias?—A systematic review and quantitative meta-analysis on randomized controlled trials specifically comparing the efficacy of virtual reality exposure to gold standard in vivo e. Front. Psychol. 2019, 10, 1758. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.; Cukor, J.; Gerardi, M.; Alley, S.; Reist, C.; Roy, M.; Rothbaum, B.O.; Difede, J. Virtual Reality Exposure for PTSD Due to Military Combat and Terrorist Attacks. J. Contemp. Psychother. 2015, 45, 255–264. [Google Scholar] [CrossRef]
- Adams, R.S.; Larson, M.J.; Meerwijk, E.L.; Williams, T.V.; Harris, A.H.S. Postdeployment Polytrauma Diagnoses Among Soldiers and Veterans Using the Veterans Health Affairs Polytrauma System of Care and Receipt of Opioids, Nonpharmacologic, and Mental Health Treatments. J. Head Trauma Rehabil. 2019, 34, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.; Kammler-Sücker, K.; Leménager, T.; Kiefer, F.; Lenz, B. Virtual reality: A powerful technology to provide novel insight into treatment mechanisms of addiction. Transl. Psychiatry 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tsamitros, N.; Sebold, M.; Gutwinski, S.; Beck, A. Virtual Reality-Based Treatment Approaches in the Field of Substance Use Disorders; Springer Science and Business Media Deutschland GmbH: New York, NY, USA, 2021; Volume 8. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Samad-Soltani, T.; Salahzadeh, Z.; Rezaei-Hachesu, P. Effectiveness of virtual reality-based exercise therapy in rehabilitation: A scoping review. Inform. Med. Unlocked 2021, 24, 100562. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Shang, X.; Wu, Z. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in parkinson’s disease patients: A randomized controlled trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, L.; Jacky, M.; Lünenburger, L.; Riener, R.; Bolliger, M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch. Phys. Med. Rehabil. 2013, 94, 1737–1746. [Google Scholar] [CrossRef]
- Lequerica, A.H.; Kortte, K. Therapeutic engagement: A proposed model of engagement in medical rehabilitation. Am. J. Phys. Med. Rehabil. 2010, 89, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Marques, C.; Moreira, D.; Soares, M.; Portugal, P.; Marques, A.; Ferreira, A.R.; Martins, S.; Fernandes, L. Promoting reminiscences with virtual reality headsets: A pilot study with people with dementia. Int. J. Environ. Res. Public Health 2020, 17, 9301. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, S.; Lim, H. Developing a virtual reality for people with dementia in nursing homes based on their psychological needs: A feasibility study. BMC Geriatr. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- D’Cunha, N.M.; Nguyen, D.; Naumovski, N.; McKune, A.J.; Kellett, J.; Georgousopoulou, E.N.; Frost, J.; Isbel, S. A mini-review of virtual reality-based interventions to promote well-being for people living with dementia and mild cognitive impairment. Gerontology 2019, 65, 430–440. [Google Scholar] [CrossRef]
- Sayma, M.; Tuijt, R.; Cooper, C.; Walters, K.; Heyn, P.C. Are We There Yet? Immersive Virtual Reality to Improve Cognitive Function in Dementia and Mild Cognitive Impairment. Gerontologist 2020, 60, E502–E512. [Google Scholar] [CrossRef]
- Gallace, A.; Ngo, M.K.; Sulaitis, J.; Spence, C. Multisensory presence in virtual reality: Possibilities & limitations. In Multiple Sensorial Media Advances and Applications: New Developments in MulSeMedia; IGI Global: Hershey, PA, USA, 2011; pp. 1–38. [Google Scholar] [CrossRef] [Green Version]
- Denervaud, S.; Gentaz, E.; Matusz, P.J.; Murray, M.M. Multisensory Gains in Simple Detection Predict Global Cognition in Schoolchildren. Sci. Rep. 2020, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Li, P.C.; Fan, S.C. Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults. J. Neuroeng. Rehabil. 2015, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardis, D.; Frisoli, A.; Barsotti, M.; Carrozzino, M.; Bergamasco, M. Multisensory feedback can enhance embodiment within an enriched virtual walking scenario. Presence Teleoperators Virtual Environ. 2014, 23, 253–266. [Google Scholar] [CrossRef]
- Lin, C.W.; Kuo, L.C.; Lin, Y.C.; Su, F.C.; Lin, Y.A.; Hsu, H.Y. Development and Testing of a Virtual Reality Mirror Therapy System for the Sensorimotor Performance of Upper Extremity: A Pilot Randomized Controlled Trial. IEEE Access 2021, 9, 14725–14734. [Google Scholar] [CrossRef]
- Saleh, S.; Adamovich, S.V.; Tunik, E. Mirrored feedback in chronic stroke: Recruitment and effective connectivity of ipsilesional sensorimotor networks. Neurorehabil. Neural Repair 2014, 28, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, N.; Lin, Z.; Zokaei, N.; Thoma, V. The Role of Perceptual Load in Object Recognition. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1346–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardi, S.; Maggio, M.G.; Russo, M.; Bramanti, A.; Arcadi, F.A.; Naro, A.; Calabrò, R.S.; De Luca, R. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin. Neurol. Neurosurg. 2021, 208, 106828. [Google Scholar] [CrossRef] [PubMed]
- Devos, H.; Akinwuntan, A.E.; Nieuwboer, A.; Tant, M.; Truijen, S.; De Wit, L.; Kiekens, C.; De Weerdt, W. Comparison of the effect of two driving retraining programs on on-road performance after stroke. Neurorehabil. Neural Repair 2009, 23, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinwuntan, A.E.; Devos, H.; Verheyden, G.; Baten, G.; Kiekens, C.; Feys, H.; De Weert, W. Retraining moderately impaired stroke survivors in driving-related visual attention skills. Top. Stroke Rehabil 2010, 17, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.J.; Davis, M.; Singh, H.; Barbour, B.; Nidiffer, F.D.; Trudel, T.; Mourant, R.; Moncrief, R. Driving rehabilitation for military personnel recovering from traumatic brain injury using virtual reality driving simulation: A feasibility study. Mil. Med. 2010, 175, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Classen, S.; Brooks, J. Driving simulators for occupational therapy screening, assessment, and intervention. Occup. Ther. Heal. Care 2014, 28, 154–162. [Google Scholar] [CrossRef]
- Akinwuntan, A.E.; Devos, H.; Baker, K.; Phillips, K.; Kumar, V.; Smith, S.; Williams, M.J. Improvement of driving skills in persons with relapsing-remitting multiple sclerosis: A pilot study. Arch. Phys. Med. Rehabil. 2014, 95, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; De Luca, R.; Manuli, A.; Buda, A.; Foti Cuzzola, M.; Leonardi, S.; D’Aleo, G.; Bramanti, P.; Russo, M.; Calabrò, R.S. Do patients with multiple sclerosis benefit from semi-immersive virtual reality? A randomized clinical trial on cognitive and motor outcomes. Appl. Neuropsychol. 2022, 29, 59–65. [Google Scholar] [CrossRef]
- Marucci, M.; Di Flumeri, G.; Borghini, G.; Sciaraffa, N.; Scandola, M.; Pavone, E.F.; Babiloni, F.; Betti, V.; Arico, P. The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Sci. Rep. 2021, 11, 4831. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Motl, R.W.; Reed, W.R.; Barbey, A.K.; Benedict, R.H.B.; DeLuca, J. Integrative CNS Plasticity With Exercise in MS: The PRIMERS (PRocessing, Integration of Multisensory Exercise-Related Stimuli) Conceptual Framework. Neurorehabil. Neural Repair 2018, 32, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.; Bramanti, P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J. Neurol. Sci. 2017, 377, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Pérez, I.; Nieto-Escamez, F.A.; Obrero-Gaitán, E. Immersive virtual reality in stroke patients as a new approach for reducing postural disabilities and falls risk: A case series. Brain Sci. 2020, 10, 296. [Google Scholar] [CrossRef]
- Maggio, M.G.; Maresca, G.; De Luca, R.; Stagnitti, M.C.; Porcari, B.; Ferrera, M.C.; Galleti, F.; Casella, C.; Manuli, A.; Calabrò, R.S. The Growing Use of Virtual Reality in Cognitive Rehabilitation: Fact, Fake or Vision? A Scoping Review. J. Natl. Med. Assoc. 2019, 111, 457–463. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Hsuan Chen, I.; Lin, Y.J.; Chen, Y.; Hsu, W.C. Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Wall, K.J.; Cumming, T.B.; Koenig, S.T.; Pelecanos, A.M.; Copland, D.A. Using technology to overcome the language barrier: The Cognitive Assessment for Aphasia App. Disabil. Rehabil. 2018, 40, 1333–1344. [Google Scholar] [CrossRef]
- Ruse, S.A.; Davis, V.G.; Atkins, A.S.; Krishnan, K.R.R.; Fox, K.H.; Harvey, P.D.; Keefe, R.S.E. Development of a virtual reality assessment of everyday living skills. J. Vis. Exp. 2014, 86, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bordnick, P.S.; Yoon, J.H.; Kaganoff, E.; Carter, B. Virtual Reality Cue Reactivity Assessment: A Comparison of Treatment- vs. Nontreatment-Seeking Smokers. Res. Soc. Work. Pract. 2013, 23, 419–425. [Google Scholar] [CrossRef]
- Riva, G.; Mantovani, F.; Capideville, C.S.; Preziosa, A.; Morganti, F.; Villani, D.; Gaggioli, A.; Botella, C.; Alcañiz, M. Affective interactions using virtual reality: The link between presence and emotions. Cyberpsychol. Behav. 2007, 10, 45–56. [Google Scholar] [CrossRef]
- Wang, A.; Thompson, M.; Uz-Bilgin, C.; Klopfer, E. Authenticity, Interactivity, and Collaboration in Virtual Reality Games: Best Practices and Lessons Learned. Front. Virtual Real. 2021, 2, 1–16. [Google Scholar] [CrossRef]
- Weber, E.; Goverover, Y.; DeLuca, J. Beyond cognitive dysfunction: Relevance of ecological validity of neuropsychological tests in multiple sclerosis. Mult. Scler. J. 2019, 25, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Corriveau Lecavalier, N.; Ouellet, É.; Boller, B.; Belleville, S. Use of immersive virtual reality to assess episodic memory: A validation study in older adults. Neuropsychol. Rehabil. 2020, 30, 462–480. [Google Scholar] [CrossRef] [PubMed]
- Engeser, S.; Rheinberg, F. Flow, performance and moderators of challenge-skill balance. Motiv. Emot. 2008, 32, 158–172. [Google Scholar] [CrossRef]
- Granic, I.; Lobel, A.; Engels, R.C.M.E. The benefits of playing video games. Am. Psychol. 2013, 69, 66–78. [Google Scholar] [CrossRef]
- Faria, A.L.; Pinho, M.S.; Bermúdez I Badia, S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: A randomized controlled trial with chronic stroke patients. J. Neuroeng. Rehabil. 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Tseng, H.Y.; Lin, Y.J.; Wang, C.J.; Hsu, W.C. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. Eur. J. Phys. Rehabil. Med. 2020, 56, 47–57. [Google Scholar] [CrossRef]
- Ryu, J.; Jung, J.H.; Kim, J.; Kim, C.H.; Lee, H.B.; Kim, D.H.; Lee, S.K.; Shin, J.H.; Roh, D. Outdoor cycling improves clinical symptoms, cognition and objectively measured physical activity in patients with schizophrenia: A randomized controlled trial. J. Psychiatr. Res. 2020, 120, 144–153. [Google Scholar] [CrossRef]
- Cooper, S.B.; Dring, K.J.; Morris, J.G.; Sunderland, C.; Bandelow, S.; Nevill, M.E. High intensity intermittent games-based activity and adolescents’ cognition: Moderating effect of physical fitness. BMC Public Health 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Moreau, D.; Conway, A.R.A. Cognitive enhancement: A comparative review of computerized and athletic training programs. Int. Rev. Sport Exerc. Psychol. 2013, 6, 155–183. [Google Scholar] [CrossRef]
- Moreau, D.; Morrison, A.B.; Conway, A.R.A. An ecological approach to cognitive enhancement: Complex motor training. Acta Psychol. 2015, 157, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.T.; Palmeri, M.J.; Malik, M.; Dobbs, B.; Charvet, L.E. Virtual reality is a feasible intervention platform in multiple sclerosis: A pilot protocol and acute improvements in affect. Mult. Scler. J. Exp. Transl. Clin. 2021, 7, 20552173211006140. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.W.; Duh, H.B.L.; Parker, D.E.; Abi-Rached, H.; Furness, T.A. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. Proc. Virtual Real. Annu. Int. Symp. 2002, 164–171. [Google Scholar] [CrossRef]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Rev. Med Devices 2018, 15, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Cerasa, A.; Gioia, M.C.; Valentino, P.; Nisticò, R.; Chiriaco, C.; Pirritano, D.; Tomaiuolo, F.; Mangone, G.; Trotta, M.; Talarico, T.; et al. Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: A randomized trial with fMRI correlates. Neurorehabil. Neural Repair 2013, 27, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Sandroff, B.M.; Pilutti, L.A.; Benedict, R.H.B.; Motl, R.W. Association between physical fitness and cognitive function in multiple sclerosis: Does disability status matter? Neurorehabil. Neural Repair 2015, 29, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Lamargue-Hamel, D.; Deloire, M.; Saubusse, A.; Ruet, A.; Taillard, J.; Philip, P.; Brochet, B. Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis. J. Neurol. Sci. 2015, 359, 94–99. [Google Scholar] [CrossRef]
- Krch, D.; Nikelshpur, O.; Lavrador, S.; Chiaravalloti, N.D.; Koenig, S.; Rizzo, A. Pilot results from a virtual reality executive function task. In Proceedings of the 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, USA, 26–29 August 2013; pp. 15–21. [Google Scholar] [CrossRef]
- Peruzzi, A.; Cereatti, A.; Della Croce, U.; Mirelman, A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: A pilot study. Mult. Scler. Relat. Disord. 2016, 5, 91–96. [Google Scholar] [CrossRef]
- Hsieh, K.L.; Mirelman, A.; Shema-Shiratzky, S.; Galperin, I.; Regev, K.; Shen, S.; Schmitz-Hübsch, T.; Karni, A.; Paul, F.; Devos, H.; et al. A multi-modal virtual reality treadmill intervention for enhancing mobility and cognitive function in people with multiple sclerosis: Protocol for a randomized controlled trial. Contemp. Clin. Trials 2020, 97, 106122. [Google Scholar] [CrossRef]
VR Component | Definition | Application for CR | Application for ET |
---|---|---|---|
Immersion | A user experience where the real world is shut out and a user is surrounded by a virtual environment [47]. The virtual environment changes in a natural way with head and body motion, similar to that in the real world [48]. | Greater engagement/presence and sensory stimulation by implementing CR techniques and characteristics of cognitive training into a virtual environment, increasing the likelihood of cognitive improvements. | Greater engagement/presence and sensory stimulation by creating a multisensory experience during ET, increasing the likelihood of cognitive improvements. |
Interaction | The ability of a user to make changes in and control aspects of the virtual environment [47]. Interaction can come from hand controllers, eye-tracking, natural locomotion, and full body tracking [47]. | Increases engagement/presence by engrossing individuals in the environment and increasing their sense of control. Interaction provides more realistic practice in cognitive training. | Increases engagement/presence by engrossing individuals in the environment and increasing their sense of control. Interaction with the VR can be tightly matched with actual physical movement. |
Presence | The feeling of “being there” in a virtual environment [44,49]. | The key ingredient for engagement in a virtual environment. Presence is also linked to greater motivation to complete tasks in VR and fun doing it. | The key ingredient for engagement in a virtual environment. Presence is also linked to greater motivation to complete tasks in VR and fun doing it. |
Naturalistic environment | A virtual environment that resembles the real world. | Can resemble the complexity of the real world and provide more ecologically valid training. Potential for CR to train more high-level cognitive domains important for everyday function. | Increases engagement and enjoyment of ET. Can provide multisensory input that more closely resembles the real world, increasing the likelihood of cognitive improvements that translate to improvements in everyday function. |
Perceptual load | The number of objects present in a virtual environment that may or may not be targets [50] | Low perceptual load environments may be helpful in initial stages of training [51,52] but increasing perceptual load over time can create challenges and improved cognitive performance [53,54]. | Perceptual load can increase multisensory processing required during ET and the cognitive challenge during ET. |
Individualization | The ability to change aspects of the virtual environment to precisely match the individual’s need to desire. | Can resemble the complexity of the real world and provide more ecologically valid training. Potential for CR to train more high-level cognitive domains important for everyday function. Can motivate someone to work harder and can be much more enjoyable due to the personal connection to the VR. The challenge of the task can change specifically with regard to individual performance. Ideally suited for laboratory-based clinical trials. Specific and individualized feedback can be provided. | Increases engagement and enjoyment of ET. It may also help translate ET to higher levels of leisure time physical activity. Can motivate someone to work harder and can be much more enjoyable due to the personal connection to the VR. Individualization can help target specific cognitive domains to improve upon during ET. Ideally suited for laboratory-based clinical trials. |
Time Manipulation | VR does not follow the rules of reality allowing examiners to pause, slow down, and rewind scenarios presented in the virtual environment. | Allows for more specific, real-time feedback which enhances training. | Allows for more specific, real-time feedback which enhances training. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wender, C.L.A.; DeLuca, J.; Sandroff, B.M. Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS. NeuroSci 2022, 3, 200-213. https://doi.org/10.3390/neurosci3020015
Wender CLA, DeLuca J, Sandroff BM. Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS. NeuroSci. 2022; 3(2):200-213. https://doi.org/10.3390/neurosci3020015
Chicago/Turabian StyleWender, Carly L. A., John DeLuca, and Brian M. Sandroff. 2022. "Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS" NeuroSci 3, no. 2: 200-213. https://doi.org/10.3390/neurosci3020015
APA StyleWender, C. L. A., DeLuca, J., & Sandroff, B. M. (2022). Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS. NeuroSci, 3(2), 200-213. https://doi.org/10.3390/neurosci3020015